Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (10): 1485-1495.doi: 10.3724/SP.J.1006.2020.01013

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Functional analysis of Lcye gene involved in the carotenoid synthesis in common wheat

ZHAI Sheng-Nan1(), GUO Jun1, LIU Cheng1, LI Hao-Sheng1, SONG Jian-Min1, LIU Ai-Feng1, CAO Xin-You1, CHENG Dun-Gong1, LI Fa-Ji1, HE Zhong-Hu2, XIA Xian-Chun2,*(), LIU Jian-Jun1,*()   

  1. 1 Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
    2 Institute of Crop Sciences, Chnese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2020-02-18 Accepted:2020-06-02 Online:2020-10-12 Published:2020-06-12
  • Contact: Xian-Chun XIA,Jian-Jun LIU E-mail:zsn19870322@163.com;xiaxianchun@caas.cn;ljjsaas@163.com
  • Supported by:
    National Natural Science Foundation of China(31701420);Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2018E01);Young Elite Scientists Sponsorship Program by CAST(2017QNRC001);Agricultural Variety Improvement Project of Shandong Province(2019LGC001)

Abstract:

Yellow pigment in wheat grains, mostly composed of carotenoids, is a main factor for the yellowness of flour and its end-used products. Lycopene epsilon cyclase (LCYE) is a key enzyme for the carotenoid biosynthesis pathway in wheat. Previous studies of Lcye gene mainly focused on QTL mapping, gene cloning, and molecular marker development, but its function and genetic regulatory mechanisms remained unclear. In the present study, in order to further understanding the molecular mechanism of yellow pigment formation in wheat grains, the function and genetic regulation of Lcye were studied by TILLING to screen the EMS-mutagenised population. A total of 21 Lcye mutations including six missense mutations, two synonymous mutations and 13 intron mutations were detected consisted from 2491 M2 EMS-mutagenised population. The mutation frequency of Lcye in the population was 1/266.1 kb. Two missense mutations (M090815 and M091648) were predicted to have severe effects on LCYE protein function based on PARSENP software. MEME analysis showed that the mutation sites of M090815 and M092230 were located on the conserved domain of Lcye gene. In F2 populations crossing by six missense mutants and the wild type, C2202T mutation in M090815 significantly reduced yellow pigment content in grains, indicating the mutation played an important effect on LCYE function. The quantitative real-time PCR (qRT-PCR) results also showed that the expression level of Lcye gene were significantly reduced, and the decrease trend of Lcye-B1 and Lcye-D1 expression level was similar during different seed developmental stages, while the expression level of Lcye-A1 exhibited a compensation effect at 14-28 days post anthesis. This study identified Lcye gene function, and provided germplasms and a theoretical basis for the improvement of flour color traits and end-used products.

Key words: EMS, TILLING, flour color, yellow pigment content, genetics and breeding

Table 1

Primers for screening Lcye mutations by TILLING"

基因
Gene
名称
Name
上游引物序列
Forward primer (5′-3′)
下游引物序列
Reverse primer (5′-3′)
扩增长度
Length (bp)
Lcye-A1 A3F-A7R CCACAGTAGCAAAAATTAGTCA TGCTACATTTCACAGTGGTGAA 1450
Lcye-A1 A8F-A9R GGTTGAAAGATATCCGTACAAC TTTGGGTAACCGGAAAAAGGTT 978
Lcye-B1 B4F-B6R CACCAACCCTGCACAAAGTGCC GGAATATAAGACCACTCCTGAG 578
Lcye-D1 D2F-D5R GCTGAGAAGGTACATTCTATCA TTGAACTGGTGCACAAACAACA 437

Table 2

Primers of Lcye gene for qRT-PCR analysis"

基因Gene 名称Name 序列Sequence (5'-3')
Lcye-all Lcye-all-F2 TGACCACYGAATATCCAGTTGC
Lcye-all-R6 AGTTTTCTTTGAGGAAACATGC
Lcye-A1 Lcye-A1-F7 GTTGCTGAGAAGATGCAACGAT
Lcye-A1-R7 CAAAGTATCTTGCGGTCCCTTT
Lcye-B1 Lcye-B1-F3 ATCTCCAGATGGACATCGAGTG
Lcye-B1-R3 TCCAACCTCATACTCTAGAAGT
Lcye-D1 Lcye-D1-F3 TTGGCCCTGATCTTCCATTC
Lcye-D1-R1 ATATACTACTCGATGTCCATCA
β-actin Actin-F CTGATCGCATGAGCAAAGAG
Actin-R CCACCGATCCAGACACTGTA

Supplementary table 1

Table Supplementary table 1 Information of cDNA sequences of Lcye genes in 27 plant species"

种名
Species name
GenBank登录号
GenBank accession number
种名
Species name
GenBank登录号
GenBank accession number
拟南芥Arabidopsis thaliana NM_125085 小立碗藓Physcomitrella patens XM_001753846
二穗短柄草Brachypodium distachyon XM_003569209 碧桃Prunus persica XM_007203578
大白菜Brassica rapa XM_009133907 蓖麻Ricinus communis XM_002514090
荠菜Capsella rubella XM_006280236 谷子Setaria italica XM_004969360
莱茵衣藻Chlamydomonas reinhardtii XM_001696477 番茄Solanum lycopersicum EU533951
柑橘Citrus sinensis AY533827 马铃薯Solanum tuberosum XM_006353482
黄瓜Cucumis sativus XM_004157912 高粱Sorghum bicolor XM_002455793
草莓Fragaria vesca XM_004287534 可可Theobroma cacao XM_007012707
大豆Glycine max XM_003533727 普通小麦Triticum aestivum EU649785
大麦Hordeum vulgare AK371513 圆锥小麦Triticum turgidum GAKM01004311
亚麻Linum usitatissimum KC565894 乌拉尔图小麦Triticum urartu GAKL01018490
苹果Malus domestica XM_008389970 葡萄Vitis vinifera JQ319637
蒺藜苜蓿Medicago truncatula XM_003595195 玉米Zea mays EU924262
水稻Oryza sativa NM_001049945

Table 3

Summary of mutations in Lcye identified by TILLING"

基因
Gene
突变体编号
Number of M2 plant
外显子/内含子
Exon/intron
核苷酸改变
Nucleotide change
密码子改变
Codon change
氨基酸改变
Amino acid change
基因型
Zygosity
Lcye-A1 M091034 Intron C1184T Hom
M091686 Intron C1243T Hom
M091772 Intron C1418T Hom
M092043 Intron C1478T Hom
M092852 Intron C3222T Hom
M090431 Intron C858T Het
M090631 Intron T1461C Het
M090897 Intron G1068A Hom
M091996 Intron G1575A Hom
M090147 Intron G3073A Hom
M091648 Exon G3284A GGA→GAA G392E Hom
M090201 Exon G3306A TTA→TTG L399= Hom
Lcye-B1 M091626 Intron G2406A Hom
Lcye-D1 M092404 Intron C2014T Het
M091884 Intron C2017T Het
M090945 Exon C2086T TAC→TAT Y214= Hom
M092089 Exon C2087T CTC→TTC L215F Hom
M091328 Exon C2121T CCT→CTT P226L Het
M090815 Exon C2202T TCT→TTT S253F Het
M092230 Exon G2195A GCA→ACA A251T Hom
M091075 Exon G2262A GGT→GAT G273D Hom

Fig. 1

Distribution of mutation sites in Lcye Exons are represented by yellow arrows and introns by connecting lines."

Table 4

The severity of mutations affecting protein function by the PARSESNP"

基因
Gene
突变体编号
Number of M2 plant
核苷酸改变
Nucleotide change
氨基酸改变
Amino acid change
PSSM值
PSSM difference
SIFT值
SIFT score
Lcye-D1 M090815 C2202T S253F 26.9 0
Lcye-A1 M091648 G3284A G392E 27.7 0

Fig. 2

The relative expression analysis of Lcye and its homoeologs in grains of three genotypes in F2 population derived from the homozygous M090815 mutant crossed with the wild-type plant during grain development at 7, 14, 21, and 28 days post anthesis * P < 0.05, ** P < 0.01. Hom: homozygous mutants; Het: heterozygous mutants; WT: wild-type genotypes."

Fig. 3

Yellow pigment content of different genotypes in F2 populations derived from homozygous M090815 mutant crossed with wild-type plant * P < 0.05. Hom: homozygous mutants; Het: heterozygous mutants; WT: wild-type genotypes."

Fig. 4

Functional domains predication of Lcye by MEME"

[1] Mares D J, Campbell A W. Mapping components of flour and noodle colour in Australian wheat. Aust J Agric Res, 2001,52:1297-1309.
doi: 10.1071/AR01048
[2] Adom K K, Sorrells M E, Liu R H. Phytochemical profiles and antioxidant activity of wheat varieties. J Agric Food Chem, 2003,51:7825-7834.
doi: 10.1021/jf030404l pmid: 14664553
[3] Fratianni A, Irano M, Panfili G, Acquistucci R. Estimation of color of durum wheat. Comparison of WSB, HPLC, and reflectance colorimeter measurements. J Agric Food Chem, 2005,53:2373-2378.
doi: 10.1021/jf040351n pmid: 15796565
[4] Cong L, Wang C, Li Z Q, Chen L, Yang G X, Wang Y S, He G Y. cDNA cloning and expression analysis of wheat (Triticum aestivum L.) phytoene and ζ-carotene desaturase genes. Mol Biol Rep, 2010,37:3351-3361.
doi: 10.1007/s11033-009-9922-7
[5] 李文爽, 夏先春, 何中虎. 普通小麦类胡萝卜素组分的超高效液相色谱分离方法. 作物学报, 2016,42:706-713.
doi: 10.3724/SP.J.1006.2016.00706
Li W S, Xia X C, He Z H. Establishment of Ultra performance liquid chromatography (UPLC) protocol for analyzing carotenoids in common wheat. Acta Agron Sin, 2016,42:706-713 (in Chinese with English abstract).
[6] Cazzonelli C I, Pogson B J. Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci, 2010,15:266-274.
doi: 10.1016/j.tplants.2010.02.003 pmid: 20303820
[7] Zhu C F, Bai C, Sanahuja G, Yuan D W, Farré G, Naqvi S, Shi L X, Capell T, Christou P. The regulation of carotenoid pigmentation in flowers. Arch Biochem Biophys, 2010,504:132-141.
doi: 10.1016/j.abb.2010.07.028 pmid: 20688043
[8] Howitt C A, Cavanagh C R, Bowerman A F, Cazzonelli C, Rampling L, Mimica J L, Pogson B J. Alternative splicing, activation of cryptic exons and amino acid substitutions in carotenoid biosynthetic genes are associated with lutein accumulation in wheat endosperm. Funct Integr Genomic, 2009,9:363-376.
doi: 10.1007/s10142-009-0121-3
[9] 董长海. 普通小麦籽粒黄色素含量相关基因的克隆与功能标记开发. 河北农业大学硕士学位论文, 河北保定, 2011. pp 32-33.
Dong C H. Cloning of Genes Associated with Grain Yellow Pigment Content in Common Wheat and Development of Functional Markers. MS Thesis of Agricultural University of Hebei, Baoding, Hebei, China, 2011. pp 32-33 (in Chinese with English abstract).
[10] Crawford A C, Francki M G. Lycopene-e-cyclase (e-LCY3A) is functionally associated with quantitative trait loci for flour b* colour on chromosome 3A in wheat (Triticum aestivum L.). Mol Breed, 2013,31:737-741.
doi: 10.1007/s11032-012-9812-x
[11] Till B J, Clbert T, Tompa R, Enns L C, Codomo C A, Johnson J E, Reynolds S H, Henikoff J G, Greene E A, Steine M N, Comai L, Henkoff S. High-throughput TILLING for functional genomics. In: Grotewold E ed. Plant Functional Genomics. Totowa N J, USA: Humana Press, 2003. pp 205-220.
[12] 闫智慧, 郭会君, 徐荣旗, 刘录祥. TILLING技术的发展及其在不同植物中的应用. 核农学报, 2014,28:224-233.
doi: 10.11869/j.issn.100-8551.2014.02.0224
Yan Z H, Guo H J, Xu R Q, Liu L X. Development of TILLING technology and its application in plants. J Nucl Agric Sci, 2014,28:224-233 (in Chinese with English abstract).
[13] 侯彩玲, 陈龙, 刘晓萌, 赵锦慧, 卢龙斗. TILLING技术在作物品质改良中的应用. 种子, 2008,27(11):77-80.
Hou C L, Chen L, Liu X M, Zhao J H, Lu L D. Application of TILLING technology on the improvement of crop quality. Seed, 2008,27(11):77-80 (in Chinese).
[14] 韩宁, 唐丹, 刘文, 闫丽, 胡晓君. Tilling技术及其在小麦中的应用研究进展. 麦类作物学报, 2013,33:1054-1057.
doi: 10.7606/j.issn.1009-1041.2013.05.036
Han N, Tang D, Liu W, Yan L, Hu X J. Development of targeting induced local lesions in genomes and its application in wheat (Triticum aestivum L.). J Triticeae Crops, 2013,33:1054-1057 (in Chinese with English abstract).
[15] 陈锋, 徐艳花, 董中东, 许海霞, 程西永, 詹克慧, 崔党群. TILLING 技术的形成和发展及其在麦类作物中的应用. 麦类作物学报, 2010,30:178-182.
doi: 10.7606/j.issn.1009-1041.2010.01.035
Chen F, Xu Y H, Dong Z D, Xu H X, Cheng X Y, Zhan K H, Cui D Q. Development of targeting induced local lesion in genomes and its application in Triticeae crops. J Triticeae Crops, 2010,30:178-182 (in Chinese with English abstract).
[16] 潘娜, 郭会君, 赵世荣, 王广金, 刘录祥. TILLING技术在作物突变研究中的应用现状与前景. 植物遗传资源学报, 2011,12:581-587.
Pan N, Guo H J, Zhao S R, Wang G J, Liu L X. Current status and perspectives of TILLING technique for crop mutagenesis research. J Plant Genet Resour, 2011,12:581-587 (in Chinese with English abstract).
[17] Zhai S N, Li G Y, Sun Y W, Song J M, Li J H, Song G Q, Li Y L, Ling H Q, He Z H, Xia X C. Genetic analysis of phytoene synthase 1 (Psy1) gene function and regulation in common wheat. BMC Plant Biol, 2016,16:228.
doi: 10.1186/s12870-016-0916-z pmid: 27769185
[18] Slade A J, Fuerstenberg S I, Loeffler D, Steine M N, Facciontti D. A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol, 2005,23:75-81.
doi: 10.1038/nbt1043 pmid: 15580263
[19] Till B J, Zerr T, Comai L, Henikoff S. A protocol for TILLING and Ecotilling in plants and animals. Nat Protoc, 2006,1:2465-2477.
doi: 10.1038/nprot.2006.329 pmid: 17406493
[20] Doyle J J, Doyle J L. A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem Bull, 1987,19:11-15.
[21] Ng P C, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res, 2003,31:3812-3814.
doi: 10.1093/nar/gkg509 pmid: 12824425
[22] Taylor N E, Greene E A. PARSESNP: a tool for the analysis of nucleotide polymorphisms. Nucleic Acids Res, 2003,31:3808-3811.
doi: 10.1093/nar/gkg574 pmid: 12824424
[23] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method . Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[24] Hornero Mendez D, de Guevara R G L, Minguez Mosquera M I. Carotenoid biosynthesis changes in five red pepper (Capsicum annuum L.) cultivars during ripening. Cultivar selection for breeding. J Agric Food Chem, 2000,48:3857-3864.
doi: 10.1021/jf991020r pmid: 10995282
[25] Ronen G, Carmel Goren L, Zamir D, Hirschberg J. An alternative pathway to beta-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. Proc Natl Acad Sci USA, 2000,97:11102-11107.
doi: 10.1073/pnas.190177497 pmid: 10995464
[26] Richaud D, Stange C, Gadaleta A, Colasuonno P, Parada R, Schwember A R. Identification of Lycopene epsilon cyclase (Lcye) gene mutants to potentially increase β-carotene content in durum wheat (Triticum turgidum L. ssp. durum) through TILLING. PLoS One, 2018,13:e0208948.
doi: 10.1371/journal.pone.0208948 pmid: 30532162
[27] Gilchrist E J, Haughn G W. TILLING without a plough: a new method with applications for reverse genetics. Curr Opin Plant Biol, 2005,8:211-215.
doi: 10.1016/j.pbi.2005.01.004 pmid: 15753003
[28] Till B J, Datta S, Jankowicz Cieslak J. TILLING: the Next Generation. In: Varshney R, Pandey M, Chitikineni A, eds. Plant Genetics and Molecular Biology. Advances in Biochemical Engineering/Biotechnology, Vol. 164. Springer, Cham, 2018. pp 139-160. https://doi.org/10.1007/10_2017_54.
[29] Till B J, Cooper J, Tai T H, Colowit P, Greene E A, Henikoff S, Comai L. Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol, 2007,7:19.
doi: 10.1186/1471-2229-7-19 pmid: 17428339
[30] Till B J, Reynolds S H, Weil C, Springer N, Burtner C, Young K, Bowers E, Codomo C A, Enns L C, Odden A R, Greene E A, Comai L, Henikoff S. Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol, 2004,4:12.
doi: 10.1186/1471-2229-4-12 pmid: 15282033
[31] Acevedo Garcia J, Spencer D, Thieron H, Reinstädler A, Hammond Kosack K, Phillips A L, Panstruga R. mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach. Plant Biotechnol J, 2017,15:367-378.
doi: 10.1111/pbi.12631 pmid: 27565953
[32] Kim H, Yoon M R, Chun A, Tai T H. Identification of novel mutations in the rice starch branching enzyme I gene via TILLING by sequencing. Euphytica, 2018,214:12.
doi: 10.1007/s10681-017-2093-z
[33] Gottwald S, Bauer P, Komatsuda T, Lundqvist U, Stein N. TILLING in the two-rowed barley cultivar ‘Barke’ reveals preferred sites of functional diversity in the gene HvHox1. BMC Res Notes, 2009,2:258.
doi: 10.1186/1756-0500-2-258 pmid: 20017921
[34] Nida H, Blum S, Zielinski D, Srivastava D A, Elbaum R, Xin Z, Erlich Y, Fridman E, Shental N. Highly efficient de novo mutant identification in a Sorghum bicolor TILLING population using the ComSeq approach. Plant J, 2016,86:349-359.
doi: 10.1111/tpj.13161 pmid: 26959378
[35] Colbert T, Till B J, Tompa R, Reynolds S, Steine M N, Yeung A T, McCallum C M, Comai L, Henikoff S. High-throughout screening for induced point mutations. Plant Physiol, 2001,126:480.
doi: 10.1104/pp.126.2.480 pmid: 11402178
[36] Dong C, Dalton Morgan J, Vincent K, Sharp P. A modified TILLING method for wheat breeding. Plant Genome, 2009,2:39-47.
doi: 10.3835/plantgenome2008.10.0012
[37] Uauy C, Paraiso F, Colasuonno P, Tran R K, Tsai H, Berardi S, Comai L, Dubcovsky J. A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. BMC Plant Biol, 2009,9:115-128.
doi: 10.1186/1471-2229-9-115 pmid: 19712486
[38] Colasuonno P, Incerti O, Lozito M L, Simeone R, Gadaleta A, Blanco A. DHPLC technology for high-throughput detection of mutations in a durum wheat TILLING population. BMC Genet, 2016,17:43.
doi: 10.1186/s12863-016-0350-0 pmid: 26884094
[39] Slade A J, McGuire C, Loeffler D, Mullenberg J, Skinner W, Fazio G, Holm A, Brandt K M, Steine M N, Goodstal J F, Knauf V C. Development of high amylose wheat through TILLING. BMC Plant Biol, 2012,12:69-85.
doi: 10.1186/1471-2229-12-69 pmid: 22584013
[40] 何中虎, 夏先春, 陈新民, 庄巧生. 中国小麦育种进展与展望. 作物学报, 2011,37:202-215.
doi: 10.3724/SP.J.1006.2011.00202
He Z H, Xia X C, Chen X M, Zhuang Q S. Progress of wheat breeding in China and the future perspective. Acta Agron Sin, 2011,37:202-215 (in Chinese with English abstract).
[41] Semagn K, Babu R, Hearne S, Olsen M. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed, 2014,33:1-14.
doi: 10.1007/s11032-013-9917-x
[42] Shannon G J, Nguyen H T. Development of SNP genotyping assays for seed composition traits in soybean. Int J Plant Genomics, 2017,2017:6572969.
doi: 10.1155/2017/6572969 pmid: 28630621
[1] Yun-Ji XU, Yang-Dong XU, Yin-Yin LI, Xi-Yang QIAN, Zhi-Qin WANG, Jian-Chang YANG. Effect of Alternate Wetting and Drying Irrigation on Post-anthesis Remobilization of Assimilates and Grain Filling of Rice [J]. Acta Agronomica Sinica, 2018, 44(04): 554-568.
[2] ZOU Hua-Wen,WANG Dao-Jie,BIAN Xiu-Xiu,SHANG Hai-Hong,YANG Xin-Quan. Analysis of NSFC Program Applications in Rice and Wheat Crops Genetics and Breeding Fields in Recent 15 Years [J]. Acta Agron Sin, 2015, 41(05): 820-828.
[3] XIANG Ji-Shan,MU Pei-Yuan,SANG Wei,NIE Ying-Bin,XU Hong-Jun,ZHUANG Li,CUI Feng-Juan,HAN Xin-Nian,ZOU Bo. Effects of Psy-A1, Ppo-A1, Ppo-D1, and TaLox-B1 Alleles on Flour Color of Xinjiang Wheats [J]. Acta Agron Sin, 2015, 41(01): 72-79.
[4] YU Hai-Xia,XIAO Jing,TIAN Ji-Chun. Genome-wide Association Analysis of Flour Color (Whiteness) Using DArT Markers in Common Wheat [J]. Acta Agron Sin, 2014, 40(12): 2198-2202.
[5] ZHANG Ji-Yuan,ZHANG Ping-Ping,YAO Jin-Bao,YANG Dan,YANG Xue-Ming,MA Hong-Xiang. EMS Induced HMW-GS Mutants from Soft Wheat Ningmai 9 [J]. Acta Agron Sin, 2014, 40(09): 1579-1584.
[6] SANG Xian-Chun,XU Fang-Fang,ZHU Xiao-Yan,XING Ya-Di,HE Pei-Long,ZHANG Chang-Wei, ANG Zheng-Lin,HE Guang-Hua. Identification and Gene Fine Mapping of an Early Senescent Leaf Mutant esl5 in Oryza sativa [J]. Acta Agron Sin, 2014, 40(07): 1182-1189.
[7] LI Xia,ZHANG Ji-Wang*,REN Bai-Zhao,FAN Xia,DONG Shu-Ting,LIU Peng,ZHAO Bin. Yield and Lodging Resistance of Summer Maize under Different Winter Wheat-Summer Maize Tillage Systems [J]. Acta Agron Sin, 2014, 40(06): 1093-1101.
[8] LIAO Fang-Lei,WANG Lu,XIN Ke-Xing,CHEN Wen-Rong,GUO Wei-Dong. Comparison and Analysis of Effects of Antisense Oligodeoxynucleotide Inhibition of NtGNL1 in Three Culture Systems of Tobacco [J]. Acta Agron Sin, 2014, 40(02): 355-361.
[9] ZENG Ling-Jie,LIN Mao-Zi,LI Zhen-Fang,DAI Lin-Quan, LI Ji,LI Jing-Jing,ZHANG Zhong-Yi,LIN Wen-Xiong. Effects of Continuous Cropping on Photosynthesis and Medicinal Quality of Pseudostellariae heterophylla [J]. Acta Agron Sin, 2012, 38(08): 1522-1528.
[10] ZHU Ming, WEI Wei, CHEN Ming, ZHANG Xian-Sheng, XU Zhao-Shi, LI Lian-Cheng, MA Wei-Zhi. A Novel Quick Method for Detecting Target DNA Binding Sites of Protein [J]. Acta Agron Sin, 2011, 37(12): 2167-2172.
[11] WU Hui-Min, HUANG Li-Yu, PAN Ya-Jiao, JIN Peng, FU Bin-Ying. Function Analysis of the Gene OsASIE1 Responding to Abiotic Stresses in Rice [J]. Acta Agron Sin, 2011, 37(10): 1771-1778.
[12] TONG Xing,ZHAO Bo,JING Wen-Lin,ZENG Chao-Wu,LIU Hong-Xia,WU Bao-Mei,PU Shao-Jing. Identification of Mutants from Adzuki Bean (Vigna angularisi) Jingnong 6 seed Induced by Physical and Chemical Agents [J]. Acta Agron Sin, 2010, 36(4): 565-573.
[13] LIU Yue-Hua, CHEN Yuan-Quan, ZHU Min, QU Bo, SHUI Peng, GAO Wang-Sheng. Relationship between Crop Productivity and Ecological Factors in Poplar-Crop Intercropping Systems in Haihe Lowland Area [J]. Acta Agron Sin, 2010, 36(08): 1355-1361.
[14] XU Tian-Yang,ZHAO Zheng-Xiong,LI Zhong-Huan,CHEN Rong-Ping,XU Long,et al.. Effect of tilling Depth on Growth,Nutrient Uptake,Yield and Quality of Flue-Cured Tobacco Plant [J]. Acta Agron Sin, 2009, 35(7): 1364-1368.
[15] WANG Hong;JIN Ji-Yun;YAMAUCHI Akira. Fractal Analysis of Root System Architecture by Box-Counting Method and Its Relationship with Zn Accumulation in Rice (Oryza sativa L.) [J]. Acta Agron Sin, 2008, 34(09): 1637-1643.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!