Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (2): 340-353.doi: 10.3724/SP.J.1006.2024.31020

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Transcriptomics profile of transgenic OsPHR2 wheat under different phosphorus stress

LI Yan(), FANG Yu-Hui, WANG Yong-Xia, PENG Chao-Jun, HUA Xia, QI Xue-Li, HU Lin, XU Wei-Gang*()   

  1. Henan Academy of Crops Molecular Breeding / Key Laboratory for Innovation and Improvement of Triticeae Germplasm Resources of Henan Province / Shennong Laboratory, Zhengzhou 450002, Henan, China
  • Received:2023-03-20 Accepted:2023-06-29 Online:2024-02-12 Published:2023-07-17
  • Contact: *E-mail: xuwg1958@163.com
  • Supported by:
    National Natural Science Foundation of China(31701510);‘First-class Project’ of Shennong Laboratory(SN01-2022-01)

Abstract:

The PHR gene is the core transcription factor in the phosphorus signaling regulatory system, responsible for initiating the adaptive response of downstream parts to phosphorus starvation. At the early stage, the transgenic OsPHR2 wheat pure lines with high phosphorus efficiency were obtained, but the molecular mechanism of OsPHR2 improving the phosphorus absorption and utilization efficiency of wheat is still unclear. In order to reveal the molecular mechanism of OsPHR2 improving the phosphorus uptake and utilization efficiency in wheat, transgenic OsPHR2 wheat pure line with high phosphorus efficiency earlier as the experimental material in this study. Transgenic OsPHR2 wheat and the control were treated with low phosphorus stress when they grew to 4 leaves and 1 heart in hydroponics experiment. Transgenic OsPHR2 wheat and control under low phosphorus stress for 0, 6, 24, and 72 h were used for transcriptomes analysis by RNA-seq. The differentially expression genes (DEGs) in roots and leaves of transgenic wheat and control were analyzed. There were 22 common DEGs in the roots of transgenic wheat and control under low phosphorus stress for 0, 6, 24, and 72 h, and there were nine common DEGs in the leaves under four treatments. The functional and pathway enrichments of differentially expressed genes in roots and leaves were also performed by GO and KEGG analysis. The result showed that the number of DEGs in the root of transgenic wheat and control was the highest under low phosphorus stress for 0 h, followed by 6 h. GO and KEGG enrichment analysis suggested that DEGs were mainly clustered into biological processes such as glucose metabolism, phenylpropanoid biosynthesis, and molecular functions such as nutrient storage activity, ATPase activity, etc. The number of DEGs in the leaves of transgenic wheat and the control was the highest under low phosphorus stress for 72 h. DEGs were mainly clustered into biological processes such as glucose metabolism, organic acid biosynthesis, as well as molecular functions related to glycosyltransferase activity and cellulose synthase activity. Compared with the control, the key enzyme genes of the defense system such as heme peroxidase and glutathione S-transferase in the root of the transgenic line OsT5-28, as well as the trisphosphate transporter family genes in the leaf were up-regulated before and after low phosphorus stresses. The response of transgenic OsPHR2 wheat to low phosphorus stress was different from that of the control. Transgenic wheat had stronger phosphorus absorption and utilization ability than the control under low phosphorus stress, mainly because OsPHR2 regulated the relative expression level of related genes in wheat.

Key words: low phosphorus stress, transgenic wheat, transcriptomics, phosphorus absorption and utilization efficiency, differentially expressed genes

Fig. 1

Principal component analysis of RNA-Seq data from wheat under different phosphorus treatments"

Table 1

Information of qRT-PCR primers"

基因名称
Gene ID
上游引物序列
Forward sequence (5′-3′)
下游引物序列
Reverse sequence (5′-3′)
TraesCS7A02G173000 (叶Leaf) CAACAAGTTCTTGCCGACCA CTATCCCTTGCATGCACGTC
TraesCS6A02G058200 (叶Leaf) TGTTTCTCTGTCAGGGCCAA TTGTTTCTTGCTCGTCGGTG
TraesCS6A02G059600 (叶Leaf) GGAGTACCCCAACCTGTTCA CCTTTCTCTGTCATGTGGCG
TraesCS6A02G052400 (叶Leaf) GTCCGGTTTAGTTGGGGAGA TTCACCACCATGTACTCCCC
TraesCS6B02G465800 (叶Leaf) CACGGTGCCTAGAGTTGTTG TTCAACGTTTCCAGTGCCTG
TraesCS6A02G059000 (根Root) GACAACATCCAGGGCATCAC GGATGACGTTCTCCAGGAAG
TraesCS6A02G055200 (根Root) CAACATCCAGGGCATCAC GGATGACGTTCTCCAGGAAG
TraesCS6A02G035000 (根Root) AGAAGGGCGTGGAGACCTAC GTGATGGTGGGCTTCTTGTT
novel.11254 (根Root) CAGCAGTTCAAGATCCACGA CCAATCCAATACCTCCCTGA
TraesCS6A02G035200 (根Root) TGCCAAGGACAACAAGAAGA GGAGTTGATGTTGGGGATCA
Actin ATGTTGTTCTCAGTGGAGGTTC CTGTATTTCCTTTCAGGTGGTGC

Fig. 2

DEGs in roots between transgenic wheat and control in different comparative combinations A: The numbers of DEGs between transgenic wheat and control; B: Venn diagram of DEGs between transgenic wheat and control."

Fig. 3

DEGs in roots between 6 hours and 0 hour under low phosphorus in control"

Fig. 4

DEGs in leaves between transgenic wheat and control in different comparative combinations A: The numbers of DEGs between transgenic wheat and control; B: Venn diagram of DEGs between transgenic wheat and control."

Fig. 5

DEGs in leaves between 72 hours and 0 hour under low phosphorus in control"

Fig. 6

qRT-PCR verification of selected DEGs in root and leaf under different phosphorus treatments 1: TraesCS7A02G173000 (Leaf); 2: TraesCS6A02G058200 (Leaf); 3: TraesCS6A02G059600 (Leaf); 4: TraesCS6A02G052400 (Leaf); 5: TraesCS6B02G465800 (Leaf); 6: TraesCS6A02G059000 (Root); 7: TraesCS6A02G055200 (Root); 8: TraesCS6A02G035000 (Root); 9: novel.11254 (Root); 10: TraesCS6A02G035200 (Root)."

Fig. 7

GO enrichment of root DEGs between transgenic wheat and control in different comparative combinations"

Fig. 8

GO enrichment of root DEGs between 6 hours and 0 hour under low phosphorus in control"

Table 2

KEGG enrichment of root DEGs in different comparative combinations"

基因ID
Gene
名称
Description
R_0h_T vs
R_0h_C up
R_0h_T vs
R_0h_C Down
R_6h_T vs R_6h_C up R_6h_T vs
R_6h_C Down
dosa00592 α-亚麻酸代谢Alpha-Linolenic acid metabolism 1 6 0 0
dosa00480 谷胱甘肽代谢Glutathione metabolism 0 0 8 2
dosa00564 甘油磷脂代谢Glycerophospholipid metabolism 2 11 0 0
dosa00940 苯丙类生物合成Phenylpropanoid biosynthesis 12 22 9 1
dosa04075 植物激素信号转导Plant hormone signal transduction 3 21 0 0

Fig. 9

KEGG enrichment of root DEGs between 6 hours and 0 hour under low phosphorus in control"

Fig. 10

GO enrichment of leaf DEGs between transgenic wheat and control in different comparative combinations"

Fig. 11

GO enrichment of leaf DEGs between 72 hours and 0 hour under low phosphorus in control"

Table 3

KEGG enrichment of leaf DEGs in different comparative combinations"

基因ID
Gene ID
名称
Description
L_0 h_T vs
L_0 h_C up
L_0 h_T vs
L_0 h_C Down
L_72 h_T vs L_72 h_C up L_72 h_T vs
L_72 h_C Down
dosa00062 脂肪酸伸长率Fatty acid elongation 0 0 5 0
dosa00941 类黄酮生物合成Flavonoid biosynthesis 0 0 5 0
dosa00360 苯丙氨酸代谢Phenylalanine metabolism 0 0 5 0
dosa00940 苯丙类生物合成Phenylpropanoid biosynthesis 0 0 11 0
dosa00196 光合作用-天线蛋白Photosynthesis-antenna proteins 0 2 0 0

Fig. 12

KEGG enrichment of leaf DEGs between 72 hours and 0 hour under low phosphorus in control"

[1] Bieleski R L, Ferguson J B. Physiology and metabolism of phosphate and its compounds. In: Lauchli A, Bieleski R L, eds. Inorganic Plant Nutrition. Berlin: Springer, 1983. pp 422-449.
[2] Theodorou M E, Plaxton W C. Metabolic adaptations of plant respiration to nutritional phosphate deprivation. Plant Physiol, 1993, 101: 339-344.
pmid: 12231689
[3] Hawkeford M, Horst W, Kichey T, Lambers H, Schjoerring J, Moller I S, White P. Functions of macronutrients. In: Marschner P, ed. Marschner’s Mineral Nutrition of Higher plants. London, England: Academic Press, 2012. pp 135-189.
[4] Niu Y F, Chai R S, Jin G L, Wang H, Tang C X, Zhang Y S. Responses of root architecture development to low phosphorus availability: a review. Ann Bot, 2013, 112: 391-408.
doi: 10.1093/aob/mcs285
[5] Li P, Weng J, Zhang Q, Yu L, Yao Q, Chang L, Niu Q. Physiological and biochemical responses of Cucumis melo L. chloroplasts to low phosphate stress. Front Plant Sci, 2018, 9: 1525.
doi: 10.3389/fpls.2018.01525
[6] Su J Y, Zheng Q, Li H W, Li B, Jing R L, Tong Y P, Li Z S. Detection of QTLs for phosphorus use efficiency in relation to agronomic performance of wheat grown under phosphorus sufficient and limited conditions. Plant Sci, 2009, 176: 824-836.
doi: 10.1016/j.plantsci.2009.03.006
[7] Goldstein A H. Phosphate Starvation Inducible Enzymes and Proteins in Higher Plants. Society for Experimental Biology Seminar Series 49: Inducible Plant Proteins, Cambridge: Cambridge University Press, 1992. pp 25-44.
[8] Withers P J A, Sylvester-Bradley R, Jones D L, Healey J R, Talboys P J. Feed the crop not the soil: rethinking phosphorus management in the food chain. Environment Sci Technol, 2014, 48: 6523-6530.
doi: 10.1021/es501670j
[9] Yuan Z W, Jiang S Y, Sheng H, Liu X, Hua H, Liu X W, Zhang Y. Human perturbation of the global phosphorus cycle: changes and consequences. Environ Sci Technol, 2018, 52: 2438-2450.
doi: 10.1021/acs.est.7b03910
[10] Hou X L, Wu P, Jiao F C, Jia Q J, Chen H M, Yu J, Song X W, Yi K K. Regulation of the expression of OsIPSl and OsIPS2 in rice via systemic and local Pi signaling and hormones. Plant Cell Environ, 2005, 28: 353-364.
doi: 10.1111/pce.2005.28.issue-3
[11] Abel S, Nurnberger T, Ahnert V, Krauss G J, Glund K. Induction of an extracellular cyclic nucleotide phosphodiesterase as an accessory ribonucleolytic activity during phosphate starvation of cultured tomato cells. Plant Physiol, 2000, 122: 543-552.
doi: 10.1104/pp.122.2.543 pmid: 10677447
[12] Vance C P, Uhde-Stone C, Allan D L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol, 2003, 157: 427-447.
[13] Rausch C, Bucher M. Molecular mechanisms of phosphate transport in plants. Planta, 2002, 216: 23-37.
doi: 10.1007/s00425-002-0921-3 pmid: 12430011
[14] Lynch J P, Brown K M. Topsoil forging-an architectural adaption of plants to low phosphorus availability. Plant Soil, 2001, 237: 225-237.
doi: 10.1023/A:1013324727040
[15] Lynch J P. Root phones for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol, 2011, 156: 1041-1049.
doi: 10.1104/pp.111.175414
[16] 韩胜芳, 邓若磊, 徐海荣, 曹云飞, 肖凯. 缺磷条件下不同水稻品种磷素吸收特性的研究. 植物遗传资源学报, 2007, 8: 223-227.
Han S F, Deng R L, Xu H R, Cao Y F, Xiao K. Characteristics of phosphorus uptake in different rice (Oryza sativa) cultivars under phosphorus stress condition. J Plant Genet Resour, 2007, 8: 223-227 (in Chinese with English abstract).
[17] 袁硕, 彭正萍, 沙晓晴, 王艳群. 玉米杂交种对缺磷反应的生理机制及基因型差异. 中国农业科学, 2010, 43: 51-58.
Yuan S, Peng Z P, Sha X Q, Wang Y Q. Physiological mechanism of maize hybrids in response to P deficiency and differences among cultivars. Sci Agric Sin, 2010, 43: 51-58 (in Chinese with English abstract).
[18] 阳显斌, 张锡洲, 李廷轩, 宋潇, 胡宏松. 磷素子粒生产效率不同的小麦品种磷素吸收利用差异. 植物营养与肥料学报, 2011, 17: 525-531.
Yang X B, Zhang X Z, Li T X, Song X, Hu H S. Differences of phosphorus uptake and utilization in wheat cultivars with different phosphorus use efficiency for grain yield. Plant Nutr Fert Sci, 2011, 17: 525-531 (in Chinese with English abstract).
[19] Schachtman D P and Shin R. Nutrient sensing and signaling: NPKS. Annu Rev Plant Biol, 2007, 58: 47-69.
pmid: 17067284
[20] Misson J, Raghothama K G, Jain A, Jouhet J, Block M A, Bligny R, Ortet P, Creff A, Somerville S, Rolland N, Doumas P, Nacry P, Herrerra-Estrella L, Nussaume L, Thibaud M C. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA, 2005, 102: 11934-11939.
doi: 10.1073/pnas.0505266102 pmid: 16085708
[21] Staudinger C, Dissanayake B M, Duncan O, Millar A H. The wheat secreted root proteome: implications for phosphorus mobilization and biotic interactions. J Proteom, 2022, 252: 104450.
doi: 10.1016/j.jprot.2021.104450
[22] 舒雨. 低磷对小麦叶片生长和光合作用的影响及机理研究. 华中农业大学硕士学位论文, 湖北武汉, 2021.
Shu Y. Studies on the Mechanism of the Effects of Low Phosphorus on Leaf Growth and Photosynthesis in Wheat. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2021 (in Chinese with English abstract).
[23] Bustos R, Castrillo G, Linhares F, Puga M I, Rubio V, Pérez-Pérez J, Solano R, Leyva A, Paz-Ares J. A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genet, 2010, 6: e1001102.
doi: 10.1371/journal.pgen.1001102
[24] Zhou J, Jiao F C, Wu Z C, Li Y Y, Wang X M, He X W, Zhong W Q, Wu P. OsPHR2 Is Involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol, 2008, 146: 1673-1686.
doi: 10.1104/pp.107.111443 pmid: 18263782
[25] Li Y, Fang Y H, Peng C J, Hua X, Zhang Y, Qi X L, Li Z L, Wang Y M, Hu L, Xu W G. Transgenic expression of rice OsPHR2 increases phosphorus uptake and yield in wheat. Protoplasma, 2022, 259: 1271.
doi: 10.1007/s00709-021-01702-5
[26] 于倩倩. 拟南芥核苷三磷酸水解酶APP1通过影响ROS的稳态参与根尖干细胞微环境的维持. 山东大学博士学位论文, 山东济南, 2016.
Yu Q Q. A P-loop NTPase APP1 Maintains Root Stem Cell Niche Identity through the Regulation of ROS Homeostasis in Arabidopsis. PhD Dissertation of Shandong University, Jinan, Shandong, China, 2016 (in Chinese with English abstract).
[27] 尚文静, 贾利华, 史磊, 林德立, 刘娜, 郑文明. 小麦低磷响应基因的筛选与表达分析. 中国农业大学学报, 2016, 21(10): 1-10.
Shang W J, Jia L H, Shi L, Lin D L, Liu N, Zheng W M. Screening and expression analysis of genes responded to low phosphate in wheat root. J China Agric Univ, 2016, 21(10): 1-10 (in Chinese with English abstract).
[28] Shin R, Berg R H, Schachtman D P. Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol, 2005, 46: 1350-1357.
doi: 10.1093/pcp/pci145
[29] 徐艳花. 低氮和正常供氮条件下调控小麦苗期种子根长QTL定位和蛋白质组学分析. 河南农业大学博士学位论文, 河南郑州, 2019.
Xu Y H. QTL mapping and Proteomics Analysis for Seminal Root Length of Wheat Seedling under Control and Low Nitrogen Conditions. PhD Dissertation of Henan Agricultural University, Zhengzhou, Henan, China, 2019 (in Chinese with English abstract).
[30] 王庆梅, 杨树德, 陈珈. 叶绿体内被膜上的磷酸丙糖转运器. 植物学通报, 2001, 18(1): 11-15.
Wang Q M, Yang S D, Chen J. Triose phosphate translocator in the inner membrane of chloroplast. Chin Bull Bot, 2001, 18(1): 11-15 (in Chinese with English abstract).
[31] Heldt H W, Flügge U I. Metabolite transport in plant cells. In: Tobin A K, ed. Plant Organelles: Compartmentation of Metabolism in Photosynthetic Tissue. Cambridge: Cambridge University Press, 1992. pp 21-47.
[32] 周洁. 水稻低磷胁迫相关转录因子OsPHR1OsPHR2的功能研究. 浙江大学博士学位论文, 浙江杭州, 2007.
Zhou J. Function Analysis of Rice Transcription Factors OsPHR1 and OsPHR2 Involved in Signaling of Phosphorus Starvation. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2007 (in Chinese with English abstract).
[33] Bari R, Datt Pant B, Stitt M, Scheible W R. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol, 2006, 141: 988-999.
doi: 10.1104/pp.106.079707 pmid: 16679424
[34] Ritter M K, Padilla C M, Schmidt R J. The maize mutant barren stalk 1 is defective in axillary meristem development. Am J Bot, 2002, 89: 203-210.
doi: 10.3732/ajb.89.2.203
[35] Dai Y, Wang H, Li B, Huang J, Liu X, Zhou Y, Mou Z, Li J. Increased expression of MAP KINASE KINASE7 causes deficiency in polar auxin transport and leads to plant architectural abnormality in Arabidopsis. Plant Cell, 2006, 18: 308-320.
pmid: 16377756
[36] Li J S, Suzui N, Nakai Y, Yin Y G, Ishii S, Fujimaki S, Kawachi N, Rai H, Matsumoto T, Satoi K, Ohkama O N, Nakamura S. Shoot base responds to root-applied glutathione and functions as a critical region to inhibit cadmium translocation from the roots to shoots in oilseed rape (Brassica napus). Plant Sci, 2021, 305: 110822.
doi: 10.1016/j.plantsci.2021.110822
[37] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析. 作物学报, 2022, 48: 1103-1118.
doi: 10.3724/SP.J.1006.2022.14055
Li A L, Feng Y N, Li P, Zhang D S, Zong Y Z, Lin W, Hao X Y. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.]. Acta Agron Sin, 2022, 48: 1103-1118 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.14055
[38] Ruzicka K, Simaskova M, Duclercq J, Petrasek J, Zazimalova E, Simon S. Cytokinin regulates root meristem activity via modulation of the polar auxin transport. Proc Natl Acad Sci USA, 2009, 106: 4284-4289.
doi: 10.1073/pnas.0900060106 pmid: 19246387
[39] 孔令剑. 蔗糖处理下大豆苗期根系对低磷胁迫的响应. 沈阳农业大学硕士学位论文, 辽宁沈阳, 2018.
Kong L J. Responses of Soybean Seedlings Root System to Low Phosphorus Stress under Sucrose Treatment. MS Thesis of Shenyang Agricultural University, Shenyang, Liaoning, China, 2018 (in Chinese with English abstract).
[40] Bates T R, Lynch J P. Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant Cell Environ, 1996, 19: 529-538.
doi: 10.1111/pce.1996.19.issue-5
[41] Hammond J P, Broadley M R, White P J. Genetic responses to phosphorus deficiency. Ann Bot, 2004, 94: 323-332.
doi: 10.1093/aob/mch156
[42] Svistoonoff S, Creff A, Reymond M, Siqoillot-Claude C, Ricaud L, Blanchet A, Nussaume L, Desnos T. Root tip contact with low phosphate media reprograms plant root architecture. Nat Genet, 2007, 39: 792-796.
doi: 10.1038/ng2041 pmid: 17496893
[43] Fang Z Y, Shao C, Meng Y J, Wu P, Chen M. Phosphate signaling in Arabidopsis and Oryza sativa. Plant Sci, 2009, 176: 170-180.
doi: 10.1016/j.plantsci.2008.09.007
[44] Quentin A G, Pinkard E A, Ryan M G, Tissue D T, Baggett L S, Adams H D, Maillard P, Marchand J, Landhäusser S M, Lacointe A, Gibon Y, Anderegg W R L, Asao S, Atkin O K, Bonhomme M, Claye C, Chow P S, Clément-Vidal A, Davies N W, Dickman L T, Dumbur R, Ellsworth D S, Falk K, Galiano L, Grünzweig J M, Hartmann H, Hoch G, Hood S, Jones J E, Koike T, Kuhlmann I, Lloret F, Maestro M, Mansfield S D, Martínez-Vilalta J, Maucourt M, McDowell N G, Moing A, Muller B, Nebauer S G, Niinemets Ü, Palacio S, Piper F, Raveh E, Richter A, Rolland G, Rosas T, Joanis B S, Sala A, Smith R A, Sterck F, Stinziano J R, Tobias M, Unda F, Watanabe M, Way D A, Weerasinghe L K, Wild B, Wiley E, Woodruff D R. Non-structural carbohydrates in woody plants compared among laboratories. Tree Physiol, 2015, 35: 1146-1165.
doi: 10.1093/treephys/tpv073 pmid: 26423132
[45] Hammond J P, White P J. Sucrose transport in the phloem: integrating root responses to phosphorus starvation. J Exp Bot, 2008, 59: 93-109.
doi: 10.1093/jxb/erm221 pmid: 18212031
[1] WANG Rui, ZHANG Fu-Yao, ZHAN Peng-Jie, CHU Jian-Qiang, JIN Min-Shan, ZHAO Wei-Jun, CHENG Qing-Jun. Identification of candidate genes implicated in low-nitrogen-stress tolerance based on RNA-Seq in sorghum [J]. Acta Agronomica Sinica, 2024, 50(3): 669-685.
[2] WANG Li-Ping, WANG Xiao-Yu, FU Jing-Ye, WANG Qiang. Functional identification of maize transcription factor ZmMYB12 to enhance drought resistance and low phosphorus tolerance in plants [J]. Acta Agronomica Sinica, 2024, 50(1): 76-88.
[3] WANG Hui-Wei, ZHANG Xiang-Ge, LI Chun-Xin, XU Xin-Ran, HU Hai-Yan, ZHU Ya-Jing, WANG Yan, ZHANG Xin-You. Evaluation of salt tolerance in Cyperus esculentus and transcriptomic analysis of seedling roots under salt stress [J]. Acta Agronomica Sinica, 2023, 49(7): 1882-1894.
[4] DING Hong-Yan, FENG Xiao-Xi, WANG Bai-Yu, ZHANG Ji-Sen. Evolution and relative expression pattern of LRRII-RLK gene family in sugarcane Saccharum spontaneum [J]. Acta Agronomica Sinica, 2023, 49(7): 1769-1784.
[5] WANG Zhen, ZHANG Xiao-Li, LIU Miao, YAO Meng-Nan, MENG Xiao-Jing, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Transcriptional differential expression analysis between BnMAPK1-overexpression and Zhongyou 821 rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 856-868.
[6] KE Hui-Feng, ZHANG Zhen, GU Qi-Shen, ZHAO Yan, LI Pei-Yu, ZHANG Dong-Mei, CUI Yan-Ru, WANG Xing-Fen, WU Li-Qiang, ZHANG Gui-Yin, MA Zhi-Ying, SUN Zheng-Wen. Genome-wide association study of root biomass related traits at seeding stage under low phosphorus stress in cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2168-2179.
[7] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[8] YANG Ya-Jie, LI Yu-Ying, SHEN Zhuang-Zhuang, CHEN Tian, RONG Er-Hua, WU Yu-Xiang. Differential expressed analysis by transcriptome sequencing in leaves of different ploidy Gossypium herbaceum [J]. Acta Agronomica Sinica, 2022, 48(11): 2733-2748.
[9] HUANG Wen-Gong, JIANG Wei-Dong, YAO Yu-Bo, SONG Xi-Xia, LIU Yan, CHEN Si, ZHAO Dong-Sheng, WU Guang-Wen, YUAN Hong-Mei, REN Chuan-Ying, SUN Zhong-Yi, WU Jian-Zhong, KANG Qing-Hua. Transcriptome profiling of flax (Linum usttatissimum L.) response to low potassium stress [J]. Acta Agronomica Sinica, 2021, 47(6): 1070-1081.
[10] XU Jing, PAN Li-Juan, LI Hao-Yuan, WANG Tong, CHEN Na, CHEN Ming-Na, WANG Mian, YU Shan-Lin, HOU Yan-Hua, CHI Xiao-Yuan. Expression pattern analysis of genes related to lipid synthesis in peanut [J]. Acta Agronomica Sinica, 2021, 47(6): 1124-1137.
[11] WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422.
[12] ZENG Jian, XU Xian-Chao, XU Yu-Fei, WANG Xiu-Cheng, YU Hai-Yan, FENG Bei-Bei, XING Guang-Nan. Utilization of dynamic transcriptomics analysis for candidate gene mining of 100-seed weight in soybean [J]. Acta Agronomica Sinica, 2021, 47(11): 2121-2133.
[13] REN Meng-Meng, ZHANG Hong-Wei, WANG Jian-Hua, WANG Guo-Ying, ZHENG Jun. Fine mapping of a major QTL qMES20-10 associated with deep-seeding tolerance in maize and analysis of differentially expressed genes [J]. Acta Agronomica Sinica, 2020, 46(7): 1016-1024.
[14] JIA Xiao-Xia,QI En-Fang,LIU Shi,WEN Guo-Hong,MA Sheng,LI Jian-Wu,HUANG Wei. Effects of over-expression of AtDREB1A gene on potato growth and abiotic stress resistance gene expression [J]. Acta Agronomica Sinica, 2019, 45(8): 1166-1175.
[15] Rui-Juan YANG,Jian-Rong BAI,Lei YAN,Liang SU,Xiu-Hong WANG,Rui LI,Cong-Zhuo ZHANG. Cloning and Expression Analysis of Strong Inducible Promoter P1502-ZmPHR1 Responding to Low Phosphorus Stress in Maize [J]. Acta Agronomica Sinica, 2018, 44(7): 1000-1009.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .