Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (1): 76-88.doi: 10.3724/SP.J.1006.2024.33007
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
WANG Li-Ping(), WANG Xiao-Yu, FU Jing-Ye, WANG Qiang*(
)
[1] |
Campos H, Cooper M, Habben J E, Edmeades G O, Schussler J R. Improving drought tolerance in maize: a view from industry. Field Crops Res, 2004, 90: 19-34.
doi: 10.1016/j.fcr.2004.07.003 |
[2] |
Esfahanian E, Nejadhashemi A P, Abouali M, Adhikari U, Zhang Z, Daneshvar F, Herman M R. Development and evaluation of a comprehensive drought index. J Environ Manage, 2017, 185: 31-43.
doi: S0301-4797(16)30840-4 pmid: 28029478 |
[3] |
Gupta A, Rico-Medina A, Caño-Delgado A I. The physiology of plant responses to drought. Science, 2020, 368: 266-269.
doi: 10.1126/science.aaz7614 pmid: 32299946 |
[4] |
Liu H, Wang X, Wang D, Zou Z, Liang Z. Effect of drought stress on growth and accumulation of active constituents in Salvia miltiorrhiza Bunge. Ind Crop Prod, 2011, 33: 84-88.
doi: 10.1016/j.indcrop.2010.09.006 |
[5] |
Allen R G, Tresini M, Allen R G, Tresini M. Oxidative stress and gene regulation. Free Radic Biol Med, 2000, 28: 463-499.
doi: 10.1016/S0891-5849(99)00242-7 |
[6] |
Gong F, Yang L, Tai F, Hu X, Wang W. “Omics” of maize stress response for sustainable food production: opportunities and challenges. OMICS: A J Integr Biol, 2014, 18: 714-732.
doi: 10.1089/omi.2014.0125 |
[7] |
Pan R, Buitrago S, Feng Z, Abou-Elwafa S F, Xu L, Li C, Zhang W. HvbZIP21, a novel transcription factor from wild barley confers drought tolerance by modulating ROS scavenging. Front Plant Sci, 2022, 13: 878459.
doi: 10.3389/fpls.2022.878459 |
[8] |
Newton J R. Linked gene ontology categories are novel and differ from associated gene ontology categories for the bipolar disorders. Psychiat Genet, 2007, 17: 29-34.
doi: 10.1097/YPG.0b013e328010f28c |
[9] |
Ma H Z, Liu C, Li Z X, Ran Q J, Xie G N, Wang B M, Fang S, Chu J F, Zhang J R. ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development. Plant Physiol, 2018, 178: 753-770.
doi: 10.1104/pp.18.00436 |
[10] |
Wang B X, Li L Q, Liu M L, Peng D, Wei A S, Hou B Y, Lei Y H, Li X J. TaFDL2-1A confers drought stress tolerance by promoting ABA biosynthesis, ABA responses, and ROS scavenging in transgenic wheat. Plant J, 2022, 112: 722-737.
doi: 10.1111/tpj.v112.3 |
[11] |
Zhu J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167: 313-324.
doi: 10.1016/j.cell.2016.08.029 |
[12] |
Calderón-Vázquez C, Sawers R J, Herrera-Estrella L. Phosphate deprivation in maize: genetics and genomics. Plant Physiol, 2011, 156: 1067-1077.
doi: 10.1104/pp.111.174987 pmid: 21617030 |
[13] |
Vance C P, Uhde-Stone C, Allan D L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol, 2003, 157: 423-447.
doi: 10.1046/j.1469-8137.2003.00695.x pmid: 33873400 |
[14] |
Bieleski R L. Phosphate pools, phosphate transport, and phosphate availability. Annu Rev Plant Physiol, 2003, 24: 225-252.
doi: 10.1146/arplant.1973.24.issue-1 |
[15] |
Usuda H. Phosphate deficiency in maize: V. Mobilization of nitrogen and phosphorus within shoots of young plants and its relationship to senescence. Plant Cell Physiol, 1995, 36: 1041-1049.
doi: 10.1093/oxfordjournals.pcp.a078846 |
[16] |
Siddiqui M H, Alamri S, Nasir Khan M, Corpas F J, Al-Amri A A, Alsubaie Q D, Ali H M, Kalaji H M, Ahmad P. Melatonin and calcium function synergistically to promote the resilience through ROS metabolism under arsenic-induced stress. J Haz Mat, 2020, 398: 122882.
doi: 10.1016/j.jhazmat.2020.122882 |
[17] | Bechtold U, Penfold C A, Jenkins D J, Legaie R, Moore J D, Lawson T, Matthews J S, Vialet-Chabrand S R, Baxter L, Subramaniam S, Hickman R, Florance H, Sambles C, Salmon D L, Feil R, Bowden L, Hill C, Baker N R, Lunn J E, Finkenstädt B, Mead A, Buchanan-Wollaston V, Beynon J, Rand D A, Wild D L, Denby K J, Ott S, Smirnoff N, Mullineaux P M. Time-series transcriptomics reveals that AGAMOUS-LIKE22 affects primary metabolism and developmental processes in drought-stressed Arabidopsis. Plant Cell, 2016, 28: 345. |
[18] |
Bates T R, Lynch J P. Root hairs confer a competitive advantage under low phosphorus availability. Plant Soil, 2001, 236: 243-250.
doi: 10.1023/A:1012791706800 |
[19] | Devaiah B N, Madhuvanthi R, Karthikeyan A S, Raghothama K G. Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis. Mol Plant, 2009, 2: 43-58. |
[20] |
Jain A, Poling M D, Smith A P, Nagarajan V K, Lahner B, Meagher R B, Raghothama K G. Variations in the composition of gelling agents affect morphophysiological and molecular responses to deficiencies of phosphate and other nutrients. Plant Physiol, 2009, 150: 1033-1049.
doi: 10.1104/pp.109.136184 pmid: 19386810 |
[21] |
Wang L S, Li Z, Qian W Q, Guo W L, Gao X, Huang L L, Wang H, Zhu H F, Wu J W, Wang D W, Liu D. The Arabidopsis purple acid phosphatase AtPAP10 is predominantly associated with the root surface and plays an important role in plant tolerance to phosphate limitation. Plant Physiol, 2011, 157: 1283-1299.
doi: 10.1104/pp.111.183723 |
[22] |
Zhang J Y, Zhou X, Xu Y, Yao M L, Xie F B, Gai J Y, Li Y, Yang S P. Soybean SPX1 is an important component of the response to phosphate deficiency for phosphorus homeostasis. Plant Sci, 2016, 248: 82-91.
doi: 10.1016/j.plantsci.2016.04.010 pmid: 27181950 |
[23] |
Martin C, Paz-Ares J. MYB transcription factors in plants. Trends Genet, 1997, 13: 67-73.
doi: 10.1016/s0168-9525(96)10049-4 pmid: 9055608 |
[24] |
Fang Q, Wang X Q, Wang H Y, Tang X W, Liu C, Yin H, Ye S L, Jiang Y Z, Duan Y J, Luo K M. The poplar R2R3 MYB transcription factor PtrMYB94 coordinates with abscisic acid signaling to improve drought tolerance in plants. Tree Physiol, 2020, 40: 46-59.
doi: 10.1093/treephys/tpz113 pmid: 31728530 |
[25] | Gao F, Zhou J, Deng R Y, Zhao H X, Li C L, Chen H, Suzuki T, Park S U, Wu Q.Overexpression of a tartary buckwheat R2R3-MYB transcription factor gene, FtMYB9, enhances tolerance to drought and salt stresses in transgenic Arabidopsis. Plant Physiol, 2017, 214: 81-90. |
[26] |
Shukla P S, Gupta K, Agarwal P, Jha B, Agarwal P K. Overexpression of a novel SbMYB15 from Salicornia brachiata confers salinity and dehydration tolerance by reduced oxidative damage and improved photosynthesis in transgenic tobacco. Planta, 2015, 242: 1291-308.
doi: 10.1007/s00425-015-2366-5 pmid: 26202734 |
[27] |
Zheng X W, Liu C, Qiao L, Zhao J J, Han R, Wang X L, Ge C, Zhang W Y, Zhang S W, Qiao L Y, Zheng J, Hao C Y. The MYB transcription factor TaPHR3-A1 is involved in phosphate signaling and governs yield-related traits in bread wheat. J Exp Bot, 2020, 71: 5808-5822.
doi: 10.1093/jxb/eraa355 pmid: 32725154 |
[28] |
Gulzar F, Fu J Y, Zhu C Y, Yan J, Li X L, Meraj T A, Shen Q Q, Hassan B, Wang Q. Maize WRKY transcription factor ZmWRKY79 positively regulates drought tolerance through elevating ABA biosynthesis. Int J Mol Sci, 2021, 22: 10080.
doi: 10.3390/ijms221810080 |
[29] | Pu Q Y, Liang J, Shen Q Q, Fu J Y, Pu Z E, Liu J, Wang X G, Wang Q. A wheat β-patchoulene synthase confers resistance against herbivory in transgenic Arabidopsis. Genes, 2019, 10: 441. |
[30] |
Wu J D, Jiang Y L, Liang Y N, Chen L, Chen W J, Cheng B J. Expression of the maize MYB transcription factor ZmMYB3R enhances drought and salt stress tolerance in transgenic plants. Plant Physiol Bioch, 2019, 137: 179-188.
doi: 10.1016/j.plaphy.2019.02.010 |
[31] |
Du H, Feng B R, Yang S S, Huang Y B, Tang Y X, Wu K. The R2R3-MYB transcription factor gene family in Maize. PLoS One, 2012, 7: e37463.
doi: 10.1371/journal.pone.0037463 |
[32] |
Castorina G, Domergue F, Chiara M, Zilio M, Persico M, Ricciardi V, Horner D S, Consonni G. ZmFDL1/MYB94 drought- responsive regulates cuticle biosynthesis and cuticle-dependent leaf permeability. Plant Physiol, 2020, 184: 266-282.
doi: 10.1104/pp.20.00322 pmid: 32665334 |
[33] |
Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S. Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell, 2003, 15: 1591-1604.
doi: 10.1105/tpc.011650 |
[34] | Zhong C M, Patra B, Tang Y, Li X K, Yuan L, Wang X J. A transcriptional hub integrating gibberellin-brassinosteroid signals to promote seed germination in Arabidopsis. J Exp Bot, 2021, 72: 4708-4720. |
[35] |
Sano N, Marion-Poll A. ABA metabolism and homeostasis in seed dormancy and germination. Int J Mol Sci, 2021, 22: 5069.
doi: 10.3390/ijms22105069 |
[36] |
Wang X P, Niu Y L, Zheng Y. Multiple Functions of MYB transcription factors in abiotic stress responses. Int J Mol Sci, 2021, 22: 6125.
doi: 10.3390/ijms22116125 |
[37] | Chen K, Li G J, A Bressan R, Song C P, Zhu J K. Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol, 2020, 62: 27-56. |
[38] |
Xu W, Tang W, Wang C, Ge L, Sun J, Qi X, He Z, Zhou Y, Chen J, Xu Z, Ma Y Z, Chen M. SiMYB56 confers drought stress tolerance in transgenic rice by regulating lignin biosynthesis and ABA signaling pathway. Front Plant Sci, 2020, 11: 785.
doi: 10.3389/fpls.2020.00785 pmid: 32625221 |
[39] |
Valdés-López O, Arenas-Huertero C, Ramírez M, Girard L, Sánchez F, Vance C P, Luis Reyes J, Hernández G. Essential role of MYB transcription factor: PvPHR1 and microRNA: PvmiR399 in phosphorus-deficiency signalling in common bean roots. Plant Cell Environ, 2008, 31: 1834-1843.
doi: 10.1111/pce.2008.31.issue-12 |
[40] |
Val-Torregrosa B, Bundó M, Martín-Cardoso H, Bach-Pages M, Chiou T J, Flors V, Segundo B S. Phosphate-induced resistance to pathogen infection in Arabidopsis. Plant J, 2022, 110: 452-469.
doi: 10.1111/tpj.v110.2 |
[41] |
Tariq A, Pan K, Olatunji O A, Graciano C, Li Z, Sun F Sun X, Song D, Chen W, Zhang A, Wu X, Zhang L, Mingrui D, Xiong Q, Liu C. Phosphorous application improves drought tolerance of Phoebe zhennan. Front Plant Sci, 2017, 8: 1561.
doi: 10.3389/fpls.2017.01561 pmid: 28955356 |
[42] |
Begum N, Ahanger M A, Zhang L X. AMF inoculation and phosphorus supplementation alleviates drought induced growth and photosynthetic decline in Nicotiana tabacum by up-regulating antioxidant metabolism and osmolyte accumulation. Environ Exp Bot, 2020, 176: 104088.
doi: 10.1016/j.envexpbot.2020.104088 |
[43] |
Hansel F D, Amado T J C, Ruiz Diaz D A, Rosso L H M, Schorr M. Phosphorus fertilizer placement and tillage affect soybean root growth and drought tolerance. Agron J, 2017, 109: 2936-2944.
doi: 10.2134/agronj2017.04.0202 |
[1] | WU Hao, ZHANG Ying, WANG Chen, GU Han-Zhu, ZHOU Tian-Yang, ZHANG Wei-Yang, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang, ZHANG Hao. Effects of cultivation optimization on root characteristics and starch properties of rice at grain filling stage in the lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2024, 50(2): 478-492. |
[2] | MAO Yan, ZHENG Ming-Min, MOU Cheng-Xiang, XIE Wu-Bing, TANG Qi. Function analysis of the promoter of natural antisense transcript cis-NATZmNAC48 in maize under osmotic stress [J]. Acta Agronomica Sinica, 2024, 50(2): 354-362. |
[3] | MA Juan, CAO Yan-Yong. Genome-wide association study of yield traits and special combining ability in maize hybrid population [J]. Acta Agronomica Sinica, 2024, 50(2): 363-372. |
[4] | YANG Jing-Lei, WU Bing-Jie, WANG An-Zhou, XIAO Ying-Jie. Genomic prediction of maize agronomic and quality traits using multi-omics data [J]. Acta Agronomica Sinica, 2024, 50(2): 373-382. |
[5] | WU Yu, LIU Lei, CUI Ke-Hui, QI Xiao-Li, HUANG Jian-Liang, PENG Shao-Bing. Changes of root characteristics of super hybrid rice variety contributing to high nitrogen accumulation under low nitrogen application at seedling stage [J]. Acta Agronomica Sinica, 2024, 50(2): 414-424. |
[6] | XU Ran, YANG Wen-Ye, ZHU Jun-Lin, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of different irrigation regimes on grain yield and water use efficiency in japonica-indica hybrid rice cultivar Yongyou 1540 [J]. Acta Agronomica Sinica, 2024, 50(2): 425-439. |
[7] | LI Yan, FANG Yu-Hui, WANG Yong-Xia, PENG Chao-Jun, HUA Xia, QI Xue-Li, HU Lin, XU Wei-Gang. Transcriptomics profile of transgenic OsPHR2 wheat under different phosphorus stress [J]. Acta Agronomica Sinica, 2024, 50(2): 340-353. |
[8] | XIE Wei, HE Peng, MA Hong-Liang, LEI Fang, HUANG Xiu-Lan, FAN Gao-Qiong, YANG Hong-Kun. Effects of straw mulching from autumn fallow and phosphorus application on nitrogen uptake and utilization of winter wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 440-450. |
[9] | SONG Xu-Dong, ZHU Guang-Long, ZHANG Shu-Yu, ZHANG Hui-Min, ZHOU Guang-Fei, ZHANG Zhen-Liang, MAO Yu-Xiang, LU Hu-Hua, CHEN Guo-Qing, SHI Ming-Liang, XUE Lin, ZHOU Gui-Sheng, HAO De-Rong. Identification of heat tolerance of waxy maizes at flowering stage and screening of evaluation indexes in the middle and lower reaches of Yangtze River region [J]. Acta Agronomica Sinica, 2024, 50(1): 172-186. |
[10] | YANG Li-Da, REN Jun-Bo, PENG Xin-Yue, YANG Xue-Li, LUO Kai, CHEN Ping, YUAN Xiao-Ting, PU Tian, YONG Tai-Wen, YANG Wen-Yu. Crop growth characteristics and its effects on yield formation through nitrogen application and interspecific distance in soybean/maize strip relay intercropping [J]. Acta Agronomica Sinica, 2024, 50(1): 251-264. |
[11] | TAN Zhi-Xin, XIE Liu-Wei, LI Hong-Ge, LI Fang-Jun, TIAN Xiao-Li, LI Zhao-Hu. Identification of cotton low potassium tolerance based on AHP-membership function method at cotyledonary stage [J]. Acta Agronomica Sinica, 2024, 50(1): 199-208. |
[12] | YANG Chen-Xi, ZHOU Wen-Qi, ZHOU Xiang-Yan, LIU Zhong-Xiang, ZHOU Yu-Qian, LIU Jie-Shan, YANG Yan-Zhong, HE Hai-Jun, WANG Xiao-Juan, LIAN Xiao-Rong, LI Yong-Sheng. Mapping and cloning of plant height gene PHR1 in maize [J]. Acta Agronomica Sinica, 2024, 50(1): 55-66. |
[13] | YUE Run-Qing, LI Wen-Lan, MENG Zhao-Dong. Acquisition and resistance analysis of transgenic Maize Inbred Line LG11 with insect and herbicide resistance [J]. Acta Agronomica Sinica, 2024, 50(1): 89-99. |
[14] | AI Rong, ZHANG Chun, YUE Man-Fang, ZOU Hua-Wen, WU Zhong-Yi. Response of maize transcriptional factor ZmEREB211 to abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(9): 2433-2445. |
[15] | HUANG Yu-Jie, ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei, DING Shuang-Cheng. Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(9): 2331-2343. |
|