Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (2): 325-339.doi: 10.3724/SP.J.1006.2023.34061

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Character identification and floral organ transcriptome analysis on artificial allotetraploids of Gossypium hirsutum L.

CHEN Tian(), LI Yu-Ying, RONG Er-Hua, WU Yu-Xiang*()   

  1. College of Agronomy, Shanxi Agricultural University, Jinzhong 030801, Shanxi, China
  • Received:2023-03-22 Accepted:2023-06-29 Online:2024-02-12 Published:2023-07-26
  • Contact: *E-mail: yuxiangwu2009@hotmail.com
  • Supported by:
    Shanxi Province Basic Research Program (Free Exploration)(20210302124154)

Abstract:

The artificial allotetraploid of Gossypium herbaceun and G. raimondii was created in the laboratory to broaden the genetic background of cotton and provide novel materials for the germplasm innovation of cotton. In this study, fiber characters, physiological and biochemical comparison, SSR markers and floral transcriptomes analysis were conducted among three generations of the artificial allotetraploid and their parents, including G. hirsutum L. acc. TM-1. The results showed that the fiber color of artificial allotetraploid, light yellow, mid-parent of G. herbaceun and G. raimondii, and the fiber length was close to TM-1. The activities of SOD, POD, CAT, and MDA content in artificial allotetraploid plants were significantly higher than parents and TM-1, indicating that the stress resistance of artificial allotetraploid was enhanced after distant hybridization and chromosome doubling. 55 polymorphic loci were detected from 11 pairs of SSR primers, with 2-10 mutation loci per primer and an average of 5. PIC ranged from 0.498 to 0.892, with an average of 0.742. The results indicated that SSR markers could reflect rich genetic diversity information among the test materials. The complementary of parents and specific bands were amplified in S2, S3, and S4, simultaneously, indicating that chromosome segment recombination occurred in the artificial allotetraploid at the molecular level. There were 37, 19, and 20 bands of S2, S3, and S4 identical with TM-1 respectively, among which 17 bands were shared with TM-1 by all generations, indicating that the artificial allotetraploid had homology in genetic background with TM-1. The floral organ transcriptome analysis showed that there were 5653 differentially expressed genes (DEGs) between artificial allotetraploid and TM-1, in which 3062 were up-regulated and 2591 were down-regulated. GO functional analysis showed that DEGs had significant differences in photosynthesis, photosystem II, RNA directed DNA polymerase activity and other pathways. KEGG enrichment analysis showed that DEGs were more active in photosynthetic-antenna proteins, photosynthesis and isoflavone biosynthesis. The enrichment analysis of fertility related DEGs between artificial allotetraploids and TM-1 revealed that most of the DEGs of artificial allotetraploids in pollen development and recognition were down-regulated, which may be the key factor leading to low seed setting percentage of artificial allotetraploid. Three G-type lectin receptor serine/threonine protein kinases (Gh_D01G067500, Gh_D05G168100, Gh_A01G062500) were obtained from Nr annotation information by clustering. The results showed that the artificial allotetraploid performed advantage in fiber color, resistance to stress and photosynthesis, combining the excellent quality of its parents. It is expected to restore its fertility by crossbreeding with G. hirsutum, and to further cultivate a valuable novel material for production.

Key words: artificial allotetraploid, physiological and biochemical detection, SSR molecular marker, transcriptome sequencing, differentially expressed gene

Table 1

Basic information of research materials"

材料编号
Material ID
材料信息
Information
染色体组
Genome
分布
Distribution
种植年份
Year
P1 草棉 G. herbaceun A1 亚洲, 非洲 Asia, Africa 2022
P2 雷蒙德氏棉 G. raimondii D5 墨西哥 Mexico 2022
1 S2 A1D5 新合成 New 2020
2 S2 A1D5 新合成 New 2021
3 S2 A1D5 新合成 New 2021
4 S2 A1D5 新合成 New 2021
5 S3 A1D5 新合成 New 2021
6 S3 A1D5 新合成 New 2022
7 S4 A1D5 新合成 New 2022
TM-1 陆地棉 G. hirsutum (AD)1 墨西哥, 美国亚利桑那州 Mexico; Arizona, USA 2022

Fig. 1

Lines relationship of artificial allotetraploid"

Table 2

Sequence information of SSR primers"

引物编号
Primer number
正向引物序列
Forword sequence (5'-3')
反向引物序列
Reverse sequence (5'-3')
PCR产物
PCR products
退火温度
Annealing temperature (℃)
BNL4108 TCCACCATTCCCGTAAATGT TGGCCAAGTCATTAGGCTTT (GA)31 55
BNL4053 TGAAGGCTTTGAAGCAAACA AAGCAAGCACCAAGTTAGCC (CA)10 55
NAU2026 GAATCTCGAAAACCCCATCT ATTTGGAAGCGAAGTACCAG (CAG)4 57
NAU1355 ATCTGTTTACGCCACTCTCC CCAGCCTTTGACATTTTTCT (GA)21 57
NAU1169 GGGTAGTAGCTTTTATGATAGGG CCATTCCTTCCCCTAATTCT (TA)12 57
NAU1157 GAGTTTGGTTCTGGGTTGAG GATCCTTTTCATCTCCTCCA (AC)9 57
NAU1052 CGCAGATAAAGGATGGATTT AGAGCTGGAGGACATAACAAA (AGT)6 57
NAU1042 CATGCAAATCCATGCTAGAG GGTTTCTTTGGTGGTGAAAC (TCAGGC)4 57
NAU1164 CCAACGCTAATTCTACCTCCT GCGGGTAATTGTAGTACATGC (TTC)10 57
NBRI_gL015 GAGTTTGGCTCCGAGTTGAG GCGAGTGAACTCACCGATAA (GAA)18 53
NBRI_gM7 GTGATACCTGGAAAGATGTGA TCCTGATGCTGTTTTAGTCTT (GAAG)6 52

Fig. 2

Fiber morphology of G. herbaceum, G. raimondii, and artificial allotetraploid A: G. raimondii; B: G. herbaceum; C: artificial allotetraploid. Scale bar: 2 cm."

Fig. 3

Fiber morphology of artificial allotetraploid and G. hirsutum A: artificial allotetraploid; B: G. hirsutum. Scale bar: 2 cm."

Table 3

Physiological indexes among different generations"

材料
Material
SOD活性
SOD activity (U g-1)
POD活性
POD activity (U g-1)
CAT活性
CAT activity (U g-1)
MDA含量
MDA content (μmol g-1)
P1 152.30±10.23 bcC 3029.39±167.15 cC 55.13±4.04 cB 9.3895±0.55 cC
P2 138.78±10.99 cC 3341.44±135.99 cBC 76.17±5.52 bB 13.2766±1.08 bBC
S2 221.92±5.29 aA 4214.01±91.94 abA 121.43±4.42 aA 17.7334±0.66 aA
S3 204.66±7.98 aAB 4336.56±109.44 aA 111.78±5.95 aA 18.7116±0.69 aA
S4 215.67±9.59 aAB 4155.41±78.71 abA 115.04±7.20 aA 18.7235±1.21 aA
TM-1 176.49±11.28 bBC 3822.59±82.71 bAB 80.90±3.51 bB 15.7484±0.28 abAB

Table 4

SSR primers information"

引物
Primer number
多态位点数
Polymorphic loci
总位点数
Total loci
多态信息含量
Polymorphism information content
BNL4108 3 3 0.649
BNL4053 7 9 0.883
NAU2026 10 10 0.892
NAU1355 4 4 0.705
NAU1169 2 2 0.498
NAU1157 3 3 0.656
NAU1052 4 5 0.773
NAU1042 5 5 0.737
NAU1164 4 4 0.742
NBRI_GL015 10 10 0.892
NBRI_gM7 3 4 0.735
总计Total 55 59
平均Mean 5 5.36 0.742

Fig. 4

Part information of SSR primers A: BNL4108; B: NAU2026; C: NBRI_GL015; D: NBRI_gM7."

Table 5

Analysis of SSR primer polymorphisms for artificial allotetraploid and its parents"

引物
Primer name
S2 S3 S4
P1 P2 新增
New
缺失
Absent
P1 P2 新增
New
缺失
Absent
P1 P2 新增
New
缺失
Absent
BNL4108 1 1 1 0 1 1 0 0 1 1 0 0
BNL4053 3 1 3 0 2 1 2 1 3 1 0 0
NAU2026 2 2 6 0 0 2 0 2 0 2 0 2
NAU1355 1 1 1 1 1 0 1 2 1 0 1 2
NAU1169 0 0 1 0 0 0 1 1 0 0 1 1
NAU1157 1 2 0 0 1 1 0 1 1 1 0 1
NAU1052 1 0 3 0 1 0 1 0 1 0 1 0
NAU1042 1 0 3 1 1 0 0 1 1 0 0 1
NAU1164 1 1 1 0 1 0 0 2 1 0 1 2
NBRI_GL015 2 2 6 0 1 1 0 2 1 1 2 2
NBRI_gM7 0 0 3 0 0 0 2 0 0 0 2 0
总计Total 13 10 28 2 9 6 7 12 10 6 8 11
平均Mean 1.18 0.91 2.55 0.18 0.82 0.55 0.64 1.09 0.91 0.55 0.73 1

Fig. 5

Resources of SSR polymorphism for artificial allotetraploid A: the specific loci statistics of artificial allotetraploid and parents; B: the statistics of the same loci of artificial allotetraploid and G. hirsutum."

Fig. 6

Volcanic map of differentially expressed genes"

Fig. 7

GO enrichment histogram of differentially expressed genes"

Fig. 8

KEGG enrichment bubble diagram of differentially expressed genes"

Table 6

Functional classification of differentially expressed genes in CK vs CL"

功能分类
Functional
classification
代谢通路
Pathway
上调基因数量
No. of the up-regulated DEGs
下调基因数量
No. of the down-regulated DEGs
差异表达
基因数量
No. of DEGs
P-value
光合
Photosynthesis
光合作用-天线蛋白
Photosynthesis-antenna proteins (ko00196)
24 (100%) 0 24 1.89E-13
光合作用Photosynthesis (ko00195) 70 (93.33%) 5 75 8.46E-07
光合生物中的碳固定
Carbon fixation in photosynthetic organisms (ko00710)
25 (78.13%) 7 32 0.004183
活性物质
Active substances
氨基酸的生物合成
Biosynthesis of amino acids (ko01230)
57 (53.27%) 50 107 0.000507613
精氨酸生物合成
Arginine biosynthesis (ko00220)
8 (22.86%) 27 35 0.000555925
类黄酮生物合成
Flavonoid biosynthesis (ko00941)
22 (70.97%) 9 31 0.001276154
代谢
Metabolism
2-氧代羧酸代谢
2-Oxocarboxylic acid metabolism (ko01210)
18 (36.73%) 31 49 0.000106493
脂肪酸降解Fatty acid degradation (ko00071) 22 (68.75%) 10 32 0.000966282
α-亚麻酸代谢
Alpha-linolenic acid metabolism (ko00592)
19 (57.58%) 14 33 0.001755673
糖酵解/糖异生
Glycolysis/gluconeogenesis (ko00010)
42 (76.36%) 13 55 0.003952569
碳代谢Carbon metabolism (ko01200) 74 (72.55%) 28 102 0.004245667
乙醛酸和二羧酸的代谢
Glyoxylate and dicarboxylate metabolism (ko00630)
30 (76.92%) 9 39 0.010916224
淀粉和蔗糖代谢
Starch and sucrose metabolism (ko00500)
56 (62.92%) 33 89 0.025701083
膜运输
Membrane transport
ABC转运蛋白
ABC transporters (ko02010)
18 (52.94%) 16 34 0.020403101

Table 7

Functional classification of differentially expressed genes in CK vs CL"

基因ID
Gene ID
GO条目
GO term
Nr 注释
Nr annotation
FDR
Gh_A07G232100 花粉萌发
Pollen germination (GO:0009846)
含非特征性WD重复序列alr3466样蛋白
Uncharacterized WD repeat-containing protein alr3466-like
1.14E-11
Gh_A03G188700 花粉识别
Recognition of pollen (GO:0048544)
假设蛋白ES332_A03G193800v1
Hypothetical protein ES332_A03G193800v1
3.37E-06
Gh_D04G029900 花粉识别
Recognition of pollen (GO:0048544)
假设蛋白
Hypothetical protein ES332_D04G035100v1
1.28E-05
Gh_D12G209800 花粉萌发
Pollen germination (GO:0009846)
花粉管发育
Pollen tube growth (GO:0009860)
未表征蛋白 LOC105764824 亚型 X1
Uncharacterized protein LOC105764824 isoform X1
5.42E-05
Gh_A01G062500 花粉识别
Recognition of pollen (GO:0048544)
G型凝集素受体丝氨酸/苏氨酸蛋白激酶At2g19130
G-type lectin S-receptor-like serine/threonine-protein kinase At2g19130
0.000114428
Gh_D02G100100 花粉识别
Recognition of pollen (GO:0048544)
推定受体蛋白激酶ZmPK1
Putative receptor protein kinase ZmPK1
0.000126516
Gh_D01G067500 花粉识别
Recognition of pollen (GO:0048544)
假设蛋白E1A91_D01G078200v1
Hypothetical protein E1A91_D01G078200v1
0.000257193
Gh_D05G168100 花粉识别
Recognition of pollen (GO:0048544)
G型凝集素受体丝氨酸/苏氨酸蛋白激酶At4g27290
G-type lectin S-receptor-like serine/threonine-protein kinase At4g27290
0.000261106
Gh_D02G205900 花粉识别
Recognition of pollen (GO:0048544)
假设蛋白ES332_D02G232300v1
Hypothetical protein ES332_D02G232300v1
0.000614955
Gh_A01G217800 花的发育
Flower development (GO:0009908)
调节NPR5-样蛋白
Regulatory protein NPR5-like
0.001068761
Gh_D05G374100 花粉识别
Recognition of pollen (GO:0048544)
G型凝集素受体样丝氨酸/苏氨酸蛋白激酶B120
G-type lectin S-receptor-like serine/threonine-protein kinase B120
0.001490638
Gh_A07G211000 花粉发育
Pollen development (GO:0009555)
假设蛋白ES332_A07G220300v1
Hypothetical protein ES332_A07G220300v1
0.001735562
Gh_D11G192200 花粉发育
Pollen development (GO:0009555)
花的发育
Flower development (GO:0009908)
花药发育
Anther development (GO:0048653)
假设蛋白ES332_D11G205000v1
Hypothetical protein ES332_D11G205000v1
0.002122634
Gh_D12G026000 花粉管导向
Pollen tube guidance (GO:0010183)
CCG结合1样蛋白
CCG-binding protein 1-like
0.003353379
Gh_D05G207900 花粉识别
Recognition of pollen (GO:0048544)
假设蛋白B456_009G216000
Hypothetical protein B456_009G216000
0.005513164
Gh_D05G373900 花粉识别
Recognition of pollen (GO:0048544)
假设蛋白ES319_D05G403800v1
Hypothetical protein ES319_D05G403800v1
0.005618249
Gh_A09G137700 花的发育
Flower development (GO:0009908)
调节蛋白NPR5
Regulatory protein NPR5
0.005712565
Gh_D12G008900 花粉管发育
Pollen tube growth (GO:0009860)
BTB/POZ结构域At1g03010-样蛋白
BTB/POZ domain-containing protein At1g03010-like
0.005938747
Gh_A01G071700 花粉识别
Recognition of pollen (GO:0048544)
假设蛋白ES332_A01G085300v1
Hypothetical protein ES332_A01G085300v1
0.005966954
Gh_D04G207700 花粉发育
Pollen development (GO:0009555)
REF/SRPP蛋白At1g67360
REF/SRPP-like protein At1g67360
0.00620811
Gh_D02G075200 花粉识别
Recognition of pollen (GO:0048544)
G型凝集素受体丝氨酸/苏氨酸蛋白激酶At1g34300
G-type lectin S-receptor-like serine/threonine-protein kinase At1g34300
0.006487744
Gh_A05G248700 花粉识别
Recognition of pollen (GO:0048544)
推定受体蛋白激酶ZmPK1
Putative receptor protein kinase ZmPK1
0.007975671
Gh_D05G374300 花粉识别
Recognition of pollen (GO:0048544)
受体样丝氨酸/苏氨酸蛋白激酶 SD1-7
Receptor-like serine/threonine-protein kinase SD1-7
0.009414103

Table 8

Candidate gene information"

基因ID
Gene ID
信号肽可能性
Signal peptide (%)
信号肽类型
Signal types
信号肽剪切位点
Signal peptide
cleavage site
跨膜结构域(个)
Transmembrane
domain
log2 FC
Gh_D04G029900 95.138 SP(Sec/SPI) 26-27 1 3.708031256
Gh_A01G062500 88.246 SP(Sec/SPI) 23-24 1 -1.860502323
Gh_D02G100100 99.610 SP(Sec/SPI) 21-22 1 -1.320955124
Gh_D01G067500 93.878 SP(Sec/SPI) 23-24 1 -1.632675947
Gh_D05G168100 99.738 SP(Sec/SPI) 24-25 1 -1.807060832
Gh_D02G075200 87.263 SP(Sec/SPI) 20-21 1 -1.235634943
Gh_A05G248700 86.314 SP(Sec/SPI) 32-33 3 1.473059744

Fig. 9

Functional domain of candidate genes"

Fig. 10

Cluster analysis of candidate genes"

[1] 杨学勇, 苏汉东, 张梦卓, 祝光涛, 程时锋, 韩方普, 黄三文. 多倍化和驯化研究进展与展望. 中国科学: 生命科学, 2021, 51: 1457-1466.
Yang X Y, Su H D, Zhang M Z, Zhu G T, Cheng S F, Han F P, Huang S W. Polyploidization and domestication. Sci Sin (Vitae), 2021, 51: 1457-1466 (in Chinese with English abstract).
[2] 杨南山, 王金朋, 王希胤. 棉花基因组结构进化研究进展. 基因组学与应用生物学, 2017, 36: 1090-1095.
Yang N S, Wang J P, Wang X Y. Research progress on evolution of cotton genome structure. Genomics Appl Biol, 2017, 36: 1090-1095 (in Chinese with English abstract).
[3] 董建科, 涂卫, 王海波, 应静文, 杜鹃, 赵喜娟, 赵庆浩, 黄维, 蔡兴奎, 宋波涛. 马铃薯高效染色体加倍方法建立与抗寒资源创制. 作物学报, 2020, 46: 1659-1666.
doi: 10.3724/SP.J.1006.2020.04073
Dong J K, Tu W, Wang H B, Ying J W, Du J, Zhao X J, Zhao Q H, Huang W, Cai X K, Song B T. Establishment of a high efficient method for chromosome doubling and exploration of cold-resistant resources in potato. Acta Agron Sin, 2020, 46: 1659-1666 (in Chinese with English abstract).
[4] 申状状, 李昱樱, 荣二花, 吴玉香. 陆地棉和野生斯特提棉种间异源六倍体的合成与性状鉴定. 作物学报, 2019, 45: 628-634.
doi: 10.3724/SP.J.1006.2019.84086
Shen Z Z, Li Y Y, Rong E H, Wu Y X. Allohexaploid synthesis and its characteristic identification between cotton species Gossypium hirsutum and G. sturtianum. Acta Agron Sin, 2019, 45: 628-634 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2019.84086
[5] 吴谡琦, 张进兴, 洪旭光, 孙修勤. 分子标记技术的进展及其应用. 高技术通讯, 2001, 11(4): 99-103.
Wu S Q, Zhang J X, Hong X G, Sun X Q. Progress and application of molecular marker technology. Chin High Technol Lett, 2001, 11(4): 99-103 (in Chinese with English abstract).
[6] 陈静, 胡晓辉, 石运庆, 苗华荣, 禹山林. 花生品种间杂种F1代的SSR标记分析. 核农学报, 2009, 23: 617-620.
doi: 10.11869/hnxb.2009.04.0617
Chen J, Hu X H, Shi Y Q, Miao H R, Yu S L. Identification of peanut hybrids (Arachis hypogaea L.) using SSR markers. J Nucl Agric Sci, 2009, 23: 617-620 (in Chinese with English abstract).
[7] 李超汉, 刘莉, 刘翔, 朱丽华, 宋荣浩, 杨红娟, 顾卫红. 基于SSR标记的5个西瓜新品种纯度鉴定及特异性分析的研究. 中国农学通报, 2015, 31(33): 177-185.
doi: 10.11924/j.issn.1000-6850.casb15060107
Li C H, Liu L, Liu X, Zhu L H, Song R H, Yang H J, Gu W H. Seed purity detection and distinctiveness analysis of 5 new watermelon hybrid varieties on SSR markers. Chin Agric Sci Bull, 2015, 31(33): 177-185 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb15060107
[8] 徐濉喜, 王旭文, 田琴, 孔宪辉, 刘丽, 司爱君, 王娟, 余渝. 新疆早熟陆地棉种质资源遗传多样性及纤维品质性状SSR关联分析. 棉花学报, 2020, 32: 233-246.
Xu S X, Wang X W, Tian Q, Kong X H, Liu L, Si A J, Wang J, Yu Y. Genetic diversity and association analysis of fiber quality traits with SSR markers in germplasm resources of early maturity upland cotton in Xinjiang. Cotton Sci, 2020, 32: 233-246 (in Chinese with English abstract).
[9] 聂新辉, 尤春源, 李晓方, 秦江鸿, 黄聪, 郭欢乐, 王夏青, 赵文霞, 林忠旭. 新陆早棉花品种DNA指纹图谱的构建及遗传多样性分析. 作物学报, 2014, 40: 2104-2117.
doi: 10.3724/SP.J.1006.2014.02104
Nie X H, You C Y, Li X F, Qin J H, Huang C, Guo H L, Wang X Q, Zhao W X, Lin Z X. Construction of DNA fingerprinting and analysis of genetic diversity for Xinluzao cotton varieties. Acta Agron Sin, 2014, 40: 2104-2117 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.02104
[10] 艾先涛, 梁亚军, 沙红, 王俊铎, 郑巨云, 吐尔逊江, 多力坤, 李雪源, 华金平. 新疆自育陆地棉品种SSR遗传多样性分析. 作物学报, 2014, 40: 369-379.
doi: 10.3724/SP.J.1006.2014.00369
Ai X T, Liang Y J, Sha H, Wang J D, Zheng J Y, Tu’exunjiang, Duo L K, Li X Y, Hua J P. Genetic diversity analysis on local upland cotton cultivars in Xinjiang based on SSR markers. Acta Agron Sin, 2014, 40: 369-379 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.00369
[11] 姚娜, 刘秀明, 董园园, 王南, 孟璐璐, 李海燕. 转录组的测序方法及应用研究概述. 北方园艺, 2017, (12): 192-198.
Yao N, Liu X M, Dong Y Y, Wang N, Meng L L, Li H Y. Advances in application and seguencing methods of transcriptome. North Hortic, 2017, (12): 192-198 (in Chinese with English abstract).
[12] 申状状. 棉属远缘杂种的合成及性状鉴定与转录组分析. 山西农业大学硕士学位论文, 山西晋中, 2018.
Shen Z Z. Synthesis, Identification and Transcriptome Analysis of Distant Hybrids in Gossypium. MS Thesis of Shanxi Agricultural University, Jinzhong, Shanxi, China, 2018 (in Chinese with English abstract).
[13] 杨亚杰, 李昱樱, 申状状, 陈天, 荣二花, 吴玉香. 草棉不同倍性材料叶片转录组差异表达分析. 作物学报, 2022, 48: 2733-2748.
doi: 10.3724/SP.J.1006.2022.14168
Yang Y J, Li Y Y, Shen Z Z, Chen T, Rong E H, Wu Y X. Differential expressed analysis by transcriptome sequencing in leaves of different ploidy Gossypium herbaceum. Acta Agron Sin, 2022, 48: 2733-2748 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.14168
[14] Wu Y X, Chen D, Zhu S J, Zhang L F, Li L J. A new synthetic hybrid (A1D5) between Gossypium herbaceum and G. raimondii and its morphological, cytogenetic, molecular characterization. PLoS One, 2017, 12: e0169833.
doi: 10.1371/journal.pone.0169833
[15] 陈天, 李昱樱, 杨亚杰, 侯林慧, 常永春, 荣二花, 吴玉香. 棉属AADD异源四倍体后代筛选及性状鉴定. 山西农业大学学报(自然科学版), 2022, 42(6): 72-80.
Chen T, Li Y Y, Yang Y J, Hou L H, Chang Y C, Rong E H, Wu Y X. Screening and characterization of AADD allotetraploid in genus Gossypium. J Shanxi Agric Univ (Nat Sci Edn), 2022, 42(6): 72-80 (in Chinese with English abstract).
[16] Botstein D, White R L, Skolnick M, Davis R W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 1980, 32: 314-331.
pmid: 6247908
[17] 聂以春, 刘金兰, 张献龙. 新合成的棉花遗传资源: 异源四倍体(亚洲棉×司笃克氏棉)初报. 中国种业, 1999, (3): 24.
Nie Y C, Liu J L, Zhang X L. A preliminary report on the newly synthesized genetic resource of cotton: allotetraploid (Asian cotton × Stuck cotton). Chin Seed Indus, 1999, (3): 24 (in Chinese with English abstract).
[18] Jiang C, Wright R J, El-Zik K M, Paterson A H. Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci USA, 1998, 95: 4419-4424.
doi: 10.1073/pnas.95.8.4419 pmid: 9539752
[19] Wendel J F, Cronn R C. Polyploidy and the evolutionary history of cotton. In: Sparks D L, eds. Advances in Agronomy. Amsterdam: Elsevier, 2003. pp 139-186.
[20] Huang G, Wu Z G, Percy R G, Bai M Z, Li Y, Frelichowski J E, Hu J, Wang K, Yu J Z, Zhu Y X. Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution. Nat Genet, 2020, 52: 516-524.
doi: 10.1038/s41588-020-0607-4 pmid: 32284579
[21] 盖树鹏. 玉米品种纯度SSR鉴定与田间鉴定的相关性. 华北农学报, 2010, 25(增刊1): 28-31.
Gai S P. The relativity between SSR method and field test in the hybrids purity identification of maize. Acta Agric Boreali-Sin, 2010, 25(S1): 28-31 (in Chinese with English abstract).
[22] 陈全家. 棉纤维发育相关基因转录组学、表达谱分析研究. 中国农业大学博士学位论文, 北京, 2014.
Chen Q J. Analysis of Expression Profiling and Transcriptome during Cotton Fiber Development. PhD Dissertation of China Agricultural University, Beijing, China, 2014 (in Chinese with English abstract).
[23] 邵冰欣. 基于转录组测序筛选及克隆棉花抗黄萎病相关基因. 中国农业科学院硕士学位论文, 北京, 2015.
Shao B X. Screening and Cloning Resistance Genes to Cotton Verticillium Wilt Based on the Transcriptome Sequencing. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2015 (in Chinese with English abstract).
[24] 包秋娟. 干旱胁迫下棉花转录组分析. 新疆大学硕士学位论文, 新疆乌鲁木齐, 2018.
Bao Q J. The Transcriptome Analysis of Cotton under Drought Stress. MS Thesis of Xinjiang University, Urumqi, Xinjiang, China, 2018 (in Chinese with English abstract).
[25] 王梦龙, 彭小群, 陈竹锋, 唐晓艳. 植物凝集素类受体蛋白激酶研究进展. 植物学报, 2020, 55: 96-105.
doi: 10.11983/CBB19130
Wang M L, Peng X Q, Chen Z F, Tang X Y. Research advances on lectin receptor-like kinases in plants. Chin Bull Bot, 2020, 55: 96-105 (in Chinese with English abstract).
[26] Walker J C, Zhang R. Relationship of a putative receptor protein kinase from maize to the S-locus glycoproteins of Brassica. Nature, 1990, 345: 743-746.
doi: 10.1038/345743a0
[27] Zuo K J, Zhao J Y, Wang J, Sun X F, Tang K X. Molecular cloning and characterization of GhlecRK, a novel kinase gene with lectin-like domain from Gossypium hirsutum. DNA Seq, 2004, 15: 58-65.
[28] Zhao H, Zhang Y, Zhang H, Song Y Z, Zhao F, Zhang Y E, Zhu S H, Zhang H K, Zhou Z D, Guo H, Li M M, Li J H, Gao Q, Han Q Q, Huang H Q, Copsey L, Li Q, Chen H, Coen E, Zhang Y J, Xue Y B. Origin, loss, and regain of self-incompatibility in angiosperms. Plant Cell, 2022, 34: 579-596.
doi: 10.1093/plcell/koab266
[29] Wan J R, Patel A, Mathieu M, Kim S Y, Xu D, Stacey G. A lectin receptor-like kinase is required for pollen development in Arabidopsis. Plant Mol Biol, 2008, 67: 469-482.
doi: 10.1007/s11103-008-9332-6
[30] 毕真真. 水稻OsL-LecRK7基因的功能研究. 河南师范大学硕士学位论文, 河南新乡, 2013.
Bi Z Z. Functional Analysis of OsL-LecRK7 in Rice. MS Thesis of Henan Normal University, Xinxiang, Henan, China, 2013 (in Chinese with English abstract).
[1] WANG Rui, ZHANG Fu-Yao, ZHAN Peng-Jie, CHU Jian-Qiang, JIN Min-Shan, ZHAO Wei-Jun, CHENG Qing-Jun. Identification of candidate genes implicated in low-nitrogen-stress tolerance based on RNA-Seq in sorghum [J]. Acta Agronomica Sinica, 2024, 50(3): 669-685.
[2] LI Yan, FANG Yu-Hui, WANG Yong-Xia, PENG Chao-Jun, HUA Xia, QI Xue-Li, HU Lin, XU Wei-Gang. Transcriptomics profile of transgenic OsPHR2 wheat under different phosphorus stress [J]. Acta Agronomica Sinica, 2024, 50(2): 340-353.
[3] WANG Zhen, ZHANG Xiao-Li, LIU Miao, YAO Meng-Nan, MENG Xiao-Jing, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Transcriptional differential expression analysis between BnMAPK1-overexpression and Zhongyou 821 rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 856-868.
[4] ZHAO Dong-Lan, ZHAO Ling-Xiao, LIU Yang, ZHANG An, DAI Xi-Bin, ZHOU Zhi-Lin, CAO Qing-He. Relative expression profile of the related genes with carotenoids metabolism in sweetpotato (Ipomoea batatas) based on RNA-seq data [J]. Acta Agronomica Sinica, 2023, 49(12): 3239-3249.
[5] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[6] YANG Ya-Jie, LI Yu-Ying, SHEN Zhuang-Zhuang, CHEN Tian, RONG Er-Hua, WU Yu-Xiang. Differential expressed analysis by transcriptome sequencing in leaves of different ploidy Gossypium herbaceum [J]. Acta Agronomica Sinica, 2022, 48(11): 2733-2748.
[7] HUANG Wen-Gong, JIANG Wei-Dong, YAO Yu-Bo, SONG Xi-Xia, LIU Yan, CHEN Si, ZHAO Dong-Sheng, WU Guang-Wen, YUAN Hong-Mei, REN Chuan-Ying, SUN Zhong-Yi, WU Jian-Zhong, KANG Qing-Hua. Transcriptome profiling of flax (Linum usttatissimum L.) response to low potassium stress [J]. Acta Agronomica Sinica, 2021, 47(6): 1070-1081.
[8] XU Jing, PAN Li-Juan, LI Hao-Yuan, WANG Tong, CHEN Na, CHEN Ming-Na, WANG Mian, YU Shan-Lin, HOU Yan-Hua, CHI Xiao-Yuan. Expression pattern analysis of genes related to lipid synthesis in peanut [J]. Acta Agronomica Sinica, 2021, 47(6): 1124-1137.
[9] WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422.
[10] REN Meng-Meng, ZHANG Hong-Wei, WANG Jian-Hua, WANG Guo-Ying, ZHENG Jun. Fine mapping of a major QTL qMES20-10 associated with deep-seeding tolerance in maize and analysis of differentially expressed genes [J]. Acta Agronomica Sinica, 2020, 46(7): 1016-1024.
[11] Xiao-Yang WANG,Li-Yuan WANG,Zhao-E PAN,Shou-Pu HE,Xiao WANG,Wen-Fang GONG,Xiong-Ming DU. Analysis of differentially expressed genes and fiber development in Gossypium arboreum fuzzless mutant [J]. Acta Agronomica Sinica, 2020, 46(5): 645-660.
[12] JIA Xiao-Xia,QI En-Fang,LIU Shi,WEN Guo-Hong,MA Sheng,LI Jian-Wu,HUANG Wei. Effects of over-expression of AtDREB1A gene on potato growth and abiotic stress resistance gene expression [J]. Acta Agronomica Sinica, 2019, 45(8): 1166-1175.
[13] YANG Hui-Ju,GUO Hua-Chun*. Digital Gene Expression Profiling Analysis of Potato Under Low Temperature Stress [J]. Acta Agron Sin, 2017, 43(03): 454-463.
[14] CHEN Lin-Bo,XIA Li-Fei,TIAN Yi-Ping,LI Mei,SONG Wei-Xi,LIANG Ming-Zhi,JIANG Chang-Jun. Exploring Sterility Gene from Tea Plant Flower Based on Digital Gene Expression Profiling [J]. Acta Agron Sin, 2017, 43(02): 210-217.
[15] GE Shu-Juan,SUN Ai-Qing,LIU Peng,ZHANG Jie-Dao,DONG Shu-Ting. In silico Expression Profile of Maize Genes in Response to Osmotic Stress [J]. Acta Agron Sin, 2014, 40(07): 1164-1173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .