Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (2): 340-353.doi: 10.3724/SP.J.1006.2024.31020
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
LI Yan(), FANG Yu-Hui, WANG Yong-Xia, PENG Chao-Jun, HUA Xia, QI Xue-Li, HU Lin, XU Wei-Gang*()
[1] | Bieleski R L, Ferguson J B. Physiology and metabolism of phosphate and its compounds. In: Lauchli A, Bieleski R L, eds. Inorganic Plant Nutrition. Berlin: Springer, 1983. pp 422-449. |
[2] |
Theodorou M E, Plaxton W C. Metabolic adaptations of plant respiration to nutritional phosphate deprivation. Plant Physiol, 1993, 101: 339-344.
pmid: 12231689 |
[3] | Hawkeford M, Horst W, Kichey T, Lambers H, Schjoerring J, Moller I S, White P. Functions of macronutrients. In: Marschner P, ed. Marschner’s Mineral Nutrition of Higher plants. London, England: Academic Press, 2012. pp 135-189. |
[4] |
Niu Y F, Chai R S, Jin G L, Wang H, Tang C X, Zhang Y S. Responses of root architecture development to low phosphorus availability: a review. Ann Bot, 2013, 112: 391-408.
doi: 10.1093/aob/mcs285 |
[5] |
Li P, Weng J, Zhang Q, Yu L, Yao Q, Chang L, Niu Q. Physiological and biochemical responses of Cucumis melo L. chloroplasts to low phosphate stress. Front Plant Sci, 2018, 9: 1525.
doi: 10.3389/fpls.2018.01525 |
[6] |
Su J Y, Zheng Q, Li H W, Li B, Jing R L, Tong Y P, Li Z S. Detection of QTLs for phosphorus use efficiency in relation to agronomic performance of wheat grown under phosphorus sufficient and limited conditions. Plant Sci, 2009, 176: 824-836.
doi: 10.1016/j.plantsci.2009.03.006 |
[7] | Goldstein A H. Phosphate Starvation Inducible Enzymes and Proteins in Higher Plants. Society for Experimental Biology Seminar Series 49: Inducible Plant Proteins, Cambridge: Cambridge University Press, 1992. pp 25-44. |
[8] |
Withers P J A, Sylvester-Bradley R, Jones D L, Healey J R, Talboys P J. Feed the crop not the soil: rethinking phosphorus management in the food chain. Environment Sci Technol, 2014, 48: 6523-6530.
doi: 10.1021/es501670j |
[9] |
Yuan Z W, Jiang S Y, Sheng H, Liu X, Hua H, Liu X W, Zhang Y. Human perturbation of the global phosphorus cycle: changes and consequences. Environ Sci Technol, 2018, 52: 2438-2450.
doi: 10.1021/acs.est.7b03910 |
[10] |
Hou X L, Wu P, Jiao F C, Jia Q J, Chen H M, Yu J, Song X W, Yi K K. Regulation of the expression of OsIPSl and OsIPS2 in rice via systemic and local Pi signaling and hormones. Plant Cell Environ, 2005, 28: 353-364.
doi: 10.1111/pce.2005.28.issue-3 |
[11] |
Abel S, Nurnberger T, Ahnert V, Krauss G J, Glund K. Induction of an extracellular cyclic nucleotide phosphodiesterase as an accessory ribonucleolytic activity during phosphate starvation of cultured tomato cells. Plant Physiol, 2000, 122: 543-552.
doi: 10.1104/pp.122.2.543 pmid: 10677447 |
[12] | Vance C P, Uhde-Stone C, Allan D L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol, 2003, 157: 427-447. |
[13] |
Rausch C, Bucher M. Molecular mechanisms of phosphate transport in plants. Planta, 2002, 216: 23-37.
doi: 10.1007/s00425-002-0921-3 pmid: 12430011 |
[14] |
Lynch J P, Brown K M. Topsoil forging-an architectural adaption of plants to low phosphorus availability. Plant Soil, 2001, 237: 225-237.
doi: 10.1023/A:1013324727040 |
[15] |
Lynch J P. Root phones for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol, 2011, 156: 1041-1049.
doi: 10.1104/pp.111.175414 |
[16] | 韩胜芳, 邓若磊, 徐海荣, 曹云飞, 肖凯. 缺磷条件下不同水稻品种磷素吸收特性的研究. 植物遗传资源学报, 2007, 8: 223-227. |
Han S F, Deng R L, Xu H R, Cao Y F, Xiao K. Characteristics of phosphorus uptake in different rice (Oryza sativa) cultivars under phosphorus stress condition. J Plant Genet Resour, 2007, 8: 223-227 (in Chinese with English abstract). | |
[17] | 袁硕, 彭正萍, 沙晓晴, 王艳群. 玉米杂交种对缺磷反应的生理机制及基因型差异. 中国农业科学, 2010, 43: 51-58. |
Yuan S, Peng Z P, Sha X Q, Wang Y Q. Physiological mechanism of maize hybrids in response to P deficiency and differences among cultivars. Sci Agric Sin, 2010, 43: 51-58 (in Chinese with English abstract). | |
[18] | 阳显斌, 张锡洲, 李廷轩, 宋潇, 胡宏松. 磷素子粒生产效率不同的小麦品种磷素吸收利用差异. 植物营养与肥料学报, 2011, 17: 525-531. |
Yang X B, Zhang X Z, Li T X, Song X, Hu H S. Differences of phosphorus uptake and utilization in wheat cultivars with different phosphorus use efficiency for grain yield. Plant Nutr Fert Sci, 2011, 17: 525-531 (in Chinese with English abstract). | |
[19] |
Schachtman D P and Shin R. Nutrient sensing and signaling: NPKS. Annu Rev Plant Biol, 2007, 58: 47-69.
pmid: 17067284 |
[20] |
Misson J, Raghothama K G, Jain A, Jouhet J, Block M A, Bligny R, Ortet P, Creff A, Somerville S, Rolland N, Doumas P, Nacry P, Herrerra-Estrella L, Nussaume L, Thibaud M C. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA, 2005, 102: 11934-11939.
doi: 10.1073/pnas.0505266102 pmid: 16085708 |
[21] |
Staudinger C, Dissanayake B M, Duncan O, Millar A H. The wheat secreted root proteome: implications for phosphorus mobilization and biotic interactions. J Proteom, 2022, 252: 104450.
doi: 10.1016/j.jprot.2021.104450 |
[22] | 舒雨. 低磷对小麦叶片生长和光合作用的影响及机理研究. 华中农业大学硕士学位论文, 湖北武汉, 2021. |
Shu Y. Studies on the Mechanism of the Effects of Low Phosphorus on Leaf Growth and Photosynthesis in Wheat. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2021 (in Chinese with English abstract). | |
[23] |
Bustos R, Castrillo G, Linhares F, Puga M I, Rubio V, Pérez-Pérez J, Solano R, Leyva A, Paz-Ares J. A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genet, 2010, 6: e1001102.
doi: 10.1371/journal.pgen.1001102 |
[24] |
Zhou J, Jiao F C, Wu Z C, Li Y Y, Wang X M, He X W, Zhong W Q, Wu P. OsPHR2 Is Involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol, 2008, 146: 1673-1686.
doi: 10.1104/pp.107.111443 pmid: 18263782 |
[25] |
Li Y, Fang Y H, Peng C J, Hua X, Zhang Y, Qi X L, Li Z L, Wang Y M, Hu L, Xu W G. Transgenic expression of rice OsPHR2 increases phosphorus uptake and yield in wheat. Protoplasma, 2022, 259: 1271.
doi: 10.1007/s00709-021-01702-5 |
[26] | 于倩倩. 拟南芥核苷三磷酸水解酶APP1通过影响ROS的稳态参与根尖干细胞微环境的维持. 山东大学博士学位论文, 山东济南, 2016. |
Yu Q Q. A P-loop NTPase APP1 Maintains Root Stem Cell Niche Identity through the Regulation of ROS Homeostasis in Arabidopsis. PhD Dissertation of Shandong University, Jinan, Shandong, China, 2016 (in Chinese with English abstract). | |
[27] | 尚文静, 贾利华, 史磊, 林德立, 刘娜, 郑文明. 小麦低磷响应基因的筛选与表达分析. 中国农业大学学报, 2016, 21(10): 1-10. |
Shang W J, Jia L H, Shi L, Lin D L, Liu N, Zheng W M. Screening and expression analysis of genes responded to low phosphate in wheat root. J China Agric Univ, 2016, 21(10): 1-10 (in Chinese with English abstract). | |
[28] |
Shin R, Berg R H, Schachtman D P. Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol, 2005, 46: 1350-1357.
doi: 10.1093/pcp/pci145 |
[29] | 徐艳花. 低氮和正常供氮条件下调控小麦苗期种子根长QTL定位和蛋白质组学分析. 河南农业大学博士学位论文, 河南郑州, 2019. |
Xu Y H. QTL mapping and Proteomics Analysis for Seminal Root Length of Wheat Seedling under Control and Low Nitrogen Conditions. PhD Dissertation of Henan Agricultural University, Zhengzhou, Henan, China, 2019 (in Chinese with English abstract). | |
[30] | 王庆梅, 杨树德, 陈珈. 叶绿体内被膜上的磷酸丙糖转运器. 植物学通报, 2001, 18(1): 11-15. |
Wang Q M, Yang S D, Chen J. Triose phosphate translocator in the inner membrane of chloroplast. Chin Bull Bot, 2001, 18(1): 11-15 (in Chinese with English abstract). | |
[31] | Heldt H W, Flügge U I. Metabolite transport in plant cells. In: Tobin A K, ed. Plant Organelles: Compartmentation of Metabolism in Photosynthetic Tissue. Cambridge: Cambridge University Press, 1992. pp 21-47. |
[32] | 周洁. 水稻低磷胁迫相关转录因子OsPHR1和OsPHR2的功能研究. 浙江大学博士学位论文, 浙江杭州, 2007. |
Zhou J. Function Analysis of Rice Transcription Factors OsPHR1 and OsPHR2 Involved in Signaling of Phosphorus Starvation. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2007 (in Chinese with English abstract). | |
[33] |
Bari R, Datt Pant B, Stitt M, Scheible W R. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol, 2006, 141: 988-999.
doi: 10.1104/pp.106.079707 pmid: 16679424 |
[34] |
Ritter M K, Padilla C M, Schmidt R J. The maize mutant barren stalk 1 is defective in axillary meristem development. Am J Bot, 2002, 89: 203-210.
doi: 10.3732/ajb.89.2.203 |
[35] |
Dai Y, Wang H, Li B, Huang J, Liu X, Zhou Y, Mou Z, Li J. Increased expression of MAP KINASE KINASE7 causes deficiency in polar auxin transport and leads to plant architectural abnormality in Arabidopsis. Plant Cell, 2006, 18: 308-320.
pmid: 16377756 |
[36] |
Li J S, Suzui N, Nakai Y, Yin Y G, Ishii S, Fujimaki S, Kawachi N, Rai H, Matsumoto T, Satoi K, Ohkama O N, Nakamura S. Shoot base responds to root-applied glutathione and functions as a critical region to inhibit cadmium translocation from the roots to shoots in oilseed rape (Brassica napus). Plant Sci, 2021, 305: 110822.
doi: 10.1016/j.plantsci.2021.110822 |
[37] |
李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析. 作物学报, 2022, 48: 1103-1118.
doi: 10.3724/SP.J.1006.2022.14055 |
Li A L, Feng Y N, Li P, Zhang D S, Zong Y Z, Lin W, Hao X Y. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.]. Acta Agron Sin, 2022, 48: 1103-1118 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.14055 |
|
[38] |
Ruzicka K, Simaskova M, Duclercq J, Petrasek J, Zazimalova E, Simon S. Cytokinin regulates root meristem activity via modulation of the polar auxin transport. Proc Natl Acad Sci USA, 2009, 106: 4284-4289.
doi: 10.1073/pnas.0900060106 pmid: 19246387 |
[39] | 孔令剑. 蔗糖处理下大豆苗期根系对低磷胁迫的响应. 沈阳农业大学硕士学位论文, 辽宁沈阳, 2018. |
Kong L J. Responses of Soybean Seedlings Root System to Low Phosphorus Stress under Sucrose Treatment. MS Thesis of Shenyang Agricultural University, Shenyang, Liaoning, China, 2018 (in Chinese with English abstract). | |
[40] |
Bates T R, Lynch J P. Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant Cell Environ, 1996, 19: 529-538.
doi: 10.1111/pce.1996.19.issue-5 |
[41] |
Hammond J P, Broadley M R, White P J. Genetic responses to phosphorus deficiency. Ann Bot, 2004, 94: 323-332.
doi: 10.1093/aob/mch156 |
[42] |
Svistoonoff S, Creff A, Reymond M, Siqoillot-Claude C, Ricaud L, Blanchet A, Nussaume L, Desnos T. Root tip contact with low phosphate media reprograms plant root architecture. Nat Genet, 2007, 39: 792-796.
doi: 10.1038/ng2041 pmid: 17496893 |
[43] |
Fang Z Y, Shao C, Meng Y J, Wu P, Chen M. Phosphate signaling in Arabidopsis and Oryza sativa. Plant Sci, 2009, 176: 170-180.
doi: 10.1016/j.plantsci.2008.09.007 |
[44] |
Quentin A G, Pinkard E A, Ryan M G, Tissue D T, Baggett L S, Adams H D, Maillard P, Marchand J, Landhäusser S M, Lacointe A, Gibon Y, Anderegg W R L, Asao S, Atkin O K, Bonhomme M, Claye C, Chow P S, Clément-Vidal A, Davies N W, Dickman L T, Dumbur R, Ellsworth D S, Falk K, Galiano L, Grünzweig J M, Hartmann H, Hoch G, Hood S, Jones J E, Koike T, Kuhlmann I, Lloret F, Maestro M, Mansfield S D, Martínez-Vilalta J, Maucourt M, McDowell N G, Moing A, Muller B, Nebauer S G, Niinemets Ü, Palacio S, Piper F, Raveh E, Richter A, Rolland G, Rosas T, Joanis B S, Sala A, Smith R A, Sterck F, Stinziano J R, Tobias M, Unda F, Watanabe M, Way D A, Weerasinghe L K, Wild B, Wiley E, Woodruff D R. Non-structural carbohydrates in woody plants compared among laboratories. Tree Physiol, 2015, 35: 1146-1165.
doi: 10.1093/treephys/tpv073 pmid: 26423132 |
[45] |
Hammond J P, White P J. Sucrose transport in the phloem: integrating root responses to phosphorus starvation. J Exp Bot, 2008, 59: 93-109.
doi: 10.1093/jxb/erm221 pmid: 18212031 |
[1] | WANG Rui, ZHANG Fu-Yao, ZHAN Peng-Jie, CHU Jian-Qiang, JIN Min-Shan, ZHAO Wei-Jun, CHENG Qing-Jun. Identification of candidate genes implicated in low-nitrogen-stress tolerance based on RNA-Seq in sorghum [J]. Acta Agronomica Sinica, 2024, 50(3): 669-685. |
[2] | WANG Li-Ping, WANG Xiao-Yu, FU Jing-Ye, WANG Qiang. Functional identification of maize transcription factor ZmMYB12 to enhance drought resistance and low phosphorus tolerance in plants [J]. Acta Agronomica Sinica, 2024, 50(1): 76-88. |
[3] | WANG Hui-Wei, ZHANG Xiang-Ge, LI Chun-Xin, XU Xin-Ran, HU Hai-Yan, ZHU Ya-Jing, WANG Yan, ZHANG Xin-You. Evaluation of salt tolerance in Cyperus esculentus and transcriptomic analysis of seedling roots under salt stress [J]. Acta Agronomica Sinica, 2023, 49(7): 1882-1894. |
[4] | DING Hong-Yan, FENG Xiao-Xi, WANG Bai-Yu, ZHANG Ji-Sen. Evolution and relative expression pattern of LRRII-RLK gene family in sugarcane Saccharum spontaneum [J]. Acta Agronomica Sinica, 2023, 49(7): 1769-1784. |
[5] | WANG Zhen, ZHANG Xiao-Li, LIU Miao, YAO Meng-Nan, MENG Xiao-Jing, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Transcriptional differential expression analysis between BnMAPK1-overexpression and Zhongyou 821 rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 856-868. |
[6] | KE Hui-Feng, ZHANG Zhen, GU Qi-Shen, ZHAO Yan, LI Pei-Yu, ZHANG Dong-Mei, CUI Yan-Ru, WANG Xing-Fen, WU Li-Qiang, ZHANG Gui-Yin, MA Zhi-Ying, SUN Zheng-Wen. Genome-wide association study of root biomass related traits at seeding stage under low phosphorus stress in cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2168-2179. |
[7] | LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118. |
[8] | YANG Ya-Jie, LI Yu-Ying, SHEN Zhuang-Zhuang, CHEN Tian, RONG Er-Hua, WU Yu-Xiang. Differential expressed analysis by transcriptome sequencing in leaves of different ploidy Gossypium herbaceum [J]. Acta Agronomica Sinica, 2022, 48(11): 2733-2748. |
[9] | HUANG Wen-Gong, JIANG Wei-Dong, YAO Yu-Bo, SONG Xi-Xia, LIU Yan, CHEN Si, ZHAO Dong-Sheng, WU Guang-Wen, YUAN Hong-Mei, REN Chuan-Ying, SUN Zhong-Yi, WU Jian-Zhong, KANG Qing-Hua. Transcriptome profiling of flax (Linum usttatissimum L.) response to low potassium stress [J]. Acta Agronomica Sinica, 2021, 47(6): 1070-1081. |
[10] | XU Jing, PAN Li-Juan, LI Hao-Yuan, WANG Tong, CHEN Na, CHEN Ming-Na, WANG Mian, YU Shan-Lin, HOU Yan-Hua, CHI Xiao-Yuan. Expression pattern analysis of genes related to lipid synthesis in peanut [J]. Acta Agronomica Sinica, 2021, 47(6): 1124-1137. |
[11] | WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422. |
[12] | ZENG Jian, XU Xian-Chao, XU Yu-Fei, WANG Xiu-Cheng, YU Hai-Yan, FENG Bei-Bei, XING Guang-Nan. Utilization of dynamic transcriptomics analysis for candidate gene mining of 100-seed weight in soybean [J]. Acta Agronomica Sinica, 2021, 47(11): 2121-2133. |
[13] | REN Meng-Meng, ZHANG Hong-Wei, WANG Jian-Hua, WANG Guo-Ying, ZHENG Jun. Fine mapping of a major QTL qMES20-10 associated with deep-seeding tolerance in maize and analysis of differentially expressed genes [J]. Acta Agronomica Sinica, 2020, 46(7): 1016-1024. |
[14] | JIA Xiao-Xia,QI En-Fang,LIU Shi,WEN Guo-Hong,MA Sheng,LI Jian-Wu,HUANG Wei. Effects of over-expression of AtDREB1A gene on potato growth and abiotic stress resistance gene expression [J]. Acta Agronomica Sinica, 2019, 45(8): 1166-1175. |
[15] | Rui-Juan YANG,Jian-Rong BAI,Lei YAN,Liang SU,Xiu-Hong WANG,Rui LI,Cong-Zhuo ZHANG. Cloning and Expression Analysis of Strong Inducible Promoter P1502-ZmPHR1 Responding to Low Phosphorus Stress in Maize [J]. Acta Agronomica Sinica, 2018, 44(7): 1000-1009. |
|