Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (10): 1474-1484.doi: 10.3724/SP.J.1006.2020.04014

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Mechanism research of Bna-novel-miR311-HSC70-1 module regulating heat stress response in Brassica napus L.

LU Hai-Qin1(), CHEN Li1,2, CHEN Lei1, ZHANG Ying-Chuan1, WEN Jing1, YI Bin1, TU Jing-Xing1, FU Ting-Dong1, SHEN Jin-Xiong1,*()   

  1. 1 National Key Laboratory of Crop Genetic Improvement / National Engineering Research Center of Rapeseed, Huazhong Agriculatural University, Wuhan 430070, Hubei, China
    2 School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, China
  • Received:2020-01-16 Accepted:2020-06-02 Online:2020-10-12 Published:2020-06-22
  • Contact: Jin-Xiong SHEN E-mail:857929189@qq.com;jxshen@mail.hzau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31571698)

Abstract:

HSP70 (heat shock protein 70) participates in the response to heat stress, and can enhance plant heat tolerance, but there have been no reports of miRNA regulating HSP70 in rapeseed. In this study, a new miRNA, named novel-miR311, was identified in the shoot tip of Brassica napus by high-throughput technology. novel-miR311 was present in Brassica napus but not in Arabidopsis, and 5°-RACE technology confirmed that its two target genes, belonged to heat stress homologous protein gene HSC70-1 (HSP70 family), and could be cleavaged in Brassica napus. An overexpression vector of novel-miR311 was constructed and transformed into Arabidopsis and Brassica napus, and the expression of HSC70-1 in transgenic positive seedlings was decreased significantly. High temperature stress experiments showed that the growth potential and survival rates of Arabidopsis and Brassica napus positive seedlings were lower than those of their corresponding controls. The qPCR results showed that the expression of HSC70-1 gene in rapeseed increased after heat stress than before stress. In conclusion, the results suggest that Bna- novel-miR311 could reduce the heat resistance of Arabidopsis and Brassica napus by mediating cleavaged of HSC70-1.

Key words: Brassica napus, Arabidopsis thaliana, novel-miR311, HSC70-1, high temperature stress

Table 1

Ten candidate target genes predicted from the sequencing of novel-miR311 degradation group"

miRNA 名称
miRNA name
靶基因
Target gene
拟南芥同源基因
Arabidopsis homologous gene
靶基因功能
Function of target gene
novel miR311 BnaC06g18840D AT3G63460.1 Transducin family protein
novel miR311 BnaA07g19590D AT3G63460.1 Transducin family protein
novel miR311 BnaC03g46700D AT5G02490.1 Heat shock protein 70 (Hsp 70) family protein
novel miR311 BnaA03g39360D AT5G02490.1 Heat shock protein 70 (Hsp 70) family protein
novel miR311 BnaA03g39350D AT5G02490.1 Heat shock protein 70 (Hsp 70) family protein
novel miR311 BnaC04g42010D AT5G02500.1 Heat shock cognate protein 70-1 (HSC70-1)
novel miR311 BnaA10g27080D AT5G02500.1 Heat shock cognate protein 70-1 (HSC70-1)
novel miR311 BnaA09g05850D AT5G02500.1 Heat shock cognate protein 70-1 (HSC70-1)
novel miR311 BnaCnng03470D AT5G02500.1 Heat shock cognate protein 70-1 (HSC70-1)
novel miR311 BnaA10g27060D AT5G02500.1 Heat shock cognate protein 70-1 (HSC70-1)

Fig. 1

Validation of target genes using 5°-RACE “:” represents the miRNA and its targets are labeled on the right, “.” represents mismatch, the arrow indicates the cleavage site, and the numbers above sequences represent the detected cleavage site of independent clones."

Fig. 2

Comparison of target gene sites between Brassica napus and Arabidopsis a: transduction protein gene; b: heat shock protein HSP70-2 gene; c: heat shock cognate protein HSC70-1 gene. The red part is the binding site of novel-miR311 and target gene."

Fig. 3

Expression levels of novel-miR311 and HSC70-1 in root, stem, leaf, flower, and pod of wild type and positive Arabidopsis thaliana Data are shown as mean ± SD of three biological replicates. * and ** represent P < 0.05 and P < 0.01, respectively."

Fig. 4

Response to high temperature stress on 1/2 MS in wild type and positive Arabidopsis thaliana a: phenotypic analysis; b: statistical analysis."

Fig. 5

Germination experiment under high temperature stress in Brassica napus positive seedlings and J572 seeds a: comparison chart before and after treatment at different temperatures; b: germination rate chart for two days."

Fig. 6

Phenotype and expression analysis under high temperature stress treatment of Brassica napus positive seedlings and J572 in soil a: comparison of positive seedlings and J572 before and after heat stress, the red arrow in figures refers to the surviving rapeseed. b: expression of novel-miR311 and HSC70-1 before and after heat stress. Data are shown as mean ± SD of three biological replicates. ** P < 0.01."

Fig. 7

HSP70 action pathway According to Jacob et al.[33] with slight modification, the results in the dashed box are for the introduction of this article."

Supplementary Fig. 1

novel-miR311 stem-loop structure"

Supplementary table 1

novel-miR311 precursor sequence and mature sequence"

类别Type 序列Sequence (5°-3°)
成熟体
Mature sequence (5′-3′)
TTGGTGATAATTGGATTGGCA
前体
Precursor sequence (5′-3′)
TATGTGGTTAGAGCCAATCCATTTATCACCAATTCGTTTAAGTTGGTATAAATGTCGGTTTAAGAGCGATCAGGCCTATCAAAAATAGGCCGGATCGAATTCTGTTCAGTTGGGCAAGGTGTGTTTGTGCTCTGATACCATGATAAATTTCTTAGTTTTACAATTAAAACTAATTGGTGATAATTGGATTGGCACGTCCCTAAC
引物
Primer (5′-3′)
5' primer: AACTGCAGTTGTAGTTTTGAGAGATTAGAAGTGG
3' primer: CGGGATCCCTTTTATTAATCCCTCAGTAATACACC
[1] Sung D Y, Vierling E, Guy C L. Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family. Plant Physiol, 2001,126:789-800.
doi: 10.1104/pp.126.2.789 pmid: 11402207
[2] Usman M G, Rafii M Y, Martini M Y, Yusuff O A, Ismail M R, Miah G. Molecular analysis of Hsp70 mechanisms in plants and their function in response to stress. Biotechnol Genet Eng Rev, 2017,33:26-39.
doi: 10.1080/02648725.2017.1340546 pmid: 28649918
[3] Flaherty K M, Wilbanks S M, DeLuca Flaherty C, McKay D B. Structural basis of the 70-kilodalton heat shock cognate protein ATP hydrolytic activity. II. Structure of the active site with ADP or ATP bound to wild type and mutant ATPase fragment. J Biol Chem, 1994,269:12899-12907.
pmid: 8175707
[4] Meimaridou E, Gooljar S B, Chapple J P. From hatching to dispatching: the multiple cellular roles of the Hsp70 molecular chaperone machinery. J Mol Endocrinol, 2008,42:1-9.
doi: 10.1677/JME-08-0116 pmid: 18852216
[5] 孔凡英, 邓永胜, 孟庆伟. 叶绿体J蛋白研究进展. 植物生理学报, 2011,47:235-243.
Kong F Y, Deng Y S, Meng Q W. Research progress of chloroplast J protein. Plant Physiol J, 2011,47:235-243 (in Chinese with English abstract).
[6] Murphy M E. The HSP70 family and cancer. Carcinogenesis, 2013,34:1181-1188.
doi: 10.1093/carcin/bgt111
[7] 陈丽, 鲁海琴, 李日慧, 傅廷栋, 沈金雄. 油菜miRNA研究现状与展望. 中国油料作物学报, 2018,40:664-673.
Chen L, Lu H Q, Li R H, Fu T D, Shen J X. Research progress and prospect of miRNA in Brassica napus. Chin J Oil Crop Sci, 2018,40:664-673 (in Chinese with English abstract).
[8] Reinhart B J, Weinstein E G, Rhoades M W, Bartel B, Bartel D P. MicroRNAs in plants. Genes Dev, 2002,16:1616-1626
doi: 10.1101/gad.1004402 pmid: 12101121
[9] Huang J, Li Z, Zhao D. Deregulation of the OsmiR160 target gene OsARF18 causes growth and developmental defects with an alteration of auxin signaling in rice. Sci Rep, 2016,6:29938.
doi: 10.1038/srep29938 pmid: 27444058
[10] Waters B M, McInturf S A, Stein R J. Rosette iron deficiency transcript and microRNA profiling reveals links between copper and iron homeostasis in Arabidopsis thaliana. J Exp Bot, 2012,63:5903-5918.
doi: 10.1093/jxb/ers239
[11] Zhang H, Zhao X, Li J, Cai H, Deng X W, Li L. MicroRNA408 is critical for the HY5-SPL7 gene network that mediates the coordinated response to light and copper. Plant Cell, 2014,26:4933-4953.
doi: 10.1105/tpc.114.127340
[12] Srivastava S, Srivastava A K, Suprasanna P, D’Souza S F. Identification and profiling of arsenic stress-induced microRNAs in Brassica juncea. J Exp Bot, 2013,64:303-315.
doi: 10.1093/jxb/ers333 pmid: 23162117
[13] Meng J G, Zhang X D, Tan S K, Zhao K X, Yang Z M. Genome-wide identification of Cd-responsive NRAMP transporter genes and analyzing expression of NRAMP1 mediated by miR167 in Brassica napus. Biometals, 2017,30:1-15.
doi: 10.1007/s10534-016-9981-x pmid: 27853903
[14] Sunkar R, Kapoor A, Zhu J K. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell, 2006,18:2415-2415.
doi: 10.1105/tpc.106.180960
[15] Chen L, Chen L, Zhang X, Liu T, Niu S, Wen J, Yi B, Ma C, Tu J, Fu T, Shen J. Identification of miRNAs that regulate silique development in Brassica napus. Plant Sci, 2018,269:106-117.
doi: 10.1016/j.plantsci.2018.01.010 pmid: 29606207
[16] Kumar R R, Pathak H, Sharma S K, Kala Y K, Nirjal M K, Singh G P, Goswami S, Rai R D. Novel and conserved heat-responsive microRNAs in wheat (Triticum aestivum L.). Funct Integr Genomics, 2015,15:323-348.
doi: 10.1007/s10142-014-0421-0 pmid: 25480755
[17] Pan C, Ye L, Zheng Y, Wang Y, Yang D, Liu X, Chen L, Zhang Y, Fei Z, Lu G. Identification and expression profiling of microRNAs involved in the stigma exsertion under high- temperature stress in tomato. BMC Genomics, 2017,18:843.
doi: 10.1186/s12864-017-4238-9 pmid: 29096602
[18] Zhang M, An P, Li H, Wang X, Zhou J, Dong P, Zhao Y, Wang Q, Li C. The miRNA-mediated post-transcriptional regulation of maize in response to high temperature. Int J Mol Sci, 2019,20:1754.
doi: 10.3390/ijms20071754
[19] Zhou R, Wang Q, Jiang F, Cao X, Sun M, Liu M, Wu Z. Identification of miRNAs and their targets in wild tomato at moderately and acutely elevated temperatures by high-throughput sequencing and degradome analysis. Sci Rep, 2016,6:33777.
doi: 10.1038/srep33777 pmid: 27653374
[20] Shi X, Jiang F, Wen J, Wu Z. Overexpression of solanum habrochaites microRNA319d (sha-miR319d) confers chilling and heat stress tolerance in tomato (S. lycopersicum). BMC Plant Biol, 2019,19:214.
pmid: 31122194
[21] Ding Y, Ma Y, Liu N, Xu J, Hu Q, Li Y, Wu Y, Xie S, Zhu L, Min L, Zhang X. MicroRNAs involved in auxin signalling modulate male sterility under high-temperature stress in cotton (Gossypium hirsutum). Plant J, 2017,91:977-994.
doi: 10.1111/tpj.13620 pmid: 28635129
[22] Stief A, Altmann S, Hoffmann K, Pant B D, Scheible W R, Bäurle I. Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. Plant Cell, 2014,26:1792-1807.
doi: 10.1105/tpc.114.123851
[23] Matthews C, Arshad M, Hannoufa A. Alfalfa response to heat stress is modulated by microRNA156. Physiol Plant, 2019,165:830-842
doi: 10.1111/ppl.12787 pmid: 29923601
[24] 焦聪聪, 黄吉祥, 汪义龙, 张晓玉, 熊化鑫, 倪西源, 赵坚义. 利用非条件和条件QTL解析油菜产量相关性状的遗传关系. 作物学报, 2015,41:1481-1489.
doi: 10.3724/SP.J.1006.2015.01481
Jiao C C, Huang J X, Wang Y L, Zhang X Y, Xiong H X, Ni X Y, Zhao J Y. Genetic analysis of yield-associated traits by unconditional and conditional QTL in Brassica napus. Acta Agron Sin, 2015,41:1481-1489 (in Chinese with English abstract).
[25] Staff T P O. Correction: a genome-wide perspective of miRNAome in response to high temperature, salinity and drought stresses in Brassica juncea (Czern) L. PLoS One, 2015,10:e92456.
[26] Yu X, Wang H, Lu Y, de Ruiter M, Cariaso M, Prins M, van Tunen A, He Y. Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa. J Exp Bot, 2012,63:1025-1038.
doi: 10.1093/jxb/err337
[27] 陈丽. 甘蓝型油菜株型及角果长度相关miRNA和靶基因的挖掘. 华中农业大学博士学位论文, 湖北武汉, 2018.
Chen L. The Study of miRNA and Targets Regulate Plant Architecture and Silique Length in Brassica napus L. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2018 (in Chinese with English abstract).
[28] Varkonyi Gasic E, Wu R, Wood M, Walton E F, Hellens R P. Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods, 2007,3:12.
doi: 10.1186/1746-4811-3-12 pmid: 17931426
[29] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method . Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[30] Leng L, Liang Q, Jiang J, Zhang C, Hao Y, Wang X, Su W. A subclass of HSP70s regulate development and abiotic stress responses in Arabidopsis thaliana. J Plant Res, 2017,130:349-363.
doi: 10.1007/s10265-016-0900-6 pmid: 28004282
[31] Wang W, Vinocur B, Shoseyov O, Altman A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci, 2004,9:244-252.
doi: 10.1016/j.tplants.2004.03.006 pmid: 15130550
[32] 胡秀丽, 李艳辉, 杨海荣, 刘全军, 李潮海. HSP70可提高干旱高温复合胁迫诱导的玉米叶片抗氧化防护能力. 作物学报, 2010,36:636-644.
doi: 10.3724/SP.J.1006.2010.00636
Hu X L, Li Y H, Yang H R, Liu Q J, Li C H. Heat shock protein 70 may improve the ability of antioxidant defense induced by the combination of drought and heat in maize leaves. Acta Agron Sin, 2010,36:636-644 (in Chinese with English abstract).
[33] Jacob P, Hirt H, Bendahmane A. The heat shock protein/chaperone network and multiple stress resistance. Plant Biotechnol J, 2017,15:405-414.
doi: 10.1111/pbi.12659 pmid: 27860233
[34] Scharf K D, Berberich T, Ebersberger I, Nover L. The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta, 2012,1819:104-119.
doi: 10.1016/j.bbagrm.2011.10.002 pmid: 22033015
[35] Sung D Y, Guy C L. Physiological and molecular assessment of altered expression of Hsc70-1 in Arabidopsis. evidence for pleiotropic consequences. Plant Physiol, 2003,132:979-987.
doi: 10.1104/pp.102.019398 pmid: 12805626
[36] Cazalé A C, Clément M, Chiarenza S, Roncato M A, Pochon N, Creff A, Marin E, Leonhardt N, Noël L D. Altered expression of cytosolic/nuclear HSC70-1 molecular chaperone affects development and abiotic stress tolerance in Arabidopsis thaliana. J Exp Bot, 2009,60:2653-2664.
doi: 10.1093/jxb/erp109 pmid: 19443614
[37] Young L W, Wilen R W, Bonham Smith P C. High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J Exp Bot, 2004,55:485-495.
doi: 10.1093/jxb/erh038 pmid: 14739270
[38] Wang X, Yan B, Shi M, Zhou W, Zekria D, Wang H, Kai G. Overexpression of a Brassica campestris HSP70 in tobacco confers enhanced tolerance to heat stress. Protoplasma, 2016,253:637-645.
doi: 10.1007/s00709-015-0867-5 pmid: 26298102
[1] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[2] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[3] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
[4] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[5] WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510.
[6] LI Jie-Hua, DUAN Qun, SHI Ming-Tao, WU Lu-Mei, LIU Han, LIN Yong-Jun, WU Gao-Bing, FAN Chu-Chuan, ZHOU Yong-Ming. Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance [J]. Acta Agronomica Sinica, 2021, 47(5): 789-798.
[7] TANG Xin, LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao. Morphological characteristics and cytological study of anther abortion of temperature-sensitive nuclear male sterile line 160S in Brassica napus [J]. Acta Agronomica Sinica, 2021, 47(5): 983-990.
[8] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[9] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[10] TANG Jing-Quan, WANG Nan, GAO Jie, LIU Ting-Ting, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. Bioinformatics analysis of SnRK gene family and its relation with seed oil content of Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 416-426.
[11] MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471.
[12] WEI Li-Juan, SHEN Shu-Lin, HUANG Xiao-Hu, MA Guo-Qiang, WANG Xi-Tong, YANG Yi-Ling, LI Huan-Dong, WANG Shu-Xian, ZHU Mei-Chen, TANG Zhang-Lin, LU Kun, LI Jia-Na, QU Cun-Min. Genome-wide association analysis reveals zinc-tolerant loci of rapeseed at germination stage [J]. Acta Agronomica Sinica, 2021, 47(2): 262-274.
[13] LI Qian, Nadil Shah, ZHOU Yuan-Wei, HOU Zhao-Ke, GONG Jian-Fang, LIU Jue, SHANG Zheng-Wei, ZHANG Lei, ZHAN Zong-Xiang, CHANG Hai-Bin, FU Ting-Dong, PIAO Zhong-Yun, ZHANG Chun-Yu. Breeding of a novel clubroot disease-resistant Brassica napus variety Huayouza 62R [J]. Acta Agronomica Sinica, 2021, 47(2): 210-223.
[14] WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422.
[15] WANG Zhen, ZHANG Xiao-Li, MENG Xiao-Jing, YAO Meng-Nan, MIU Wen-Jie, YUAN Da-Shuang, ZHU Dong-Ming, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Identification of upstream regulators for mitogen-activated protein kinase 7 gene (BnMAPK7) in rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2021, 47(12): 2379-2393.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!