Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (2): 403-413.doi: 10.3724/SP.J.1006.2024.31016

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning of TabHLH112-2B gene and development of its functional marker associated with the number of spikelet per spike in wheat

FAN Zi-Pei1,2(), LI Long2, SHI Yu-Gang1, SUN Dai-Zhen1,*(), LI Chao-Nan2,*(), JING Rui-Lian2   

  1. 1College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2023-02-27 Accepted:2023-05-24 Online:2024-02-12 Published:2023-06-20
  • Contact: *E-mail: sdz64@126.com;lichaonan@caas.cn
  • Supported by:
    National Key Research and Development Program of China(2022YFD1200201);China Agriculture Research System of MOF and MARA(Wheat, CARS-03-5)

Abstract:

The bHLH (basic Helix-Loop-Helix) transcription factor plays an important role in plant growth and development. In this study, wheat gene TabHLH112-2B was cloned, which consists of seven exons and six introns, encoding 444 amino acids, and has a typical HLH conserved domain at 315-364 amino acids. The tissue expression pattern analysis showed that TabHLH112-2B was expressed in all tissues at seedling stage, jointing stage, heading stage, and flowering stages. Among them, the relative expression levels in leaves and roots were higher. The cis-acting element analysis showed that the promoter region of TabHLH112-2B contained a variety of cis-acting elements related to plant hormone responses, stress responses, and meristem development. The qRT-PCR exhibited that the relative expression level of TabHLH112-2B was responsive to plant hormones (such as ABA, IAA, MeJA) and abiotic stresses (such as drought, salt, low and high temperatures). Two SNPs were detected in its promoter region by genomic sequence polymorphism, which were classified into two haplotypes. A molecular marker was developed based on SNP-682, and association analysis showed that the marker was significantly correlated with the number of spikelet per spike in various environments such as drought and high temperature. Hap-2B-2 was a favorable haplotype with more spikelets per spike. These results of this study provide the valuable genetic resources and technical support for molecular marker-assisted breeding of wheat varieties with high yield and wide adaptability.

Key words: wheat, TabHLH112-2B, molecular marker, association analysis, the number of spikelet per spike, favorable haplotype

Table 1

Websites for software used in bioinformatics analysis"

软件
Software
用途
Function
网址
Website
SMART 结构域分析
Domain analysis
http://smart.embl.de/
ProtParam 蛋白理化性质分析
Physical and chemical properties
https://web.expasy.org/protparam/
ExPASy 蛋白亲疏水性分析
Hydrophilicity analysis
https://web.expasy.org/protscale/SWISS-MODEL
SignalP-5.0 蛋白信号肽预测
Signal peptide prediction
https://services.healthtech.dtu.dk/service.php?SignalP-5.0
NetPhos-3.1 磷酸化位点分析
Phosphorylation site analysis
https://services.healthtech.dtu.dk/service.php?NetPhos-3.1
SOPMA 蛋白二级结构预测
Protein secondary structure
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html
phyre2 蛋白三级结构预测
Protein tertiary structure
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
PlantCARE 顺式作用元件分析
Cis-element analysis
https://bioinformatics.psb.ugent.be/webtools/plantcare/html/

Table 2

Primers used in this study"

引物名称
Primer name
上游引物序列
Forward sequence (5'-3')
下游引物序列
Reverse sequence (5'-3')
TabHLH112-2B ACACTACCCCTCATCTTAGCTCC CTATGACATAATTCAGCCCTCTCA
TabHLH112-pro-2B GAGGCGACTATAGTACACGCAAA CGAAGGGTAAACTGATCCAGC
TabHLH112-2B-qRT CGGCTGAGCAGACTAGCGT AGACGAGCTGTTGGAGTGCC
TaTUB CGTGCTGTCTTTGTAGATCTCG GACCAGTGCAGTTGTCTGAAAG
TabHLH112-2B-BamH I GACAATCGAGTTAAAGAAATTAGGA TCTGTATGAATCTCTGACCGCA

Fig. 1

Predictive analysis of TabHLH112-2B gene sequence and protein structure A: gene structure; B: protein domains; C: protein secondary structure; D: protein tertiary structure."

Fig. 2

Prediction of TabHLH112-2B protein properties and phosphorylation sites A: the amino acid composition of the protein. A: alanine; R: arginine; N: asparagine; D: aspartic acid; C: cysteine; Q: glutamine; E: glutamic acid; G: glycine; H: histidine; I: isoleucine; L: leucine; K: lysine; M: methionine; F: phenylalanine; P: proline; S: serine; T: threonine; W: tryptophan; Y: tyrosine; V: valine. B: the affinity/hydrophobicity analysis of protein. C: phosphorylation site prediction of proteins. D: the amino acid sites with phosphorylated predictive values higher than 0.99."

Fig. 3

Tissue expression pattern of TabHLH112-2B genes at different developmental stages in wheat The relative expression pattern of TabHLH112-2B genes in different tissues at seedling stage (A), jointing stage (B), heading stage (C), and flowering stage (D). L: leaf; R: root; RB: root base; S: spike; YL: young leaf; P: peduncle; PN: penultimate node; AN: antepenultimate node; FL: flag leaf. Error bar represents mean±SD. Different lowercase letters indicate significant difference at P < 0.05."

Fig. 4

Relative expression pattern of TabHLH112-2B genes in wheat seedling roots under different hormone treatments A: cis-acting element prediction in TabHLH112-2B promoter. TabHLH112-2B expression levels in roots of two-week-old seedlings. B: 50 μmol L-1 ABA. C: 0.1 mmol L-1 IAA. D: 0.1 μmol L-1 MeJA treatment. Error bar represents mean±SD. *: P < 0.05; **: P < 0.01; ***: P < 0.001."

Fig. 5

Relative expression patterns of TabHLH112-2B genes in seedling stage under abiotic stress conditions in wheat The relative expression level of TabHLH112-2B genes in 16.1% PEG (A), 250 mmol L-1 NaCl (B), the low temperature stress (C), and the high temperature stress (D). Error bar represents mean±SD. *: P < 0.05; **: P < 0.01; ***: P < 0.001."

Fig. 6

Sequence polymorphism and dCAPS molecular marker of TabHLH112-2B A: the schematic diagram of SNPs and molecular marker in the promoter region of TabHLH112-2B, red box indicates digestion site, red letter indicates variation site, and red dot indicates mismatched base. B: the agarose gel electrophores is the image of two haplotypes. M: 100 bp DNA ladder; C: Hap-2B-1; T: Hap-2B-2."

Table 3

Association analysis between haplotype of TabHLH112-2B and spikelet number per spike"

环境
Environment
P
P-value
环境
Environment
P
P-value
E1 0.011228526 E9 0.000000386
E2 0.113354414 E10 0.000000934
E3 0.048992919 E11 0.008263578
E4 0.031388574 E12 0.098658098
E5 0.002171438 E13 0.016524218
E6 0.000019440 E14 0.000638932
E7 0.000003438 E15 0.000032654
E8 0.000227778 E16 0.000022470

Fig. 7

Analysis of association between haplotype of TabHLH112-2B and spikelet number per spike Abbreviations of E1-E16 are same as those given in Table 3. Error bar represents mean ± SD. *: P < 0.05; **: P < 0.01; ***: P < 0.001."

Fig. 8

Application of TabHLH112-2B favorable haplotype in Chinese wheat breeding history Distribution frequency of two haplotypes in landraces (A) and modern cultivars (B) collected from 10 Chinese wheat production zones. I: Northern Winter Wheat Zone; II: Yellow-Huai River Valleys Facultative Wheat Zone; III: Middle and Low Yangtze Valleys Autumn-Sown Spring Wheat Zone; IV: Southwestern Autumn-Sown Spring Wheat Zone; V: Southern Autumn-Sown Spring Wheat Zone; VI: Northeastern Spring Wheat Zone; VII: Northern Spring Wheat Zone; VIII: Northwestern Spring Wheat Zone; IX: Qinghai-Tibetan Plateau Spring-Winter Wheat Zone; X: Xinjiang Winter-Spring Wheat Zone. C: the number of spikelet per spike of cultivars released in different decades in two growing seasons, in 2005-2006 (2005) and 2010-2011 (2010). D: the frequency of two haplotypes in cultivars released in different decades."

[1] Dowla U M, Edwards I, O’Hara G, Islam S, Ma W. Developing wheat for improved yield and adaptation under a climate: optimization of a few key genes. Engineering, 2018, 4: 183-202.
[2] 卢红芳. 高温、干旱及其复合胁迫对小麦籽粒谷蛋白大聚合体、淀粉粒度分布和品质性状的影响. 河南农业大学博士学位论文, 河南郑州, 2013.
Lu H F. Effects of High Temperature, Drought and Composite Stress on Large Aggregate, Starch Size Distribution and Quality Traits of Wheat Grain. PhD Dissertation of Henan Agricultural University, Zhengzhou, Henan, China, 2013 (in Chinese with English abstract).
[3] Li Y P, Li L, Zhao M, Guo L, Guo X, Zhao D, Batool A, Dong B D, Xu H X, Cui S J, Zhang A M, Fu X D, Li J M, Jing R L, Liu X G. Wheat FRIZZY PANICLE activates VERNALIZATION1-A and HOMEOBOX4-A to regulate spike development in wheat. Plant Biotechnol J, 2021, 19: 1141-1154.
doi: 10.1111/pbi.v19.6
[4] Ma J, Ding P Y, Liu J J, Li T, Zou Y Y, Habib A, Mu Y, Tang H P, Jiang Q T, Liu Y X, Chen G Y, Wang J R, Deng M, Qi P F, Li W, Pu Z E, Zheng Y L, Wei Y M, Lan X J. Identification and validation of a major and stably expressed QTL for spikelet number per spike in bread wheat. Theor Appl Genet, 2019, 132: 3155-3167.
doi: 10.1007/s00122-019-03415-z pmid: 31435704
[5] Ding P Y, Mo Z Q, Tang H P, Mu Y, Deng M, Jiang Q T, Liu Y X, Chen G D, Chen G Y, Wang J R. A major and stable QTL for wheat spikelet number per spike validated in different genetic backgrounds. J Integr Agric, 2022, 21: 1551-1562.
doi: 10.1016/S2095-3119(20)63602-4
[6] Kuzay S, Lin H Q, Li C X, Chen S S, Woods D P, Zhang J L, Lan T Y, Korff M V, Dubcovsky J. WAPO-A1 is the causal gene of the 7AL QTL for spikelet number per spike in wheat. PLoS Genet, 2022, 18: 1009747.
[7] Wittern L M, Barrero J M, Bovill W D, Verbyla K L, Hughes T, Swain S M, Steed G, Webb A A R, Gardner K, Greenland A, Jacobs J, Frohberg C, Schmidt R C, Cavanagh C, Rohde A, Davey M W, Hannah M A. Overexpression of the WAPO-A1 gene increases the number of spikelets per spike in bread wheat. Sci Rep, 2022, 12: 14229.
doi: 10.1038/s41598-022-18614-w pmid: 35987959
[8] Jin J P, Zhang H, Kong L, Gao G, Luo J C. PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res, 2014, 42: D1182-1187.
doi: 10.1093/nar/gkt1016
[9] Liu Y J, Ji X Y, Nie X G, Qu M, Zheng L, Tan Z L, Zhao H M, Huo L, Liu S N, Zhang B, Wang Y C. Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs. New Phytol, 2015, 207: 692-709.
doi: 10.1111/nph.2015.207.issue-3
[10] Castilhos G, Lazzarotto F, Spagnolo-Fonini L, Bodanese- Zanettini M H, Margis-Pinheiro M. Possible roles of basic helix-loop-helix transcription factors in adaptation to drought. Plant Sci, 2014, 223: 1-7.
doi: 10.1016/j.plantsci.2014.02.010 pmid: 24767109
[11] Gu X Y, Gao S X, Li J, Song P Y, Zhang Q, Guo J F, Wang X Y, Han X Y, Wang X J, Zhu Y, Zhu Z G. The bHLH transcription factor regulated gene OsWIH2 is a positive regulator of drought tolerance in rice. Plant Physiol Biochem, 2021, 169: 269-279.
doi: 10.1016/j.plaphy.2021.11.031
[12] Zhang L, Xiang Z P, Li J F, Wang S Y, Chen Y, Liu Y, Mao D D, Luan S, Chen L B. bHLH57 confers chilling tolerance and grain yield improvement in rice. Plant Cell Environ, 2022, doi: 10.1111/pce.14513.
[13] Liu H, Yang Y, Liu D D, Wang X Y, Zhang L S. Transcription factor TabHLH49 positively regulates dehydrin WZY2 gene expression and enhances drought stress tolerance in wheat. BMC Plant Biol, 2020, 20: 259.
doi: 10.1186/s12870-020-02474-5
[14] Guo X J, Fu Y X, Lee Y J, Chern M S, Li M L, Cheng M P, Dong H X, Yuan Z W, Gui L X, Yin J X, Qing H, Zhang C B, Pu Z E, Liu Y J, Li W T, Li W, Qi P F, Chen G Y, Jiang Q T, Ma J, Chen X W, Wei Y M, Zheng Y L, Wu Y R, Liu B, Wang J R. The PGS1 basic helix-loop-helix protein regulates Fl3 to impact seed growth and grain yield in cereals. Plant Biotechnol J, 2022, 20: 1311-1326.
doi: 10.1111/pbi.v20.7
[15] Li L, Mao X G, Wang J Y, Chang X P, Reynolds M, Jing R L. Genetic dissection of drought and heat-responsive agronomic traits in wheat. Plant Cell Environ, 2019, 42: 2540-2553.
doi: 10.1111/pce.v42.9
[16] Li L, Peng Z, Mao X G, Wang J Y, Chang X P, Reynolds M, Jing R L. Genome-wide association study reveals genomic regions controlling root and shoot traits at late growth stages in wheat. Ann Bot, 2019, 124: 993-1006.
doi: 10.1093/aob/mcz041
[17] Hao C Y, Wang L F, Ge H M, Dong Y C, Zhang X Y. Genetic diversity and linkage disequilibrium in Chinese bread wheat (Triticum aestivum L.) revealed by SSR markers. PLoS One, 2011, 6: e17279.
doi: 10.1371/journal.pone.0017279
[18] Hao Y Q, Zong X M, Ren P, Qian Y Q, Fu A G. Basic Helix-Loop-Helix (bHLH) transcription factors regulate a wide range of functions in Arabidopsis. Int J Mol Sci, 2021, 22: 7152.
doi: 10.3390/ijms22137152
[19] Yang T R, Yao S F, Hao L, Zhao Y Y, Lu W J, Xiao K. Wheat bHLH-type transcription factor gene TabHLH1 is crucial in mediating osmotic stresses tolerance through modulating largely the ABA-associated pathway. Plant Cell Rep, 2016, 35: 2309-2323.
doi: 10.1007/s00299-016-2036-5
[20] Wang R, Yu M M, Xia J Q, Xing J P, Fan X P, Xu Q H, Cang J, Zhang D. Overexpression of TaMYC2 confers freeze tolerance by ICE-CBF-COR module in Arabidopsis thaliana. Front Plant Sci, 2022, 13: 1042889.
doi: 10.3389/fpls.2022.1042889
[21] Zhao F N, Lei J, Wang R Y, Zhang Q, Qi Y, Zhang K, Guo Q, Wang H L. Environmental determination of spring wheat yield in a climatic transition zone under global warming. Int J Biometeorol, 2022, 66: 481-491.
doi: 10.1007/s00484-021-02196-9
[22] 袁蕊, 李萍, 胡晓雪, 宗毓铮, 孙敏, 董琦, 郝兴宇. 干旱胁迫对小麦生理特性及产量的影响. 山西农业科学, 2016, 44: 1446-1449.
Yuan R, Li P, Hu X X, Zong Y Z, Sun M, Dong Q, Hao X Y. Effects of drought stress on physiological characteristics and yield of wheat. J Shanxi Agri Sci, 2016, 44: 1446-1449 (in Chinese with English abstract).
[23] 杨绚, 汤绪, 陈葆德, 田展, 钟洪麟. 气候变暖背景下高温胁迫对中国小麦产量的影响. 地理科学进展, 2013, 32: 1771-1779.
doi: 10.11820/dlkxjz.2013.12.006
Yang X, Tang X, Chen B D, Tian Z, Zhong H L. Effects of high temperature stress on wheat yield in China under the background of climate warming. Prog Geog, 2013, 32: 1771-1779 (in Chinese with English abstract).
[24] Itam M O, Mega R, Gorafi Y S A, Yamasaki Y, Tahir I S A, Akashi K, Tsujimoto H. Genomic analysis for heat and combined heat-drought resilience in bread wheat under field conditions. Theor Appl Genet, 2022, 135: 337-350.
doi: 10.1007/s00122-021-03969-x
[25] Hammond-Kosack M C U, King R, Kanyuka K, Hammond-Kosack K E. Exploring the diversity of promoter and 5'UTR sequences in ancestral, historic and modern wheat. Plant Biotechnol J, 2021, 19: 2469-2487.
doi: 10.1111/pbi.13672 pmid: 34289221
[26] Xia C, Zhang L C, Zou C, Gu Y Q, Duan J L, Zhao G Y, Wu J J, Liu Y, Fang X H, Gao L F, Jiao Y N, Sun J Q, Pan Y H, Liu X, Jia J Z, Kong X Y. A TRIM insertion in the promoter of Ms2 causes male sterility in wheat. Nat Commun, 2017, 8: 15407.
doi: 10.1038/ncomms15407
[27] Li C N, Wang J Y, Li L, Li J L, Zhuang M J, Li B, Li Q R, Huang J F, Du Y, Wang J P, Fan Z P, Mao X G, Jing R L. TaMOR is essential for root initiation and improvement of root system architecture in wheat. Plant Biotechnol J, 2022, 20: 862-875.
doi: 10.1111/pbi.v20.5
[28] Xue Y H, Wang J Y, Mao X G, Li C N, Li L, Yang X, Hao C Y, Chang X P, Li R Z, Jing R L. Association analysis revealed that TaPYL4genes are linked to plant growth related traits in multiple environment. Front Plant Sci, 2021, 12: 641087.
doi: 10.3389/fpls.2021.641087
[29] Hu J, Jin Q, Ma Y P. AfLFY, a LEAFY homolog in Argyranthemum frutescens, controls flowering time and leaf development. Sci Rep, 2020, 10: 1616.
doi: 10.1038/s41598-020-58570-x
[30] Sablowski R. Flowering and determinacy in Arabidopsis. J Exp Bot, 2007, 58: 899-907.
doi: 10.1093/jxb/erm002 pmid: 17293602
[31] Weigel D, Nilsson O. A developmental switch sufficient for flower initiation in diverse plants. Nature, 1995, 377: 495-500.
doi: 10.1038/377495a0
[1] HAO Qian-Lin, YANG Ting-Zhi, LYU Xin-Ru, QIN Hui-Min, WANG Ya-Lin, JIA Chen-Fei, XIA Xian-Chun, MA Wu-Jun, XU Deng-An. QTL mapping and GWAS analysis of coleoptile length in bread wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 590-602.
[2] JU Ji-Hao, MA Chao, WANG Tian-Ning, WU Yi, DONG Zhong, FANG Mei-E, CHEN Yu-Shu, ZHANG Jun, FU Guo-Zhan. Genome wide identification and expression analysis of TaPOD family in wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 779-792.
[3] ZHAO Rong-Rong, CONG Nan, ZHAO Chuang. Optimal phase selection for extracting distribution of winter wheat and summer maize over central subregion of Henan Province based on Landsat 8 imagery [J]. Acta Agronomica Sinica, 2024, 50(3): 721-733.
[4] ZHANG Bao-Hua, LIU Jia-Jing, TIAN Xiao, TIAN Xu-Zhao, DONG Kuo, WU Yu-Jie, XIAO Kai, LI Xiao-Juan. Cloning, expression and functional analysis of wheat (Triticum aestivum L.) TaSPX1 gene in low nitrogen stress tolerance [J]. Acta Agronomica Sinica, 2024, 50(3): 576-589.
[5] KE Hui-Feng, SU Hong-Mei, SUN Zheng-Wen, GU Qi-Shen, YANG Jun, WANG Guo-Ning, XU Dong-Yong, WANG Hong-Zhe, WU Li-Qiang, ZHANG Yan, ZHANG Gui-Yin, MA Zhi-Ying, WANG Xing-Fen. Identification for yield and fiber quality traits and evaluation of molecular markers in modern cotton varieties [J]. Acta Agronomica Sinica, 2024, 50(2): 280-293.
[6] TIAN Chun-Yan, BIAN Xin, LANG Rong-Bin, YU Hua-Xian, TAO Lian-An, AN Ru-Dong, DONG Li-Hua, ZHANG Yu, JING Yan-Fen. Association analysis of three breeding traits with SSR markers and exploration of elite alleles in sugarcane [J]. Acta Agronomica Sinica, 2024, 50(2): 310-324.
[7] CHEN Tian, LI Yu-Ying, RONG Er-Hua, WU Yu-Xiang. Character identification and floral organ transcriptome analysis on artificial allotetraploids of Gossypium hirsutum L. [J]. Acta Agronomica Sinica, 2024, 50(2): 325-339.
[8] ZHANG Kang, NIE Zhi-Gang, WANG Jun, LI Guang. Sensitivity analysis and optimization of spring wheat grain growth parameters under APSIM model with the increase of temperature [J]. Acta Agronomica Sinica, 2024, 50(2): 464-477.
[9] TAN Dan, CHEN Jia-Ting, GAO Yu, ZHANG Xiao-Jun, LI Xin, YAN Gui-Yun, LI Rui, CHEN Fang, CHANG Li-Fang, ZHANG Shu-Wei, GUO Hui-Juan, CHANG Zhi-Jian, QIAO Lin-Yi. Discovery of auxin pathway genes involving spike type and association analysis between TaARF23-A and spikelet number in wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 506-513.
[10] LI Yan, FANG Yu-Hui, WANG Yong-Xia, PENG Chao-Jun, HUA Xia, QI Xue-Li, HU Lin, XU Wei-Gang. Transcriptomics profile of transgenic OsPHR2 wheat under different phosphorus stress [J]. Acta Agronomica Sinica, 2024, 50(2): 340-353.
[11] XIE Wei, HE Peng, MA Hong-Liang, LEI Fang, HUANG Xiu-Lan, FAN Gao-Qiong, YANG Hong-Kun. Effects of straw mulching from autumn fallow and phosphorus application on nitrogen uptake and utilization of winter wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 440-450.
[12] LI Yu-Jia, XU Hao, YU Shi-Nan, TANG Jian-Wei, LI Qiao-Yun, GAO Yan, ZHENG Ji-Zhou, DONG Chun-Hao, YUAN Yu-Hao, ZHENG Tian-Cun, YIN Gui-Hong. Genetic analysis of elite stripe rust resistance genes of founder parent Zhou 8425B in its derived varieties [J]. Acta Agronomica Sinica, 2024, 50(1): 16-31.
[13] HUANG Yu-Jie, ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei, DING Shuang-Cheng. Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(9): 2331-2343.
[14] ZHANG Li-Hua, ZHANG Jing-Ting, DONG Zhi-Qiang, HOU Wan-Bin, ZHAI Li-Chao, YAO Yan-Rong, LYU Li-Hua, ZHAO Yi-An, JIA Xiu-Ling. Effect of water management on yield and its components of winter wheat in different precipitation years [J]. Acta Agronomica Sinica, 2023, 49(9): 2539-2551.
[15] ZHANG Diao-Liang, YANG Zhao, HU Fa-Long, YIN Wen, CHAI Qiang, FAN Zhi-Long. Effects of multiple cropping green manure on grain quality and yield of wheat with different irrigation levels [J]. Acta Agronomica Sinica, 2023, 49(9): 2572-2581.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .