Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (2): 363-372.doi: 10.3724/SP.J.1006.2024.33022

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-wide association study of yield traits and special combining ability in maize hybrid population

MA Juan*(), CAO Yan-Yong   

  1. Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
  • Received:2023-04-06 Accepted:2023-09-13 Online:2024-02-12 Published:2023-09-28
  • Contact: *E-mail: majuanjuan85@126.com
  • Supported by:
    Science and Technology Project of Henan Province(222102110043);Science-Technology Foundation for Outstanding Young Scientists of Henan Academy of Agricultural Sciences(2020YQ04)

Abstract:

Increasing yield is the long-term goal of maize breeding. It is important to analyze the genetic basis of yield-related traits and combining ability for breeding new maize varieties with high yield. In this study, 123 maize inbred lines and eight tester lines were selected as the experimental parents, and 540 hybrids were obtained according to NCII (North Carolina design II). The F1 hybrids were investigated at the Xinxiang and Zhoukou experimental fields for eight yield and component traits, including kernel weight per ear, ear weight, 100-kernel weight, and kernel number per row. Parental genotypes were detected using maize 5.5K liquid breeding chip, and the genotypes of F1 hybrids were inferred. The additive and dominant models of BLINK (Bayesian information and links-disequilibrium iteratively nested keyway) were used to conduct genome-wide association study of the F1 hybrid phenotypes and special combining ability (SCA). The results showed that 10 and 31 significant association loci were detected by additive and dominant models for F1 hybrids, respectively. Eight SNPs (single nucleotide polymorphisms) were significantly associated with SCA using the dominant model. There were seven co-detected loci among different traits and models, and one of them was co-detected between ear weight and SCA. A total of 26 candidate genes were identified by scanning the major-effect and co-detected SNPs. Among them, transcription factors MYBR85, NLP9, PHD3, auxin up-regulated small RNA (SAUR11 and SAUR12), and FCS-like zinc finger protein gene FLZ16 may be important candidate genes for controlling yield traits and SCA of F1 hybrid.

Key words: maize, hybrid, special combining ability, genome-wide association study

Fig. 1

Principal component analysis"

Table 1

Correlation coefficient among different traits"

性状Trait 单穗粒重KWE 单穗重EW 百粒重HKW 行粒数KNR 穗长EL 穗粗ED 粒长KL 粒宽KW
单穗粒重KWE 0.62*** 0.98*** 0.63*** 0.41*** 0.53*** 0.46*** 0.59*** 0.61***
单穗重EW 0.96*** 0.61*** 0.64*** 0.39*** 0.55*** 0.49*** 0.56*** 0.60***
百粒重HKW 0.32*** 0.33*** 0.72*** 0.10* 0.23*** 0.34*** 0.49*** 0.69***
行粒数KNR 0.42*** 0.43*** 0.02 0.87*** 0.64 -0.04 0.04 0.28***
穗长EL 0.57*** 0.60*** 0.13** 0.62*** 0.84*** -0.01 -0.03 0.33***
穗粗ED 0.43*** 0.44*** 0.28*** 0.01 0.04 0.77*** 0.38*** 0.15***
粒长KL 0.51*** 0.48*** 0.25*** 0.00 -0.01 0.42*** 0.70*** 0.43***
粒宽KW 0.24*** 0.28*** 0.45*** 0.12* 0.19*** 0.13*** 0.18*** 0.65***

Table 2

Significant SNPs for F1 hybrid traits and special combining ability"

性状
Trait
SNP名称
SNP name
最小等位基因频率
Minor allele frequency
P
P-value
模型
Model
表型变异解释率
Phenotypic variance explained (%)
KWE 3_229718911 0.18 2.15E-09 F1_ADD 19.62
KWE 10_2362594 0.21 2.26E-06 F1_ADD 8.59
EW 2_172799260 0.15 8.42E-15 F1_ADD 81.65
EW 4_245349341 0.25 9.06E-07 F1_ADD 1.70
HKW 6_163896721 0.16 1.10E-06 F1_ADD 19.58
HKW 7_180299 0.38 2.59E-06 F1_ADD 16.62
EL 3_223382067 0.33 9.11E-07 F1_ADD 17.64
EL 8_170590897 0.45 3.62E-08 F1_ADD 11.14
KW 9_158819519 0.10 2.38E-09 F1_ADD 27.30
KW 10_140869639 0.47 4.97E-06 F1_ADD 0.34
KWE 1_3495500 0.39 6.77E-08 F1_DOM 2.48
KWE 1_224025559 0.44 2.30E-06 F1_DOM 1.80
KWE 2_35999586 0.41 1.75E-06 F1_DOM 10.33
KWE 3_151476859 0.38 1.74E-10 F1_DOM 15.39
KWE 4_124715480 0.42 1.78E-09 F1_DOM 3.64
KWE 4_245349341 0.25 1.49E-19 F1_DOM 2.06
KWE 7_9222599 0.29 1.12E-09 F1_DOM 0.81
KWE 8_135270440 0.23 1.61E-07 F1_DOM 13.22
EW 10_128608741 0.36 1.32E-09 F1_DOM 33.90
KNR 9_126752677 0.24 4.23E-08 F1_DOM 4.89
HKW 1_263446521 0.34 1.03E-07 F1_DOM 5.90
HKW 4_158534508 0.30 8.54E-08 F1_DOM 1.35
HKW 4_245349341 0.25 9.78E-12 F1_DOM 7.04
HKW 8_173023129 0.38 1.78E-06 F1_DOM 23.62
EL 1_286265360 0.26 4.50E-06 F1_DOM 0.39
EL 2_215919932 0.39 1.66E-09 F1_DOM 0.97
EL 2_240628723 0.45 2.89E-08 F1_DOM 2.51
EL 3_229718911 0.32 5.19E-18 F1_DOM 4.02
EL 3_231983795 0.43 1.28E-10 F1_DOM 2.57
EL 5_25546627 0.20 2.57E-06 F1_DOM 0.92
EL 8_1358238 0.39 2.49E-06 F1_DOM 0.98
EL 8_1358337 0.39 2.49E-06 F1_DOM 0.90
EL 8_11330000 0.39 2.49E-06 F1_DOM 0
EL 8_11330024 0.39 2.49E-06 F1_DOM 0.56
ED 9_126752677 0.24 8.12E-08 F1_DOM 1.23
KL 2_202588564 0.40 5.09E-07 F1_DOM 2.12
KL 4_124715480 0.42 3.11E-08 F1_DOM 5.18
KL 7_23591153 0.34 1.63E-09 F1_DOM 3.37
KL 10_119211470 0.27 7.08E-10 F1_DOM 1.61
KL 10_140869698 0.23 1.87E-07 F1_DOM 2.41
KW 1_263446521 0.34 5.66E-07 F1_DOM 4.41
KW 2_9499620 0.42 1.12E-07 F1_DOM 2.06
KW 3_229718911 0.32 5.27E-06 F1_DOM 0
KW 5_1099333 0.42 2.14E-08 F1_DOM 3.62
KW 6_105844375 0.40 2.78E-06 F1_DOM 3.18
KW 9_158819519 0.40 1.86E-07 F1_DOM 1.86
SCA_EW 2_2038269 0.20 1.48E-07 SCA_DOM 6.15
SCA_EW 4_3412671 0.28 3.44E-07 SCA_DOM 21.19
SCA_EW 6_75433362 0.25 1.03E-07 SCA_DOM 3.16
SCA_EW 10_128608741 0.36 1.40E-06 SCA_DOM 3.86
SCA_EL 2_226466002 0.28 1.32E-10 SCA_DOM 23.09
SCA_ED 7_13827332 0.29 9.09E-07 SCA_DOM 35.86
SCA_ED 8_179883706 0.36 2.54E-07 SCA_DOM 7.85
SCA_KL 6_67818656 0.27 8.19E-07 SCA_DOM 16.80

Table 3

Candidate genes identified from major-effect and co-detected SNPs"

性状
Trait
SNP名称
SNP name
候选基因
Candidate gene
KWE_F1_ADD, EL_F1_DOM, KW_F1_DOM 3_229718911 Zm00001d044497 (thioredoxin family Trp26)
EW_F1_ADD 2_172799260 Unknown
HKW_F1_ADD 6_163896721 Zm00001d038753 (ubiquitin domain containing 1)
HKW_F1_ADD 7_180299 Zm00001d018595 (sulfoquinovosyl transferase SQD2)
EL_F1_ADD 3_223382067 Zm00001d044267 (glyoxylate/succinic semialdehyde reductase 2)
EL_F1_ADD 8_170590897 Zm00001d012232, Zm00001d012233 (PHD finger protein)
KW_F1_ADD, KW_F1_DOM 9_158819519 Zm00001d048563
KWE_F1_DOM 2_35999586 Unknown
KWE_F1_DOM 3_151476859 Zm00001d042114, Zm00001d042115, Zm00001d042116 (U-box domain-containing protein 44)
KWE_F1_DOM 8_135270440 Zm00001d010967 (MYB-related-transcription factor 85)
EW_F1_DOM, EW_SCA_DOM 10_128608741 Zm00001d025757 (NLP-transcription factor 9)
HKW_F1_DOM 8_173023129 Zm00001d012361, Zm00001d012362 (O-fucosyltransferase 19)
EW_F1_ADD, KWE_F1_DOM, HKW_F1_DOM 4_245349341 Zm00001d054032, Zm00001d054033 (DNA-directed RNA polymerase II 16 kDa polypeptide), Zm00001d054034
KWE_F1_DOM, KL_F1_DOM 4_124715480 Zm00001d050822 (CLP protease regulatory subunit CLPX3), Zm00001d050823
HKW_F1_DOM, KW_F1_DOM 1_263446521 Zm00001d033463 (small auxin up RNA11), Zm00001d033464 (small auxin up RNA12), Zm00001d033465
KNR_F1_DOM, ED_F1_DOM 9_126752677 Unknown
EW_SCA_DOM 4_3412671 Zm00001d048693 (senescence-associated protein OSA15), Zm00001d048694 (FCS-like zinc finger16)
EL_SCA_DOM 2_226466002 Zm00001d007274 (F-box/kelch-repeat protein At2g44130-like)
ED_SCA_DOM 7_13827332 Zm00001d019039 (PHD-transcription factor 3)
KL_SCA_DOM 6_67818656 Unknown

Fig. 2

Favourable allele analysis of major-effect and co-detected SNPs Abbreviations are the same as those given in Table 1. *: P < 0.05; **: P < 0.01; ***: P < 0.001."

[1] Birchler J A, Auger D L, Riddle N C. In search of the molecular basis of heterosis. Plant Cell, 2003, 15: 2236-2239.
doi: 10.1105/tpc.151030 pmid: 14523245
[2] Sprague G F, Tatum L A. General vs specific combining ability in single crosse of corn. J Am Soc Agron, 1942, 34: 923-932.
doi: 10.2134/agronj1942.00021962003400100008x
[3] 李周帅, 董远, 李婷, 冯志前, 段迎新, 杨明羡, 徐淑兔, 张兴华, 薛吉全. 基于杂交种群体的玉米产量及其配合力的全基因组关联分析. 中国农业科学, 2022, 55: 1695-1709.
doi: 10.3864/j.issn.0578-1752.2022.09.001
Li Z S, Dong Y, Li T, Feng Z Q, Duan Y X, Yang M X, Xu S T, Zhang X H, Xue J Q. Genome-wide association analysis of yield and combining ability based on maize hybrid population. Sci Agric Sin, 2022, 55: 1695-1709 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.09.001
[4] Navarro J A R, Wilcox M, Burgueño J, Romay C, Swarts K, Trachsel S, Preciado E, Terron A, Delgado H V, Vidal V, Ortega A, Banda A E, Montiel N O G, Ortiz-Monasterio I, Vicente F S, Espinoza A G, Atlin G, Wenzl P, Hearne S, Buckler E S. Corrigendum: a study of allelic diversity underlying flowering-time adaptation in maize landraces. Nat Genet, 2017, 49: 970.
doi: 10.1038/ng0617-970c pmid: 28546574
[5] Xiao Y, Jiang S, Cheng Q, Wang X, Yan J, Zhang R, Qiao F, Ma C, Luo J, Li W, Liu H, Yang W, Song W, Meng Y, Warburton M L, Zhao J, Wang X, Yan J. The genetic mechanism of heterosis utilization in maize improvement. Genome Biol, 2021, 22: 148.
doi: 10.1186/s13059-021-02370-7 pmid: 33971930
[6] 李婷, 王亚鹏, 董远, 郭瑞士, 李冬梅, 唐雅伶, 张兴华, 薛吉全, 徐淑兔. 基于杂交群体解析玉米籽粒大小相关性状及其配合力的分子遗传机制. 作物学报, 2022, 48: 2451-2462.
doi: 10.3724/SP.J.1006.2022.13052
Li T, Wang Y P, Dong Y, Guo R S, Li D M, Tang Y L, Zhang X H, Xue J Q, Xu S T. Dissecting the genetic basis of kernel size related traits and their combining ability based on a hybrid population in maize. Acta Agron Sin, 2022, 48: 2451-2462 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.13052
[7] 李婷, 董远, 张君, 冯志前, 王亚鹏, 郝引川, 张兴华, 薛吉全, 徐淑兔. 玉米杂交种穗部性状的全基因组关联分析. 中国农业科学, 2022, 55: 2485-2499.
doi: 10.3864/j.issn.0578-1752.2022.13.001
Li T, Dong Y, Zhang J, Feng Z Y, Wang Y P, Hao Y C, Zhang X H, Xue J Q, Xu S T. Genome-wide association study of ear related traits in maize hybrids. Sci Agric Sin, 2022, 55: 2485-2499 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.13.001
[8] Zhang Y, Wan J, He L, Lan H, Li L. Genome-wide association analysis of plant height using the maize F1 population. Plants, 2019, 8: 432.
doi: 10.3390/plants8100432
[9] 卢雨晴, 崔淑娜, 张红伟, 郑军, 潘金豹, 张秋芝. 利用杂交种群体解析玉米酸性洗涤纤维含量的遗传基础. 分子植物育种, 2022, https://kns.cnki.net/kcms/detail/46.1068.s.20220512.1531.030.html.
Lu Y Q, Cui S N, Zhang H W, Zheng J, Pan J B, Zhang Q Z. The genetic basis of acid detergent fiber content in maize was analysed using hybrid populations, Mol Plant Breed, 2022, https://kns.cnki.net/kcms/detail/46.1068.s.20220512.1531.030.html (in Chinese with English abstract).
[10] Meng L, Li H, Zhang L, Wang J. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001
[11] Ma J, Cao Y, Wang Y, Ding Y. Development of the maize 5.5K loci panel for genomic prediction through genotyping by target sequencing. Front Plant Sci, 2022, 13: 972791.
doi: 10.3389/fpls.2022.972791
[12] Huang M, Liu X, Zhou Y, Summers R M, Zhang Z. BLINK: a package for the next level of genome-wide association studies with both individuals and markers in the millions. GigaScience, 2019, 8: giy154.
[13] Yi Q, Liu Y, Hou X, Zhang X, Li H, Zhang J, Liu H, Hu Y, Yu G, Li Y, Wang Y, Huang Y. Genetic dissection of yield-related traits and mid-parent heterosis for those traits in maize (Zea mays L.). BMC Plant Biol, 2019, 19: 392.
doi: 10.1186/s12870-019-2009-2
[14] Li D, Zhou Z, Lu X, Jiang Y, Li G, Li J, Wang H, Chen S, Li X, Würschum T, Reif J C, Xu S, Li M, Liu W. Genetic dissection of hybrid performance and heterosis for yield-related traits in maize. Front Plant Sci, 2021, 12: 774478.
doi: 10.3389/fpls.2021.774478
[15] Zhang L, Liu G, Jia J, Zhao G, Xia C, Zhang L, Li F, Zhang Q, Dong C, Gao S, Han L, Guo X, Zhang X, Wu J, Liu X, Kong X. The wheat MYB-related transcription factor TaMYB72 promotes flowering in rice. J Integr Plant Biol, 2016, 58: 701-704.
doi: 10.1111/jipb.v58.8
[16] Liu K H, Liu M, Lin Z, Wang Z F, Chen B, Liu C, Guo A, Konishi M, Yanagisawa S, Wagner G, Sheen J. NIN-like protein 7 transcription factor is a plant nitrate sensor. Science, 2022, 377: 1419-1425.
doi: 10.1126/science.add1104
[17] Chen S, Li X, Yang C, Yan W, Liu C, Tang X, Gao C. Genome-wide identification and characterization of FCS-Like zinc finger (FLZ) Family genes in maize (Zea mays) and functional analysis of ZmFLZ25 in plant abscisic acid response. Int J Mol Sci, 2021, 22: 3529.
doi: 10.3390/ijms22073529
[18] Ma Y, Dong J, Yang W, Chen L, Wu W, Li W, Zhou L, Wang J, Chen J, Yang T, Zhang S, Zhao J, Liu B. OsFLZ2interacts with OsMADS51 to fine-tune rice flowering time. Development, 2022, 149: dev200862.
[19] Fernández Gómez J, Wilson Z A. A barley PHD finger transcription factor that confers male sterility by affecting tapetal development. Plant Biotechnol J, 12: 765-777.
doi: 10.1111/pbi.2014.12.issue-6
[20] Zhao J, Li W, Sun S, Peng L, Huang Z, He Y, Wang Z. The rice small auxin-up RNA gene OsSAUR33 regulates seed vigor via sugar pathway during early seed germination. Int J Mol Sci, 2021, 22: 1562.
doi: 10.3390/ijms22041562
[21] Chae K, Isaacs C G, Reeves P H, Maloney G S, Muday G K, Nagpal P, Reed J W. Arabidopsis SMALL AUXIN UP RNA63 promotes hypocotyl and stamen filament elongation. Plant J, 2012, 71: 684-697.
doi: 10.1111/tpj.2012.71.issue-4
[22] Raju S K K, Shao M R, Sanchez R, Xu Y Z, Sandhu A, Graef G, Mackenzie S. An epigenetic breeding system in soybean for increased yield and stability. Plant Biotechnol J, 2018, 16: 1836-1847.
doi: 10.1111/pbi.12919 pmid: 29570925
[23] 吴律, 代力强, 董青松, 施婷婷. 王丕武玉米行粒数的全基因组关联分析. 作物学报, 2017, 43: 1559-1564.
Wu L, Dai L Q, Dong Q S, Shi T T. Genome-wide association analysis of kernel number per pow in maize. Acta Agron Sin, 2017, 43: 1559-1564 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2017.01559
[24] 马雅杰, 鲍建喜, 高悦欣, 李雅楠, 秦文萱, 王彦博, 龙艳, 李金萍, 董振营, 万向元. 玉米株高和穗位高性状全基因组关联分析. 作物学报, 2023, 49: 647-661.
doi: 10.3724/SP.J.1006.2023.23023
Ma Y J, Bao J X, Gao Y X, Li Y N, Qin W X, Wang Y B, Long Y, Li J P, Dong Z Y, Wang X Y. Genome-wide association analysis of plant height and ear height related traits in maize. Acta Agron Sin, 2023, 49: 647-661 (in Chinese with English abstract).
[1] ZHAO Rong-Rong, CONG Nan, ZHAO Chuang. Optimal phase selection for extracting distribution of winter wheat and summer maize over central subregion of Henan Province based on Landsat 8 imagery [J]. Acta Agronomica Sinica, 2024, 50(3): 721-733.
[2] XUE Li, LI Xin-Yi, HUANG Yong-Tai, OU Cai-Lan, WU Xiao-Qing, YU Ze-Huai, CUI Ze-Tian, ZHANG Mu-Qing, DENG Zu-Hu, YU Fan. Component characterization of chromosome sets in the hybrids between sugarcane and Tripidium arundinaceum [J]. Acta Agronomica Sinica, 2024, 50(3): 633-644.
[3] LIANG Xing-Wei, YANG Wen-Ting, JIN Yu, HU Li, FU Xiao-Xiang, CHEN Xian-Min, ZHOU Shun-Li, SHEN Si, LIANG Xiao-Gui. Is cob color variation in maize accidental or incidental to any agronomic traits? —An example of national approved common hybrids over the past years [J]. Acta Agronomica Sinica, 2024, 50(3): 771-778.
[4] XUE Ming, WANG Chen-Chen, JIANG Lu-Guang, LIU Hao, ZHANG Lu-Yao, CHEN Sai-Hua. Mapping and functional analysis of maize inflorescence development gene AFP1 [J]. Acta Agronomica Sinica, 2024, 50(3): 603-612.
[5] MAO Yan, ZHENG Ming-Min, MOU Cheng-Xiang, XIE Wu-Bing, TANG Qi. Function analysis of the promoter of natural antisense transcript cis- NATZmNAC48 in maize under osmotic stress [J]. Acta Agronomica Sinica, 2024, 50(2): 354-362.
[6] YANG Jing-Lei, WU Bing-Jie, WANG An-Zhou, XIAO Ying-Jie. Genomic prediction of maize agronomic and quality traits using multi-omics data [J]. Acta Agronomica Sinica, 2024, 50(2): 373-382.
[7] LI Wan, LI Cheng, CHENG Min, WU Fang. Phosphorus transporter StPHO1.2 improving heat tolerance in potato [J]. Acta Agronomica Sinica, 2024, 50(2): 394-402.
[8] XU Ran, YANG Wen-Ye, ZHU Jun-Lin, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of different irrigation regimes on grain yield and water use efficiency in japonica-indica hybrid rice cultivar Yongyou 1540 [J]. Acta Agronomica Sinica, 2024, 50(2): 425-439.
[9] YANG Chen-Xi, ZHOU Wen-Qi, ZHOU Xiang-Yan, LIU Zhong-Xiang, ZHOU Yu-Qian, LIU Jie-Shan, YANG Yan-Zhong, HE Hai-Jun, WANG Xiao-Juan, LIAN Xiao-Rong, LI Yong-Sheng. Mapping and cloning of plant height gene PHR1 in maize [J]. Acta Agronomica Sinica, 2024, 50(1): 55-66.
[10] YUE Run-Qing, LI Wen-Lan, MENG Zhao-Dong. Acquisition and resistance analysis of transgenic Maize Inbred Line LG11 with insect and herbicide resistance [J]. Acta Agronomica Sinica, 2024, 50(1): 89-99.
[11] SONG Xu-Dong, ZHU Guang-Long, ZHANG Shu-Yu, ZHANG Hui-Min, ZHOU Guang-Fei, ZHANG Zhen-Liang, MAO Yu-Xiang, LU Hu-Hua, CHEN Guo-Qing, SHI Ming-Liang, XUE Lin, ZHOU Gui-Sheng, HAO De-Rong. Identification of heat tolerance of waxy maizes at flowering stage and screening of evaluation indexes in the middle and lower reaches of Yangtze River region [J]. Acta Agronomica Sinica, 2024, 50(1): 172-186.
[12] YANG Li-Da, REN Jun-Bo, PENG Xin-Yue, YANG Xue-Li, LUO Kai, CHEN Ping, YUAN Xiao-Ting, PU Tian, YONG Tai-Wen, YANG Wen-Yu. Crop growth characteristics and its effects on yield formation through nitrogen application and interspecific distance in soybean/maize strip relay intercropping [J]. Acta Agronomica Sinica, 2024, 50(1): 251-264.
[13] WANG Li-Ping, WANG Xiao-Yu, FU Jing-Ye, WANG Qiang. Functional identification of maize transcription factor ZmMYB12 to enhance drought resistance and low phosphorus tolerance in plants [J]. Acta Agronomica Sinica, 2024, 50(1): 76-88.
[14] AI Rong, ZHANG Chun, YUE Man-Fang, ZOU Hua-Wen, WU Zhong-Yi. Response of maize transcriptional factor ZmEREB211 to abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(9): 2433-2445.
[15] HUANG Yu-Jie, ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei, DING Shuang-Cheng. Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(9): 2331-2343.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[4] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[5] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[6] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[7] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[8] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[9] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[10] Qi Zhixiang;Yang Youming;Zhang Cunhua;Xu Chunian;Zhai Zhixi. Cloning and Analysis of cDNA Related to the Genes of Secondary Wall Thickening of Cotton (Gossypium hirsutum L.) Fiber[J]. Acta Agron Sin, 2003, 29(06): 860 -866 .