Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (3): 633-644.doi: 10.3724/SP.J.1006.2024.34100


Component characterization of chromosome sets in the hybrids between sugarcane and Tripidium arundinaceum

XUE Li1(), LI Xin-Yi1, HUANG Yong-Tai1, OU Cai-Lan1, WU Xiao-Qing1, YU Ze-Huai1, CUI Ze-Tian1, ZHANG Mu-Qing1, DENG Zu-Hu2, YU Fan1,*()   

  1. 1State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources / Guangxi Key Laboratory of Sugarcane Biology / College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
    2National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • Received:2023-06-16 Accepted:2023-09-13 Online:2024-03-12 Published:2023-09-27
  • Contact: *E-mail: yufanky@163.com
  • Supported by:
    Sugarcane Research Foundation of Guangxi University(2022GZB006);independent fund of Guangxi Key Laboratory of sugarcane biology(GXKLSCB-20190201)


T. arundinaceum (Tripidium arundinaceum) is an important wild germplasm resource of sugarcane. It is one of the important ways of sugarcane breeding to infiltrate its lineage to improve sugarcane resistance. Karyotyping of the hybrids between sugarcane and T. arundinaceum is beneficial for the efficient utilization of its various superior traits. In this study, we used species-specific primers for identifying the authenticity of the high generation hybrids between sugarcane and T. arundinaceum, and typed the sugarcane and T. arundinaceum chromosomes by fluorescence in situ hybridization to investigate the inheritance, segregation, and structural characteristics of T. arundinaceum in the offspring. These results indicated that 30 clones were true progeny with 1-10 T. arundinaceum chromosomes, indicating that their progeny population basically obeyed n+n mode of chromosome inheritance that accounted for 60% in the entire true progeny population. The probability of recombination at the chromosomal level between T. arundinaceum and sugarcane was about 16.67%, and the probability of recombination between T. arundinaceum and sugarcane of different lineages tended to be the same. Co-localization of S. spontaneum species-specific probes showed that infiltration of T. arundinaceum lineages reduced the proportion of S. officinarum and recombinant chromosomes in modern sugarcane cultivars, and simultaneously increased the proportion of S. spontaneum. In conclusion, analyzing the genetic and structural characteristics of different chromosome sets in the hybrids between sugarcane and T. arundinaceum provides a cytogenetic basis for improving the exploitation of T. arundinaceum germplasm resources in sugarcane breeding.

Key words: Saccharum, Tripidium arundinaceum, fluorescence in situ hybridization, chromosome inheritance

Fig. 1

Hybridized pedigree chart between sugarcane and T. arundinaceum"

Table 1

Experimental materials in this study"

1 海南92-77 Hainan 92-77 T. arundinaceum 19 崖城89-59 YCE 89-59 BC4
2 拔地拉 Badila S. officinarum 20 崖城89-60 YCE 89-60 BC4
3 Np-X S. spontaneum 21 崖城89-62 YCE 89-62 BC4
4 柳城05-136 LC 05-136 S. cultivars 22 崖城89-63 YCE 89-63 BC4
5 崖城05-164 YCE 05-164 BC3 23 崖城89-66 YCE 89-66 BC4
6 崖城89-23 YCE 89-23 BC4 24 崖城89-67 YCE 89-67 BC4
7 崖城89-40 YCE 89-40 BC4 25 崖城89-70 YCE 89-70 BC4
8 崖城89-41 YCE 89-41 BC4 26 崖城89-75 YCE 89-75 BC4
9 崖城89-42 YCE 89-42 BC4 27 崖城89-76 YCE 89-76 BC4
10 崖城89-47 YCE 89-47 BC4 28 崖城89-77 YCE 89-77 BC4
11 崖城89-48 YCE 89-48 BC4 29 崖城89-79 YCE 89-79 BC4
12 崖城89-49 YCE 89-49 BC4 30 崖城89-81 YCE 89-81 BC4
13 崖城89-50 YCE 89-50 BC4 31 崖城89-85 YCE 89-85 BC4
14 崖城89-52 YCE 89-52 BC4 32 崖城89-86 YCE 89-86 BC4
15 崖城89-53 YCE 89-53 BC4 33 崖城89-88 YCE 89-88 BC4
16 崖城89-54 YCE 89-54 BC4 34 崖城89-89 YCE 89-89 BC4
17 崖城89-55 YCE 89-55 BC4 35 崖城89-90 YCE 89-90 BC4
18 崖城89-57 YCE 89-57 BC4 36 崖城89-91 YCE 89-91 BC4

Table 2

Genomic probe preparation system"

Material name
Genomic probe of T. arundinaceum (µL)
Specific probe of S. spontaneum (µL)
10×DNA聚合酶I缓冲液 10×DNA polymerase I buffer 2.5 2.5
CY3/FITC标记的0.1 mmol L-1 dNTP混合液 CY3/FITC labeled 0.1 mmol L-1 dNTP mix 7 7
0.05 U μL-1 DNA内切酶I 0.05 U μL-1 DNase I 2 2
5 U μL-1 DNA聚合酶I 5 U μL-1 DNA polymerase I 2 2
DNA模板 DNA template 3 7.5
双蒸水 Double distilled water 8.5 4
总体系 Total system 25 25

Fig. 2

Identification of chromosomal composition of YCE 05-164 and LC 05-136 Green: T. arundinaceum genomic probe signal; Red: S. spontaneum special repetitively sequence probe signal; gray area: S. officinarum lineage; Bar: 10 μm. LC: Liucheng; YCE: Yacheng."

Fig. 3

Electrophoretic detection of PCR products of the BC4 hybrid between sugarcane and T. arundinaceum M: Standard markers; 1, 25: Hainan 92-77; 2, 26: Blank control; 3, 27: Badila; 4, 28: Np-X; 5, 29: LC 05-136; 6, 30: YCE 05-164. LC: Liucheng; YCE: Yacheng."

Fig. 4

Hybrid between sugarcane and T. arundinaceum contained six chromosomes of T. arundinaceum Red: signal of the S. spontaneum-Specific repeat probe; Green: genomic signal of T. arundinaceum; Gray area: S. officinarum lineage; Bar: 10 μm. YCE: Yacheng."

Fig. 5

Hybrid between sugarcane and T. arundinaceum contained seven chromosomes of T. arundinaceum Red: signal of the S. spontaneum-specific repeat probe; Green: genomic signal of T. arundinaceum; Gray area: S. officinarum lineage; Bar: 10 μm. YCE: Yacheng."

Fig. 6

Hybrid between sugarcane and T. arundinaceum contained eight chromosomes of T. arundinaceum Red: signal of the S. spontaneum-specific repeat probe; Green: genomic signal of T. arundinaceum; Gray area: S. officinarum lineage; Bar: 10 μm. YCE: Yacheng."

Fig. 7

Hybrid between sugarcane and T. arundinaceum contained nine chromosomes of T. arundinaceum Red: signal of the S. spontaneum-specific repeat probe; Green: genomic signal of T. arundinaceum; Gray area: S. officinarum lineage; Bar: 10 μm. YCE: Yacheng."

Fig. 8

Hybrid between sugarcane and T. arundinaceum contained zero, one, and ten T. arundinaceum chromosomes Red: signal of the S. spontaneum-specific repeat probe; Green: genomic signal of T. arundinaceum; Gray area: S. officinarum lineage; Bar: 10 μm. YCE: Yacheng."

Fig. 9

Chromosome genetic mapping of T. arundinaceum from the BC4 population between sugarcane and T. arundinaceum Red: specific probe signal of S. spontaneum; Green: genomic signal of T. arundinaceum; Blue border: translocated chromosomes with T. arundinaceum and S. officinarum; Yellow border: the recombinant chromosomes were translocated with T. arundinaceum; Red border: translocated chromosomes with T. arundinaceum and S. spontaneum. YCE: Yacheng."

Fig. 10

Chromosomal genetic characteristics of the true progenies between sugarcane and T. arundinaceum (a) the number proportion of different T. arundinaceum chromosomes in 89 combinations; (b) the ratio of normal chromosome to translocation chromosome; (c) 89 distribution of different consanguineous relationships in the combinations."

Fig. 11

Chromosomal translocations identified in population from the progeny between sugarcane and T. arundinaceum Red: specific probe signal of S. spontaneum; Green: genomic signal of T. arundinaceum; Gray area: S. officinarum lineage; Bar: 10 μm. YCE: Yacheng."

Table 3

Chromosomal composition of BC4 in the hybrid from sugarcane × T. arundinaceum"

Number of
T. arundinaceum
S. spontaneum chromosome
Recombination of
sugarcane chromosome
S. officinarum
柳城05-136 LC05-136 110 0 16 30 64
崖城05-164 YCE05-164 115 15 14 12 74
崖城89-23 YCE89-23 113 7 21 19 66
崖城89-40 YCE89-40 116 9 21 16 70
崖城89-41 YCE89-41 113 7 19 20 67
崖城89-42 YCE89-42 111 7 21 12 71
崖城89-47 YCE89-47 115 8 20 16 71
崖城89-48 YCE89-48 114 8 24 18 64
崖城89-49 YCE89-49 110 9 19 15 67
崖城89-50 YCE89-50 112 10 18 17 67
崖城89-52 YCE89-52 113 9 21 17 66
崖城89-53 YCE89-53 113 6 20 18 69
崖城89-54 YCE89-54 113 8 21 20 64
崖城89-55 YCE89-55 113 9 22 18 64
崖城89-57 YCE89-57 112 7 21 16 68
崖城89-59 YCE89-59 112 7 23 20 62
崖城89-60 YCE89-60 113 8 17 14 74
崖城89-62 YCE89-62 110 7 16 16 71
崖城89-63 YCE89-63 113 8 20 15 70
崖城89-66 YCE89-66 115 0 14 16 85
崖城89-67 YCE89-67 110 7 18 16 69
崖城89-70 YCE89-70 113 7 18 14 74
崖城89-75 YCE89-75 113 6 20 20 67
崖城89-76 YCE89-76 111 7 21 18 65
崖城89-77 YCE89-77 113 9 21 15 68
崖城89-79 YCE89-79 113 5 20 14 74
崖城89-81 YCE89-81 112 1 20 19 72
崖城89-85 YCE89-85 111 7 19 14 71
崖城89-86 YCE89-86 113 8 18 15 72
崖城89-88 YCE89-88 111 8 17 19 67
崖城89-89 YCE89-89 113 9 20 16 68
崖城89-90 YCE89-90 111 8 18 16 69
崖城89-91 YCE89-91 111 6 19 13 73
[1] Li X T, Guo Y R, Huang F, Wang Q S, Chai J, Yu F, Wu J Y, Zhang M Q, Deng Z H. Authenticity identification of Saccharum officinarum and Saccharum spontaneum germplasm materials. Agronomy, 2022, 12: 819.
doi: 10.3390/agronomy12040819
[2] 方静平, 阙友雄, 陈如凯. 甘蔗属起源及其与近缘属进化关系研究进展. 热带作物学报, 2014, 35: 816-822.
Fang J P, Que Y Q, Chen R K. A review of Saccharum origin and its evolutionary relationship with related genera. Chin J Trop Crops, 2014, 35: 816-822 (in Chinese with English abstract).
[3] Singh R K, Singh R B, Singh S P, Sharma M L. Identification of sugarcane microsatellites associated to sugar content in sugarcane and transferability to other cereal genomes. Euphytica, 2011, 182: 335-354.
doi: 10.1007/s10681-011-0484-0
[4] 李富生, 何丽莲, 杨清辉, 杨生超, 肖关丽, 何顺长. 蔗茅的特异性状及其与甘蔗杂交F1代的染色体和RAPD鉴定研究. 分子植物育种, 2003, 1: 775-781.
Li F S, He L L, Yang Q H, Yang S C, Xiao G L, He S C. Evaluation of some special characters of Erianthus fulvus and identification of sugarcane hybrids based on chromosome number and RAPD. Mol Plant Breed, 2003, 1: 775-781 (in Chinese with English abstract).
[5] Tai P Y P, Miller J D. A core collection for Saccharum spontaneum L. from the world collection of sugarcane. Crop Sci, 2001, 41: 879-885.
doi: 10.2135/cropsci2001.413879x
[6] 刘文荣, 邓祖湖, 张木清, 卓晓蕾, 符成, 张垂明. 甘蔗斑茅的杂交利用及其杂种后代鉴定系列研究: III. 甘蔗斑茅远缘杂交后代细胞遗传分析. 作物学报, 2004, 30: 1093-1096.
Liu W R, Deng Z H, Zhang M Q, Zhuo X L, Fu C, Zhang C M. Use and characterization of the genuine intergeneric hybrids from the cross of Saccharum spp. and E. arundinaceum Retz: III. Cytogenetic analysis for the hybrid and backcross progeny of S. officinarum L. and Erianthus sect. Acta Agron Sin, 2004, 30: 1093-1096 (in Chinese with English abstract).
[7] Wang J P, Roe B, Macmil S, Yu Q Y, Murray J E, Tang H B, Chen C X, Najar F, Wiley G, Bowers J, Van Sluys M A, Rokhsar D S, Hudson M E, Moose S O, Paterson A H, Ming R. Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes. BMC Genomics, 2010, 11: 261.
doi: 10.1186/1471-2164-11-261 pmid: 20416060
[8] Yang Q H, Li F S, He L L, He S C. Characterization of the chromosomal transmission of intergeneric hybrids of Saccharum spp. and Erianthus fulvus by genomic in situ hybridization. Crop Sci, 2010, 50: 1642-1648.
doi: 10.2135/cropsci2010.01.0004
[9] Piperidis G, Christopher M J, Carroll B J, Berding N, D'Hont A. Molecular contribution to selection of intergeneric hybrids between sugarcane and the wild species Erianthus arundinaceus. Genome, 2000, 43: 1033-1037.
pmid: 11195335
[10] Burner D M, Legendre B L. Chromosome transmission and meiotic stability of sugarcane (Saccharum spp.) hybrid derivatives. Crop Sci, 1993, 33: 600-606.
doi: 10.2135/cropsci1993.0011183X003300030036x
[11] Deng Z H, Zhang M Q, Lin W L, Cheng F, Zhang C M, Li Y C, Lai L P, Lin Y Q, Chen R K. Analysis of disequilibrium hybridization in hybrid and backcross progenies of Saccharum officinarum × Erianthus arundinaceus. Agric Sci China, 2010, 9: 1271-1277.
doi: 10.1016/S1671-2927(09)60216-9
[12] Hermann S R, Aitken K S, Jackson P A, George A W, Piperidis N, Wei X, Kilian A, Detering F. Evidence for second division restitution as the basis for 2n+n maternal chromosome transmission in a sugarcane cross. Euphytica, 2012, 187: 359-368.
doi: 10.1007/s10681-012-0698-9
[13] Piperidis G, Piperidis N, D’Hont A. Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane. Mol Genet Genomics, 2010, 284: 65-73.
doi: 10.1007/s00438-010-0546-3 pmid: 20532565
[14] 刘昔辉, 方锋学, 高轶静, 张荣华, 宋焕忠, 杨荣仲, 方位宽, 段维兴, 罗霆, 张革民. 斑茅割手密杂种后代真实性鉴定及遗传分析. 作物学报, 2012, 38: 914-920.
Liu X H, Fang F X, Gao Y J, Zhang R H, Song H Z, Yang R Z, Fang W K, Duan W X, Luo T, Zhang G M. Identification and genetic analysis of hybrid from cross between Erianthus arundinacius (Retz.)Jesws. and Saccharum spontaneum L. Acta Agron Sin, 2012, 38: 914-920 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2012.00914
[15] Li X T, Huang F, Chai J, Wang Q S, Yu F, Huang Y J, Wu J Y, Wang Q N, Xu L N, Zhang M Q, Deng Z H. Chromosome behavior during meiosis in pollen mother cells from Saccharum officinarum × Erianthus arundinaceus F1 hybrids. BMC Plant Biol, 2021, 21: 139.
doi: 10.1186/s12870-021-02911-z
[16] Piperidis N, Chen J W, Deng H H, Wang L P, Jackson P, Piperidis G. GISH characterization of Erianthus arundinaceus chromosomes in three generations of sugarcane intergeneric hybrids. Genome, 2010, 53: 331-336.
doi: 10.1139/g10-010 pmid: 20616864
[17] Wu J Y, Huang Y J, Lin Y Q, Fu C, Liu S M, Deng Z H, Li Q W, Huang Z X, Chen R K, Zhang M Q. Unexpected inheritance pattern of Erianthus arundinaceus chromosomes in the intergeneric progeny between Saccharum spp. and Erianthus arundinaceus. PLoS One, 2014, 9: e110390.
doi: 10.1371/journal.pone.0110390
[18] 陈健文, Piperidis N, 李奇伟, 陈勇生, 符成, Jackson P, Piperidis G, 邓海华. 用基因组原位杂交方法分析甘蔗-斑茅杂种及回交后代的染色体组成. 分子植物育种, 2010, 8: 293-296.
Chen J W, Piperidis N, Li Q W, Chen Y S, Fu C, Jackson P, Piperidis G, Deng H H. Chromosome pattern of the hybrids and their backcross progenies derived from sugarcane and Erianthus arundinaceus identified by in situ genomic hybridization. Mol Plant Breed., 2010, 8: 293-296 (in Chinese with English abstract).
[19] Huang Y J, Wu J Y, Wang P, Lin Y Q, Fu C, Deng Z H, Wang Q N, Li Q W, Chen R K, Zhang M Q. Characterization of chromosome inheritance of the intergeneric BC2 and BC3 progeny between Saccharum spp. and Erianthus arundinaceus. PLoS One, 2015, 10: e0133722.
doi: 10.1371/journal.pone.0133722
[20] Mace E S, Buhariwalla K K, Buhariwalla H K, Crouch J H. A high-throughput DNA extraction protocol for tropical molecular breeding programs. Plant Mol Biol Rep, 2003, 21: 459-460.
doi: 10.1007/BF02772596
[21] Yang S, Zeng K, Chen K, Wu J Y, Wang Q N, Li X T, Deng Z H, Huang Y J, Huang F, Chen R K, Zhang M Q. Chromosome transmission in BC4 progenies of intergeneric hybrids between Saccharum spp. and Erianthus arundinaceus (Retz.) Jeswiet. Sci Rep, 2019, 9: 2528.
doi: 10.1038/s41598-019-38710-8
[22] Braz G T, Yu F, Zhao H N, Deng Z H, Birchler J A, Jiang J M. Preferential meiotic chromosome pairing among homologous chromosomes with cryptic sequence variation in tetraploid maize. New Phytol, 2021, 229: 3294-3302.
doi: 10.1111/nph.17098 pmid: 33222183
[23] Yu F, Zhao X W, Chai J, Ding X E, Li X T, Huang Y J, Wang X H, Wu J Y, Zhang M Q, Yang Q H, Deng Z H, Jiang J M. Chromosome-specific painting unveils chromosomal fusions and distinct allopolyploid species in the Saccharum complex. New Phytol, 2022, 233: 1953-1965.
doi: 10.1111/nph.v233.4
[24] Huang Y J, Chen H, Han J L, Zhang Y, Ma S L, Yu G R, Wang Z H, Wang K. Species-specific abundant retrotransposons elucidate the genomic composition of modern sugarcane cultivars. Chromosoma, 2020, 129: 45-55.
doi: 10.1007/s00412-019-00729-1 pmid: 31848693
[25] Meng Z, Wang Q N, Khurshid H, Raza G, Han J L, Wang B H, Wang K. Chromosome painting provides insights into the genome structure and evolution of sugarcane. Front Plant Sci, 2021, 12: 731664.
doi: 10.3389/fpls.2021.731664
[26] Wang K, Cheng H, Han J L, Esh A, Liu J Y, Zhang Y B, Wang B H. A comprehensive molecular cytogenetic analysis of the genome architecture in modern sugarcane cultivars. Chromosome Res, 2022, 30: 29-41.
doi: 10.1007/s10577-021-09680-3 pmid: 34988746
[27] Wang H W, Sun S L, Ge W Y, Zhao L F, Hou B Q, Wang K, Lyu Z F, Chen L Y, Xu S S, Guo J, Li M, Su P S, Li X F, Wang G P, Bo C Y, Fang X J, Zhuang W W, Cheng X X, Wu J W, Dong L H, Chen W Y, Li W, Xiao G L, Zhao J X, Hao Y C, Xu Y, Gao Y, Liu W J, Liu Y H, Yin H Y, Li J Z, Li X, Zhao Y, Wang X Q, Ni F, Ma X, Li A F, Xu S S, Bai G H, Nevo E, Gao C X, Ohm H, Kong L R. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science, 2020, 368: eaba5435.
doi: 10.1126/science.aba5435
[28] Li J J, Zhao L, Lü B Y, Fu Y, Zhang S F, Liu S H, Yang Q H, Wu J Y, Li J C, Chen X H. Development and characterization of a novel common wheat-Mexico Rye T1DL·1RS translocation line with stripe rust and powdery mildew resistance. J Integr Agric, 2023, 22: 1291-1307.
doi: 10.1016/j.jia.2022.08.039
[29] Alix K, Baurens F C, Paulet F, Glaszmann J C, D’Hont A. Isolation and characterization of a satellite DNA family in the Saccharum complex. Genome, 1998, 41: 854-864.
pmid: 9924794
[30] Pachakkil B, Terajima Y, Ohmido N, Ebina M, Irei S, Hayashi H, Takagi H. Cytogenetic and agronomic characterization of intergeneric hybrids between Saccharum spp. hybrid and Erianthus arundinaceus. Sci Rep, 2019, 9: 1748.
doi: 10.1038/s41598-018-38316-6 pmid: 30742000
[1] SHI Pei-Yao, CHEN Li-Juan, SUN Hao-Jie, CHENG Meng-Hao, XIAO Jin, YUAN Chun-Xia, WANG Xiu-E, WANG Hai-Yan. Development of specific oligonucleotide probe library of Aegilops comosa and construction of oligo-FISH karyotype [J]. Acta Agronomica Sinica, 2023, 49(6): 1455-1465.
[2] LI Juan, ZHOU Jing-Ru, CHU Na, SUN Hui-Dong, HUANG Mei-Ting, FU Hua-Ying, GAO San-Ji. Gene cloning and expression analysis of ScPR10 in sugarcane under Acidovorax avenae subsp. avenae infection [J]. Acta Agronomica Sinica, 2023, 49(1): 97-104.
[3] XIAO Jian, CHEN Si-Yu, SUN Yan, YANG Shang-Dong, TAN Hong-Wei. Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications [J]. Acta Agronomica Sinica, 2022, 48(5): 1222-1234.
[4] FU Hua-Ying, ZHANG Ting, PENG Wen-Jing, DUAN Yao-Yao, XU Zhe-Xin, LIN Yi-Hua, GAO San-Ji. Identification of resistance to leaf scald in newly released sugarcane varieties at seedling stage by artificial inoculation [J]. Acta Agronomica Sinica, 2021, 47(8): 1531-1539.
Full text



[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .