Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (2): 394-402.doi: 10.3724/SP.J.1006.2023.34064

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Phosphorus transporter StPHO1.2 improving heat tolerance in potato

LI Wan1,*(), LI Cheng2, CHENG Min3, WU Fang4   

  1. 1School of Biomedicine and Food Engineering, Shangluo University, Shangluo 726000, Shaanxi, China
    2Xi’an Runzhuangjia Agricultural Technology Co., Ltd, Xi’an 710003, Shaanxi, China
    3Science and Technology Division, Shangluo University, Shangluo 726000, Shaanxi, China
    4Domestic Cooperation and the Schoolfellow Bureau, Shangluo University, Shangluo 726000, Shaanxi, China
  • Received:2023-03-24 Accepted:2023-06-29 Online:2024-02-12 Published:2023-07-20
  • Contact: *E-mail: 599092122@qq.com
  • Supported by:
    Natural Science Basic Research Program of Shaanxi(2022JQ-223);Young Talent fund of University Association for Science and Technology in Shaanxi, China(20220213);Research Fund for the Doctoral Program of Shangluo University(21SKY112);Science and Technology Innovation Team Project of Shaanxi(2022TD-56)

Abstract:

Plants absorb and transport phosphorus through phosphorus transporters, and sufficient phosphorus can improve crop yield, quality, and stress resistance. High temperature is an important environmental factor affecting the growth and development of potato. In this study, we overexpressed the phosphorus transporter StPHO1.2 in potato mediated by Agrobacterium tumefaciens, and then compared the growth of transgenic strains and wild-type strains at high temperature (35℃) and normal temperature (22℃±1℃). The results showed that overexpression of StPHO1.2 could improve the heat resistance and promote the growth of potato. And the higher the phosphorus concentration, the stronger the resistance, the better the growth. Subcellular localization in tobacco showed that StPHO1.2 was expressed on cell membrane. Therefore, the membrane system library plasmid was selected to screen the interacting proteins of StPHO1.2. This study demonstrated that the phosphorus transporter StPHO1.2 interacted with both the calcium ion transporter associated protein (StCAX1) and the photosynthetic system II protein subunit (StPsbR) by the yeast two-hybrid and BiFC. In conclusion, overexpression of StPHO1.2 may improve the heat tolerance and promote the growth of potato by affecting photosynthesis and signal transduction in potato. These results provide theoretical basis and reference for further understanding of the function of phosphorus transporters and promote the breeding of new potato varieties.

Key words: Solanum tuberosum L., phosphorus transporter, high temperature stress, yeast two-hybrid, BiFC

Table 1

Primers, endonuclease site, recombinant plasmid name, and vector resistance"

引物名称
Primer name
引物序列
Primer sequence (5'-3')
酶切位点
Endonuclease
site
重组质粒名称
Recombinant
plasmid name
载体抗性
Vector resistance
Ox2F GAACACGGGGGACTCTAGAGGATCCATGGTGAAGTTTTCTAAAGAACTTG BamH I
Sac I
pBI121-StPHO1.2 Kan+
Ox2R AACGATCGGGGAAATTCGAGCTCCTAGCCATCAGAGTCTGTCTCG
RFP2F GTTCCAGATTACGCTGAGCTCATGGTGAAGTTTTCTAAAGAACTTG Sac I
Sac I
p1300-RFP-StPHO1.2 Kan+
RFP2R CGATCGGGGAAATTCGAGCTCCTAGCCATCAGAGTCTGTCTCG
STE2F TTTTATGTAATGGCCATTACGGCCATGGTGAAGTTTTCTAAAGAACTT Sfi I
Sfi I
pBT3-STE-StPHO1.2 Kan+
STE2R# TCCTGCAGATGGCCGAGGCGGCGCCATCAGAGTCTGTCTCGCG
SUC2F TATCTGCAATGGCCATTACGGCCATGGTGAAGTTTTCTAAAGAACTT Sfi I
Sfi I
pBT3-SUC-StPHO1.2 Kan+
SUC2R# TCCTGCAGATGGCCGAGGCGGCGCCATCAGAGTCTGTCTCGCG
pBT3-N2F ATTCCTGCAGGGCCATTACGGCCATGGTGAAGTTTTCTAAAGAACTTGA Sfi I
Sfi I
pBT3-N-StPHO1.2 Kan+
pBT3-N2R# ACTTACCATGGGGCCGAGGCGGCGCCATCAGAGTCTGTCTCGCG
pBT3-C2F TAATCTAGACGGCCATTACGGCCATGGTGAAGTTTTCTAAAGAACTTGA Sfi I
Sfi I
pBT3-C-StPHO1.2 Kan+
pBT3-C2R# TGGAGGCCTTTGGCCGAGGCGGCGCCATCAGAGTCTGTCTCGCG
NY2F CGCCACAACATCGAGGGATCCATGGTGAAGTTTTCTAAAGAACTTG BamH I
Sma I
NY-StPHO1.2 Kan+
NY2R GAATTCGAGCTCTATCCCGGGCTAGCCATCAGAGTCTGTCTCG

Table 2

The selection of vector"

序号
Serial number
质粒1
Plasmid 1
质粒2
Plasmid 2
目的
Purpose
1 pNubG-Fe65 pTSU2-APP 阳性对照 Positive control
2 NMY51 阴性对照 Negative control
3 pPR3N pBT3-STE-StPHO1.2 自激活检测 Self-activation detection
4 pPR3N pBT3-SUC-StPHO1.2 自激活检测 Self-activation detection
5 pPR3N pBT3-N-StPHO1.2 自激活检测 Self-activation detection
6 pPR3N pBT3-C-StPHO1.2 自激活检测 Self-activation detection
7 pOST1-NubI pBT3-STE-StPHO1.2 功能检测 Functional detection
8 pOST1-NubI pBT3-SUC-StPHO1.2 功能检测 Functional detection
9 pOST1-NubI pBT3-N-StPHO1.2 功能检测 Functional detection
10 pOST1-NubI pBT3-C-StPHO1.2 功能检测 Functional detection

Fig. 1

Identification of positive transgenic lines of resistance gene by PCR M: DNA marker; 1: StPHO1.2-Desiree; 2: pBI121 empty vector; 3: Desiree."

Fig. 2

Identification of positive transgenic lines by qPCR"

Fig. 3

Phenotypic analysis of StPHO1.2-Desiree and Desiree A: no phosphorus (0 mmol L-1 Pi); B: phosphorus deficiency (0.1 mmol L-1 Pi); C: rich in phosphorus (1.0 mmol L-1 Pi); 1: Desiree; 2: StPHO1.2-Desiree. In “1” and “2”, the left plant grew at high temperature (35℃), and the right plant grew at normal temperature (22℃±1℃)."

Fig. 4

Subcellular localization of StPHO1.2"

Fig. 5

Screening of vector for yeast double-hybrid experiment"

Fig. 6

Screening of interacting proteins of StPHO1.2 by yeast double-hybrid Arrow indicates the representative color-developing colony."

Fig. 7

“One-to-one” verification of StPHO1.2 and interacting proteins 1-5 indicate different replicates."

Fig. 8

BiFC identification of StPHO1.2 and interacting proteins"

[1] Rafael R B A, Fernández-Marcos M L, Cocco S, Ruello M L, Fornasier F, Corti G. Increased phosphorus availability to corn resulting from the simultaneous applications of phosphate rock, calcareous rock, and biochar to an acid sandy soil. Pedosphere, 2020, 30: 719-733.
doi: 10.1016/S1002-0160(20)60034-0
[2] Guo B, Irigoyen S, Fowler T B, Versaw W K. Differential expression and phylogenetic analysis suggest specialization of plastid-localized members of the PHT4 phosphate transporter family for photosynthetic and heterotrophic tissues. Plant Signal Behav, 2008, 3: 784-790.
doi: 10.4161/psb.3.10.6666 pmid: 19513231
[3] 于人杰. 响应低磷干旱胁迫磷转运蛋白基因在大豆组织中的表达及功能分析. 吉林农业大学博士学位论文, 吉林长春, 2019.
Yu R J. Expression and Functional Analysis of Phosphorus Transporter Genes Responding to Low Phosphorus and Drought Stress in Soybean Tissues. PhD Dissertation of Jilin Agricultural University, Changchun, Jilin, China, 2019 (in Chinese with English abstract).
[4] Karthikeyan A S, Varadarajan D K, Mukatira U T, D’Urzo M P, Damsz B, Raghothama K G. Regulated expression of Arabidopsis phosphate transporters. Plant Physiol, 2002, 130: 221-233.
[5] Mudge S R, Rae A L, Diatloff E, Smith F W. Expression analysis suggests novel roles for members of Pht1 family of phosphate transporters in Arabidopsis. Plant J, 2002, 31: 341-353.
doi: 10.1046/j.1365-313X.2002.01356.x
[6] Remy E, Cabrito T, Batista R A, Teixeira M C, Sá-Correia I, Duque P. The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation. New Phytol, 2012, 195: 356-371.
doi: 10.1111/j.1469-8137.2012.04167.x pmid: 22578268
[7] Jia H, Ren H, Gu M, Zhao J, Sun S, Zhang X, Chen J, Wu P, Xu G. The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice. Plant Physiol, 2011, 156: 1164-1175.
doi: 10.1104/pp.111.175240 pmid: 21502185
[8] 张琳淳, 李越, 沈锦纯, 赵竑博. 番茄PHT1家族磷转运蛋白研究进展. 农业与技术, 2021, 41(13): 1-6.
Zhang L C, Li Y, Shen J C, Zhao H B. Research progress of PHT1 family phosphorus transporters in tomato. Agric Technol, 2021, 41(13): 1-6 (in Chinese with English abstract).
[9] Guo C, Guo L, Li X, Gu J, Zhao M, Duan W, Ma C, Lu W, Xiao K. TaPT2, a high-affinity phosphate transporter gene in wheat (Triticum aestivum L.), is crucial in plant Pi uptake under phosphorus deprivation. Acta Physiol Plant, 2014, 36: 1373-1384.
doi: 10.1007/s11738-014-1516-x
[10] 付禹. 大豆磷转运蛋白GmPHT2家族成员的功能分析. 吉林农业大学硕士学位论文, 吉林长春, 2021.
Fu Y. Functional Analysis of Phosphate Transporter GmPHT2 Family Members in Soybean. MS Thesis of Jilin Agricultural University, Changchun, Jilin, China, 2021 (in Chinese with English abstract).
[11] Ferreira G C, Pratt R D, Pedersen P L. Energy-linked anion transport. cloning, sequencing, and characterization of a full length cDNA encoding the rat liver mitochondrial proton/phosphate symporter. J Biol Chem, 1989, 264: 15628-15633.
pmid: 2670944
[12] Qin L, Guo Y, Chen L, Liang R, Gu M, Xu G, Zhao J, Walk T, Liao H. Functional characterization of 14 Pht1 family genes in yeast and their expressions in response to nutrient starvation in soybean. PLoS One, 2012, 7: e47726.
doi: 10.1371/journal.pone.0047726
[13] 刘恒志. 马铃薯StPHT4;2磷转运蛋白基因的克隆及功能研究. 西北农林科技大学硕士学位论文, 陕西杨凌, 2020.
Liu H Z. Cloning and Functional Research of StPHT4;2 Phosphate Transporter Genes in Potato. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2020 (in Chinese with English abstract).
[14] 韩贝. 甘蓝型油菜PHT5家族基因鉴定及PHT5;1s调控磷稳态的功能研究. 华中农业大学博士学位论文, 湖北武汉, 2022.
Han B. Identification of Brassica napus PHT5 Family Genes and Functional Characterization of BnPHT5;1s Involved in Phosphate Homeostasis. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2022 (in Chinese with English abstract).
[15] Wang Y, Secco D, Poirier Y. Characterization of the PHO1 gene family and the responses to phosphate deficiency of Physcomitrella patens. Plant Physiol, 2008, 146: 646-656.
doi: 10.1104/pp.107.108548
[16] Rouached H, Stefanovic A, Secco D, Arpat B, Gout E, Bligny R, Poirier Y. Uncoupling phosphate deficiency from its major effects on growth and transcriptome via PHO1 expression in Arabidopsis. Plant J, 2011, 65: 557-570.
doi: 10.1111/tpj.2011.65.issue-4
[17] Arpat B, Magliano P, Wege S, Rouached H, Stefanovic A, Poirier Y. Functional expression of PHO1 to the Golgi and trans-Golgi network and its role in export of inorganic phosphate. Plant J, 2012, 71: 479-491.
doi: 10.1111/tpj.2012.71.issue-3
[18] Cao F, Li H, Wang S, Li X, Dai H, Zhang Z. Expression and functional analysis of FaPHO1;H9 gene of strawberry (Fragaria×ananassa). J Integr Agric, 2017, 16: 580-590.
doi: 10.1016/S2095-3119(16)61433-8
[19] Liu B, Zhao S, Wu X, Wang X, Nan Y, Wang D, Chen Q. Identification and characterization of phosphate transporter genes in potato. J Biotechnol, 2017, 264: 17-28.
doi: S0168-1656(17)31707-8 pmid: 29055693
[20] 窦海鸥. AtCBF3 提高转基因马铃薯耐热性的研究. 山东农业大学硕士学位论文, 山东泰安, 2014.
Dou H O. Arabidopsis thaliana CBF3 Enhances the Tolerance of Potato to High Temperature. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2014 (in Chinese with English abstract).
[21] 张超. 茉莉酸调控基因GH3家族的鉴定及在马铃薯中抗病及损伤分析. 西北农林科技大学博士学位论文, 陕西杨凌, 2021.
Zhang C. Identification of Jasmonic Acid Regulatory Gene GH3 Family and Analysis of Disease Resistance and Wounding in Potato. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2021 (in Chinese with English abstract).
[22] 李万, 杨明明, 高翔, 董剑, 赵万春. 西农538LMW-GS基因的克隆,原核表达及功能鉴定. 麦类作物学报, 2017, 37: 445-451.
Li W, Yang M, Gao X, Dong J, Zhao W. Isolation, prokaryotic expression and functional analysis of LMW-GS from Xinong 538 (Triticum aestivum L.). J Triticeae Crop, 2017, 37: 445-451 (in Chinese with English abstract).
[23] Li W, Dong J, Cao M, Gao X, Wang D, Liu B, Chen Q. Genome-wide identification and characterization of HD-ZIP genes in potato. Gene, 2019, 697: 103-117.
doi: S0378-1119(19)30149-0 pmid: 30776460
[24] 叶明辉, 赵朋, 牛洋, 王冬冬, 陈勤. 马铃薯同源异形框基因家族的鉴定和表达分析. 农业生物技术学报, 2021, 29(2): 224-239.
Ye M H, Zhao P, Niu Y, Wang D D, Chen Q. Identification and expression analysis of homeobox gene family in potato (Solanum tuberosum). J Agric Biotechnol, 2021, 29(2): 224-239 (in Chinese with English abstract).
[25] 陆孙杰. 水稻基因功能研究及用酵母双杂筛选互作蛋白. 浙江大学博士学位论文, 浙江杭州, 2012.
Lu S J. Functional Characterization of OsMADS15 and Screening its Interactors by Yeast Two Hybrid System. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2012 (in Chinese with English abstract).
[26] 林郑和, 陈荣冰, 郭少平. 植物对缺磷的生理适应机制研究进展. 作物杂志, 2010, (5): 5-9.
Lin Z H, Chen R B, Guo S P. Research progress on physiological adaptability of plants to phosphorus deficiency. Crops, 2010, (5): 5-9 (in Chinese with English abstract).
[27] Williamson L C, Ribrioux S P C P, Fitter A H, Ottoline L H M. Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol, 2001, 126: 875-882.
doi: 10.1104/pp.126.2.875 pmid: 11402214
[28] 明凤, 米国华, 张福锁, 郑先武, 朱立煌. 水稻对低磷反应的基因型差异及其生理适应机制的初步研究. 应用与环境生物学报, 2000, 6: 138-141.
Ming F, Mi G H, Zhang F S, Zheng X W, Zhu L H. Studies on varietal difference of rice in response to low-P stress and its physiological adaptive mechanism. Chin J Appl Environ Biol, 2000, 6: 138-141 (in Chinese with English abstract).
[29] 曹黎明, 潘晓华. 水稻不同耐低磷基因基因型的评价指标分析. 上海农业学报, 2000, 16(4): 31-34.
Cao L M, Pan X H. Analysis of some indexes used for evaluating tolerance of different rice genotypes to low phosphorus treatment in sand culture. Acta Agric Shanghai, 2000, 16(4): 31-34 (in Chinese with English abstract).
[30] Qiu J, Israel D W. Diurnal starch accumulation and utilization in phosphorus-deficient soybean plants. Plant Physiol, 1992, 98: 316-323.
doi: 10.1104/pp.98.1.316 pmid: 16668630
[31] 吴俊江, 刘丽君, 钟鹏, 林蔚刚, 董德建. 低磷胁迫对不同基因型大豆保护酶活性的影响. 大豆科学, 2008, 27: 437-441.
Wu J J, Liu L J, Zhong P, Lin W G, Dong D J. Effects of low phosphorus stress on activities of cell defense enzymes of different P-efficiency. Soybean Sci, 2008, 27: 437-441 (in Chinese with English abstract).
[32] Ciereszko I, Johansson H, Hurry V, Kleczkowski L A. Phosphate status affects the gene expression, protein content and enzymatic activity of UDP glucose pyrophosphorylase in wild-type and pho mutants of Arabidopsis. Planta, 2001, 212: 598-605.
pmid: 11525517
[33] van der Graaff E, Schwacke R, Schneider A, Desimone M, Flügge U I, Kunze R. Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol, 2006, 141: 776-792.
doi: 10.1104/pp.106.079293 pmid: 16603661
[34] Khan G A, Bouraine S, Wege S, Li Y, de Carbonnel M, Berthomieu P, Poirier Y, Rouached H. Coordination between zinc and phosphate homeostasis involves the transcription factor PHR1, the phosphate exporter PHO1, and its homologue PHO1; H3 in Arabidopsis. J Exp Bot, 2014, 65: 871-884.
doi: 10.1093/jxb/ert444
[35] Ribot C, Wang Y, Poirier Y. Expression analyses of three members of the AtPHO1 family reveal differential interactions between signaling pathways involved in phosphate deficiency and the responses to auxin, cytokinin, and abscisic acid. Planta, 2008, 227: 1025-1036.
doi: 10.1007/s00425-007-0677-x pmid: 18094993
[36] Ribot C, Zimmerli C, Farmer E E, Reymond P, Poirier Y. Induction of the Arabidopsis PHO1;H10 gene by 12-oxo-phytodienoic acid but not jasmonic acid via a CORONATINE INSENSITIVE1-dependent pathway. Plant Physiol, 2008, 147: 696-706.
doi: 10.1104/pp.108.119321
[37] Cao M, Liu H, Zhang C, Wang D, Liu X, Chen Q. Functional analysis of StPHT1;7, a Solanum tuberosum L. phosphate transporter gene, in growth and drought tolerance. Plants, 2020, 9: 1384.
doi: 10.3390/plants9101384
[38] Zhou X, Zha M, Huang J, Li L, Imran M, Zhang C. StMYB44 negatively regulates phosphate transport by suppressing expression of PHOSPHATE1 in potato. J Exp Bot, 2017, 68: 1265-1281.
doi: 10.1093/jxb/erx026 pmid: 28338870
[39] Bokszczanin K L, Fragkostefanakis S. Perspectives on deciphering mechanisms unde rlying plant heat stress response and thermotolerance. Front Plant Sci, 2013, 4: 315-335.
doi: 10.3389/fpls.2013.00315 pmid: 23986766
[40] Gong M, Van der Luit A H, Knight M R, Trewavas A J. Heat-shock-induced changes in intracellular Ca2+ level in tobacco seedlings in relation to thermotolerance. Plant Physiol, 1998, 116: 429-437.
doi: 10.1104/pp.116.1.429
[1] LI Yu-Xing, MA Liang-Liang, ZHANG Yue, QIN Bo-Ya, ZHANG Wen-Jing, MA Shang-Yu, HUANG Zheng-Lai, FAN Yong-Hui. Effects of exogenous trehalose on physiological characteristics and yield of wheat flag leaves under high temperature stress at grain filling stage [J]. Acta Agronomica Sinica, 2023, 49(8): 2210-2224.
[2] PU Xue, WANG Kai-Tong, ZHANG Ning, SI Huai-Jun. Relative expression analysis of StMAPKK4 gene and screening and identification of its interacting proteins in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2023, 49(1): 36-45.
[3] SHANG Meng-Fei, SHI Xiao-Yu, ZHAO Jiong-Chao, LI Shuo, CHU Qing-Quan. Spatiotemporal variation of high temperature stress in different regions of China under climate change [J]. Acta Agronomica Sinica, 2023, 49(1): 167-176.
[4] ZHU Ya-Di, WANG Hui-Qin, WANG Hong-Zhang, REN Hao, LYU Jian-Hua, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, YIN Fu-Wei, LIU Peng. Evaluation and identification index of heat tolerance in different summer maize varieties at V12 stage [J]. Acta Agronomica Sinica, 2022, 48(12): 3130-3143.
[5] YUE Man-Fang, ZHANG Chun, ZHENG Deng-Yu, ZOU Hua-Wen, WU Zhong-Yi. Response of maize transcriptional factor ZmbHLH91 to abiotic stress [J]. Acta Agronomica Sinica, 2022, 48(12): 3004-3017.
[6] XIE Qin-Qin, ZUO Tong-Hong, HU Deng-Ke, LIU Qian-Ying, ZHANG Yi-Zhong, ZHANG He-Cui, ZENG Wen-Yi, YUAN Chong-Mo, ZHU Li-Quan. Molecular cloning and expression analysis of BoPUB9 in self-incompatibility Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(1): 108-120.
[7] JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98.
[8] CHEN Yu-Ting, LIU Lu, CHU Pan-Pan, WEI Jia-Xian, QIAN Hui-Na, CHEN Hua, CAI Tie-Cheng, ZHUANG Wei-Jian, ZHANG Chong. Construction of yeast two-hybrid cDNA library induced by Ralstonia solanacearum and interaction protein screening for AhRRS5 in peanut [J]. Acta Agronomica Sinica, 2021, 47(11): 2134-2146.
[9] WANG Zhen, YAO Meng-Nan, ZHANG Xiao-Li, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Prokaryotic expression, subcellular localization and yeast two-hybrid library screening of BnMAPK1 in B. napus [J]. Acta Agronomica Sinica, 2020, 46(9): 1312-1321.
[10] Zhen-Yu LIU,Gui-Xia WANG,Li-Nan LI,Ze-Zhou CAI,Pan-Pan LIANG,Xin-Ling WU,Xiang ZHANG,De-Hua CHEN. Recovery characteristics of Bt insecticidal protein and relative physiological mechanisms after high temperature stress termination in square of Bt cotton [J]. Acta Agronomica Sinica, 2020, 46(3): 440-447.
[11] Tong-Hong ZUO, He-Cui ZHANG, Qian-Ying LIU, Xiao-Ping LIAN, Qin-Qin XIE, Deng-Ke HU, Yi-Zhong ZHANG, Yu-Kui WANG, Xiao-Jing BAI, Li-Quan ZHU. Molecular cloning and expression analysis of BoGSTL21 in self-incompatibility Brasscia oleracea [J]. Acta Agronomica Sinica, 2020, 46(12): 1850-1861.
[12] WANG Yan-Hua, JIAN Hong-Jiu, QIU Xiao, LI Jia-Na. Regulatory mechanism of the seed coat color gene BrTT1 in Brassica rapa L. [J]. Acta Agronomica Sinica, 2020, 46(11): 1678-1689.
[13] LU Hai-Qin, CHEN Li, CHEN Lei, ZHANG Ying-Chuan, WEN Jing, YI Bin, TU Jing-Xing, FU Ting-Dong, SHEN Jin-Xiong. Mechanism research of Bna-novel-miR311-HSC70-1 module regulating heat stress response in Brassica napus L. [J]. Acta Agronomica Sinica, 2020, 46(10): 1474-1484.
[14] KE Dan-Xia,PENG Kun-Peng. Screening of NFR1α-interactive proteins in soybean using yeast two hybrid system [J]. Acta Agronomica Sinica, 2020, 46(01): 31-39.
[15] Xiao-Jing BAI,Xiao-Ping LIAN,Yu-Kui WANG,He-Cui ZHANG,Qian-Ying LIU,Tong- Hong ZUO,Yi-Zhong ZHANG,Qin-Qin XIE,Deng-Ke HU,Xue-Song REN,Jing ZENG,Shao-Lan LUO,Min PU,Li-Quan ZHU. Cloning and analysis of BoCDPK14 in self-incompatibility Brasscia olerace [J]. Acta Agronomica Sinica, 2019, 45(12): 1773-1783.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[4] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[5] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[6] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[7] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[8] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[9] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[10] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .