Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (3): 645-655.doi: 10.3724/SP.J.1006.2024.34084

• CROP GENETICS & BREEDINGZ·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning, expression, and function of HcKAN4 gene of kenaf in flavonoid synthesis

WU Fa-Xuan1,2(), LI Qin1,2, YANG Xin1,2, LI Xin-Gen1,2, XU Jian-Tang1,2, TAO Ai-Fen1,2, FANG Ping-Ping1,2, QI Jian-Min1,2, ZHANG Li-Wu1,2,*()   

  1. 1Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University / Key Laboratory of Ministry of Agriculture and Rural Affairs for Biological Breeding of Fujian and Taiwan Crops / Fujian Key Laboratory for Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    2Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University / Public Platform of Fujian for Germplasm Resources of Bast Fiber Crops / Fujian International Science and Technology Cooperation Base for Genetics, Breeding and Multiple Utilization Development of Southern Economic Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • Received:2023-05-17 Accepted:2023-09-13 Online:2024-03-12 Published:2023-09-28
  • Contact: *E-mail: lwzhang@fafu.edu.cn; zhang_liwu@hotmail.com
  • Supported by:
    National Natural Science Foundation of China(31972968);China Agriculture Research System of MOF and MARA(CARS-16)

Abstract:

MYB-like transcription factor KAN4 (KANADI4) plays an important role in flavonoid synthesis and fiber development in kenaf. In this study, the variety “Fuhong 952” was used as the experimental material to clone and analyze the relative expression pattern of HcKAN4 genes, and to investigate the effect of TRV-VIGS-induced silencing of HCKAN4 gene on the expression of key enzyme genes in flavonoid synthesis pathway in kenaf, the variety ‘Fuhong 952’ was used as the experimental material. Gene cloning showed that the total length of ORF of HcKAN4 gene was 966 bp, encoding 322 amino acids and containing a conserved domain of MYB. Phylogenetic tree revealed that it was closely related to KAN4s of Arabidopsis and Hibiscus. The relative expression pattern indicated that the gene was expressed in different plant tissues, and the transcription level increased with plant growth in kenaf. VIGS-induced gene silencing revealed that the transcription level of 6 HcKAN4 individuals was significantly down-regulated, indicating gene silencing successfully. Real-time quantitative PCR demonstrated that the relative level of flavonoid synthesis-related genes, HcCHS, HcF3'5'H, HcANS, and HcANR, were significantly down-regulated, which were 0.51, 0.14, 0.23, and 0.11 times of those in the control group, respectively, suggesting that the relative expression level of HcKAN4 gene can regulate the biosynthesis of flavonoid in kenaf. These results provide a basis for clarifying the regulation of flavonoid synthesis by MYB transcription factor and give research ideas for improving fiber quality in kenaf.

Key words: kenaf, HcKAN4, flavonoid synthesis, VIGS

Table S1

All primers used in this study"

引物名称
Prime name
引物序列
Prime sequences (5°-3°)
扩增长度Amplification length (bp) 用途
Usage
HcKAN4-F ACACTTGAGAAGAGACAACTCGT 966 基因克隆
Gene cloning
HcKAN4-R ATGATGAGAACCGCACTTTT
HcKAN4-SF GGGGACCACTTTGTACAAGAAAGCTGGGTCTCCATCCAAATCAACAATCC 254 基因沉默片段克隆
Fragment cloning of gene silencing
HcKAN4-SR GGGGACAAGTTTGTACAAAAAAGCAGGCTTCAAGCGTCAGAGCTCCCAG
pDONR207-F GTAACATCAGAGATTTTGAGACAC 250 载体检测
Vector detection
pDONR207-R TCGCGTTAACGCTAGCATGGATCTC
ATTB1-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTC 250 pTRV1 and pTRV2
ATTB1-R GGGGACCACTTTGTACAAGAAAGCTGGGTC
Hc18sRNA-F GGTTCACCTACGGAAACCTTG 175 qRT-PCR检测引物
Detection primers of qRT-PCR
Hc18sRNA-R CTACGTCCCTGCCCTTTGTA
HcKAN4-q-F TTTTGCCTGATCTATCCCTGC 145
HcKAN4-q-R AAATCGCTTCCACTACTCCCA
HcCHS-F GCACAAAGAGCCGAGGGTC 103
HcCHS-R TTCGCTGTTGGTGATACGGA
HcF3’5’H-F GCTAAGGCAGGCAGAAAGAGG 237
HcF3’5’H-R AGTGGGAAAAACGCCAAAATC
HcF3’H-F TTCAAGAACTGAGCCGCCA 136
HcF3’H-R TTGCCGCATATGAGCCCTA
HcANS-F GAGCAAAGGTACGAGGAGGGA 173
HcANS-R CAGCAACGGCAAGTTCAAGAG
HcANR-F CCCTTGCCCTTCAAATACTCC 171
HcANR-R GTTCCTCCACAAAAGATACCCG

Fig. 1

Cloning and sequence analysis of HcKAN4 gene in kenaf a: the electrophoretic map of HcKAN4 gene cloning. M: DL2000 DNA marker; 1 and 2 represent cloning products. b: the sequence alignment diagram of HcKAN4 protein with homologous proteins of other species. The red box represents MYB conserved domain, HcKAN4 represents kenaf KAN4 protein, HsKAN4 represents hibiscus KAN4 protein, GhKAN4 represents cotton KAN4 protein, DzKAN4 represents durian KAN4 protein, and VvKAN4 represents grape KAN4 protein. c: the schematic diagram of HcKAN4 gene structure."

Fig. S1

Phylogenetic tree of KAN4 proteins in different plants CaKAN4: pepper KAN4 protein; ZmKAN4, maize KAN4 protein; BaKAN4, rapeseed KAN4 protein; CsKAN4 cucumber protein; VvKAN4, grape KAN4 protein; HsKAN4: hibiscus KAN4 protein; ATKAN4, Arabidopsis KAN4 protein; HcKAN4: kenaf KAN4 protein; GaKAN4: cotton KAN4 protein; DzKAN4: durian KAN4 protein."

Fig. S2

Prediction of the transmembrane structure of Hc.KAN4 protein"

Fig. 2

Relative expression level of HcKAN4 genes of different tissues at different stages in kenaf root-60 d, stem-stick-60 d, leaf-60 d, stem-bark-60 d, and stem-bark- 120 d represent root, stem stick, leaf, stem bark after 60 days of seed germination, and stem bark after 120 days of seed germination, respectively. R, B3, B5, and B7 represent round leaf, tri-lobed leaf, penta-lobed leaf, and septi-lobed leaf after 120 days of seed germination, respectively."

Fig. 3

PCR detection of Hc.KAN4 recombinant plasmid transformation in kenaf M: DL2000 DNA marker. a: P represents plasmid, 1-4 represents Agrobacterium pTRV2-KAN4 to be tested; b: 1-5 represents Agrobacterium pTRV1 to be tested; c: 1-5 represents Agrobacterium pTRV2 (mock) to be tested."

Fig. 4

cDNA and amino acid sequences of HcKAN4 in kenaf The silent fragment is underlined by the red line."

Fig. 5

Silencing effect detection of individuals after HcKAN4 gene silencing in kenaf a: the relative expression level of HcKAN4 genes in leaves after VIGS silencing; b: the relative expression level of HcKAN4 genes in stem bark after VIGS silencing. Different lowercase letters above the bars indicate significant difference at the 0.05 probability level in the relative expression level of the same gene at different individuals."

Table 1

Genes related to flavonoid synthesis and their domains identified by NCBI (CDD)"

基因简称
Gene abbreviation
红麻数据库编号
Database number of H. cannabinus L.
结构域
Domain
CDD (蛋白Protein)
区间 Interval EE-value
Hc.CHS Hc.02G012910 PLN03172 super family 36-424 0
Hc.F3’H Hc.17G017480 p450 super family 23-510 0
Hc.ANR Hc.12G017890 PLN00198 super family 1-335 0
Hc.F3’5’H Hc.10G006460 p450 super family 6-508 0
Hc.ANS Hc.11G024480 PLN03178 2-355 0

Fig. 6

Relative expression level of genes related to flavonoid biosynthesis at different stages in kenaf Hypocotyl-10 d: hypocotyl of 10 days after seed; stem-bark60 d: stem barks of 60 days after seed; stem-bark-120 d: stem barks of 120 days after seed. Different lowercase letters above the bars indicate that there is significant difference at the 0.05 probability level in the relative expression level of the same gene at different stages."

Fig. 7

Relative expression level of genes related to cellulose and lignin biosynthesis at different stages in kenaf a: the relative expression level of lignin synthesis-related genes in stem bark at different stages; b: the relative expression level of cellulose synthesis related genes in stem bark at different stages; Hypocotyl-10 d: hypocotyl of 10 days after seed; stem-bark60 d: stem barks of 60 days after seed; stem-bark-120 d: stem barks of 120 days after seed. Different lowercase letters above the bars indicate that there is significant difference at the 0.05 probability level in the relative expression level of the same gene at different stages."

Fig. 8

Relative expression level of flavonoid synthesis-related genes after VIGS silencing of HcKAN4 gene in kenaf Each group of data represents the mean of 3 technical replicates, and the error is expressed in SD; * and ** mean significant differences at the 0.05 and 0.01 probability levels, respectively. HcCHS: chalcone synthetase gene; HcF3'H: flavonoid 3’-hydroxylase gene; HcF3'5H: flavonoid 3’5’-hydroxylase gene; HcANS: anthocyanin synthase gene; HcANR: anthocyanin reductase gene."

[1] Afzal M Z, Ibrahim A K, Xu Y, Niyitanga S, Li Y, Li D, Yang X, Zhang L. Kenaf (Hibiscus cannabinus L.) breeding. J Nat Fibers, 2022, 19: 4063-4081.
doi: 10.1080/15440478.2020.1852998
[2] Sreenivas H T, Krishnamurthy N, Arpitha G R. A comprehensive review on light weight kenaf fiber for automobiles. Intl J Lightweight Mater Manufact, 2020, 3: 328-337.
[3] Saba N, Paridah M T, Jawaid M. Mechanical properties of kenaf fiber reinforced polymer composite: a review. Constr Build Mater, 2015, 76: 87-96.
doi: 10.1016/j.conbuildmat.2014.11.043
[4] Mahmood A, Sapuan S M, Karmegam K, Abu A S. Design and development of kenaf fiber-reinforced polymer composite polytechnic chairs. Asian J Agric Biol, 2018, 6: 62-65.
[5] 张迪, 赵文军, 马丽娟, 柴友荣. 原花青素的性质、功能、纯化和利用. 安徽农学通报, 2009, 15(1): 35-39.
Zhang D, Zhao W J, Ma L J, Chai Y R. Properties, functions, purification and utilization of proanthocyanidins. Anhui Agric Sci Bull, 2009, 15(1): 35-39 (in Chinese with English abstract).
[6] 刘淑华, 臧丹丹, 孙燕, 李金霞, 赵恒田. 花青素生物合成途径及关键酶研究进展. 土壤与作物, 2022, 11: 336-346.
Liu S H, Zang D D, Sun Y, Li J X, Zhao H T. Research advances on biosynthesis pathway of anthocyanins and relevant key enzymes. Soil Crop, 2022, 11: 336-346 (in Chinese with English abstract).
[7] 赵文军, 张迪, 马丽娟. 原花青素的生物合成途径、功能基因和代谢工程. 植物生理学通讯, 2009, 45: 509-519.
Zhao W J, Zhang D, Ma L J. Biosynthetic pathway, functional genes and metabolic engineering of proanthocyanidins. Plant Physiol J, 2009, 45: 509-519 (in Chinese with English abstract).
[8] 苏全胜, 王爽, 孙玉强, 梅俊, 柯丽萍. 植物原花青素生物合成及调控研究进展. 中国细胞生物学学报, 2021, 43(1): 219-229.
Su Q S, Wang S, Sun Y Q, Mei J, He L P. Advances in biosynthesis and regulation of plant proanthocyanidins. Chin J Cell Biol, 2021, 43(1): 219-229 (in Chinese with English abstract).
[9] Chen L H, Hu B, Qin Y H, Hu G B, Zhao J T. Advance of the negative regulation of anthocyanin biosynthesis by MYB transcription factors. Plant Physiol Biochem, 2019, 136: 178-187.
doi: 10.1016/j.plaphy.2019.01.024
[10] 安秀红, 张修德, 陈可钦, 刘肖娟, 郝玉金, 程存刚. 苹果MdMYB9、MdMYB11表达及其蛋白互作分析. 中国农业科学, 2015, 11: 2208-2216.
An X H, Zhang X D, Chen K Q, Liu X J, Hao Y J, Cheng C G. Expression and protein interaction analysis of MdMYB9 and MdMYB11 in apple. Sci Agric Sin, 2015, 11: 2208-2216 (in Chinese with English abstract).
[11] Peter C P. Molecular controls of proanthocyanidin synthesis and structure: Prospects for genetic engineering in crop plants. J Agric Food Chem, 2018, 66: 9882-9888.
doi: 10.1021/acs.jafc.8b02950
[12] Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell, 2001, 13: 2009-2114.
[13] Akhter D, Qin R, Nath U K, Jin X L, Shi C H. A rice gene, OsPL, encoding a MYB family transcription factor confers anthocyanin synthesis, heat stress response and hormonal signaling. Gene, 2019, 699: 62-72.
doi: S0378-1119(19)30234-3 pmid: 30858135
[14] Liu C C, Jun J H, Dixon R A. MYB5 and MYB14 play pivotal roles in seed coat polymer biosynthesis in Medicago truncatula. Plant Physiol, 2014, 165: 1424-1439.
doi: 10.1104/pp.114.241877
[15] Zhou M L, Sun Z M, Ding M Q, Logacheva M D, Kreft I, Wang D, Yan M L, Shao J R, Tang Y X, Wu Y M, Zhu X M. FtSAD2 and FtJAZ1 regulate activity of the FtMYB11 transcription repressor of the phenylpropanoid pathway in Fagopyrum tataricum. New Phytol, 2017, 216: 814-828.
doi: 10.1111/nph.2017.216.issue-3
[16] Gao P, Li X A, Cui D J, Wu L M, Parkin I, Gruber M Y, Margaret Y G. A new dominant Arabidopsis transparent testa mutant, sk21- D, and modulation of seed flavonoid biosynthesis by KAN4. Plant Biotechnol J, 2010, 8: 979-993.
doi: 10.1111/pbi.2010.8.issue-9
[17] Purkayastha A, Dasgupta I. Virus-induced gene silencing: a versatile tool for discovery of gene functions in plants. Plant Physiol Biochem, 2009, 47: 967-976.
doi: 10.1016/j.plaphy.2009.09.001
[18] Chantreau M, Chabbert B, Billiard S, Billiard S, Hawkins S, Neutelings G. Functional analyses of cellulose synthase genes in flax (Linum usitatissimum) by virus-induced gene silencing. Plant Biotechnol J, 2015, 13: 1312-1324.
doi: 10.1111/pbi.12350 pmid: 25688574
[19] 王心宇, 吕坤, 蔡彩平, 徐军, 郭旺珍. TRV 病毒介导的基因沉默体系在棉花中的建立及应用. 作物学报, 2014, 40: 1356-1363.
doi: 10.3724/SP.J.1006.2014.01356
Wang X Y, Lyu K, Cai C P, Xu J, Guo W Z. Establishment and application of TRV-mediated virus-induced gene silencing in cotton. Acta Agron Sin, 2014, 40: 1356-1363 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.01356
[20] Liu Y L, Schiff M, Dinesh-Kumar S P. Virus-induced gene silencing in tomato. Plant J, 2002, 31: 777-786.
doi: 10.1046/j.1365-313x.2002.01394.x pmid: 12220268
[21] Zhang L W, Wan X B, Xu J T, Lin L H, Qi J M. De novo assembly of kenaf (Hibiscus cannabinus) transcriptome using Illumina sequencing for gene discovery and marker identification. Mol Breed, 2015, 35: 192.
doi: 10.1007/s11032-015-0388-0
[22] Ryu J, Kwon S J, Sung S Y, Kim W J, Kim D, Ahn J W, Kim J B, Kin S, Ha B K, Kang S Y. Molecular cloning, characterization, and expression analysis of lignin biosynthesis genes from kenaf (Hibiscus cannabinus L.). Genes Genomics, 2015, 38: 59-67.
doi: 10.1007/s13258-015-0341-y
[23] 涂礼莉, 谭家福, 郭凯, 李中华, 张献龙. 类黄酮代谢途径与棉花纤维发育. 中国科学: 生命科学, 2014, 44: 758-765.
Tu L L, Tan J Q, Guo K, Li Z H, Zhang X L. Flavonoid pathway in cotton fiber development. Sci Sin Vitae, 2014, 44: 758-765 (in Chinese with English abstract).
doi: 10.1360/052014-89
[24] 郭光艳, 柏峰, 刘伟, 秘彩莉. 转录因子对木质素生物合成调控的研究进展. 中国农业科学, 2015, 48: 1277-1287.
doi: 10.3864/j.issn.0578-1752.2015.07.03
Guo G Y, Bai F, Liu W, Bei C L. Advances in research of the regulation of transcription factors of lignin biosynthesis. Sci Agric Sin, 2015, 48: 1277-1287 (in Chinese with English abstract).
[25] Zhang L W, Xu Y, Zhang X T, Ma X K, Zhang L L, Liao Z Y, Zhang Q, Wan X B, Chen Y, Zhang J S, Li D X, Zhang L M, Xu J T, Tao A F, Lin L H, Fang P P, Chen S, Qi R, Xu X M, Qi J M, Ming R. The genome of kenaf (Hibiscus cannabinus L.) provides insights into bast fiber and leaf shape biogenesis. Plant Biotechnol J, 2020, 18: 1796-1809.
doi: 10.1111/pbi.13341 pmid: 31975524
[26] Qin G J, Gu H Y, Ma L G, Peng Y B, Deng X W, Chen Z L, Qu L J. Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Res, 2007, 17: 471-482.
doi: 10.1038/cr.2007.40
[27] 高国应, 伍小方, 黄伟, 周定港, 张大为, 周美亮, 张凯旋, 严明理. 芥菜型油菜 BjuB.KAN4 基因调控类黄酮的途径. 作物学报, 2020, 46: 1322-1331.
doi: 10.3724/SP.J.1006.2020.04008
Gao G Y, Wu X F, Huang W, Zhou D G, Zhang D W, Zhou M L, Zhang K X, Yan M L. Regulation of flavonoid pathway by BjuB.KAN4 gene in Brassica juncea. Acta Agron Sin, 2020, 46: 1322-1331 (in Chinese with English abstract).
[28] Zhai R, Wang Z M, Zhang S W, Meng G, Song L Y, Wang Z G, Li P M, Ma F W, Xu L F. Two MYB transcription factors regulate flavonoid biosynthesis in pear fruit (Pyrus bretschneideri Rehd.). J Exp Bot, 2016, 67: 1275-1284.
doi: 10.1093/jxb/erv524 pmid: 26687179
[29] Li Y Q, Shan X T, Zhou L D, Gao R F, Yang S, Wang S C, Wang L, Gao X. The R2R3-MYB factor FhMYB5 from freesia hybrid a contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis. Front Plant Sci, 2018, 9: 1935.
doi: 10.3389/fpls.2018.01935
[30] Zhu L, Guan Y X, Zhang Z H, Song A P, Chen S M, Jiang J F, Chen F D. CmMYB8 encodes an R2R3 MYB transcription factor which represses lignin and flavonoid synthesis in chrysanthemum. Plant Physiol Biochem, 2020, 149: 217-224.
doi: 10.1016/j.plaphy.2020.02.010
[31] Wang N H, Ma Q, Ma J J, Pei W F, Liu G Y, Cui Y P, Wu M, Zang X S, Zhang J F, Yu S X, Ma L J, Yu J W. A comparative genome-wide analysis of the R2R3-MYB gene family among four gossypium species and their sequence variation and association with fiber quality traits in an interspecific G. hirsutum × G. barbadense population. Front Genet, 2019, 10: 741.
doi: 10.3389/fgene.2019.00741
[32] Chapman S, Kavanagh T, Baulcombe D. Potato virus X as a vector for gene expression in plants. Plant J, 1992, 2: 549-557.
pmid: 1344890
[33] Liu Y L, Schiff M, Dinesh-Kumar S P. Virus-induced gene silencing in tomato. Plant J, 2002, 31: 777-786.
doi: 10.1046/j.1365-313x.2002.01394.x pmid: 12220268
[34] 李萌晗. 油棕病毒诱导的基因沉默(VIGS)体系的建立. 优化和验证研究. 海南大学硕士学位论文, 海南海口, 2022.
Li M H. Establishment, Optimization and Validation of Oil Palm Virus-induced Gene Silencing (VIGS) System. MS Thesis of Hainan University, Haikou, Hainan, China, 2022 (in Chinese with English abstract).
[35] Jia H F, Lu D, Sun J H, Li C L, Xing Y, Qin L, Shen Y Y. Type 2C protein phosphatase ABI1 is a negative regulator of strawberry fruit ripening. J Exp Bot, 2013, 64: 1677-1687.
doi: 10.1093/jxb/ert028
[36] 李玉霞, 曲延英, 艾海提·艾合买提, 王慧敏, 黄启秀, 陈琴, 陈全家. 通过GbF3’H基因单独沉默及其与GbCHIGbDFR基因共沉默研究其在海岛棉中抗枯萎病功能. 棉花学报, 2020, 32(1): 1-10.
doi: 10.11963/1002-7807.lyxcqj.20200109
Li Y X, Qu Y Y, Aihaiti A, Wang H M, Huang Q X, Chen Q, Chen Q J. Through single silencing GbF3’H gene and its co-silencing with GbCHI and GbDFR genes to study their function in resistance to fusarium wilt in Gossypium barbadense. Cotton Sci, 2020, 32(1): 1-10 (in Chinese with English abstract).
[1] HUANG Zhen, WU Qi-Jing, CHEN Can-Ni, WU Xia, CAO Shan, ZHANG Hui, YUE Jiao, HU Ya-Li, LUO Deng-Jie, LI Yun, LIAO Chang-Jun, LI Ru, CHEN Peng. Role of calmodulin gene (HcCaM7) and its protein acetylation is involved in kenaf response to abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(2): 402-413.
[2] LIANG Xi-Tong, GAO Xian-Yuan, ZHOU Lin, MU Chun, DU Ming-Wei, LI Fang-Jun, TIAN Xiao-Li, LI Zhao-Hu. High throughput identification of cotton gene via screening cotton cDNA library of virus induced gene silencing [J]. Acta Agronomica Sinica, 2022, 48(12): 2967-2977.
[3] LI Zeng-Qiang, DING Xin-Chao, LU Hai, HU Ya-Li, YUE Jiao, HUANG Zhen, MO Liang-Yu, CHEN Li, CHEN Tao, CHEN Peng. Physiological characteristics and DNA methylation analysis under lead stress in kenaf (Hibiscus cannabinus L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1031-1042.
[4] ZHOU Bu-Jin, LI Gang, JIN Gang, ZHOU Rui-Yang, LIU Dong-Mei, TANG Dan-Feng, LIAO Xiao-Fang, LIU Yi-Ding, ZHAO Yan-Hong, WANG Yi-Ning. Creation of male sterile germplasm using the partial length gene of HcPDIL5-2a in kenaf [J]. Acta Agronomica Sinica, 2021, 47(6): 1043-1053.
[5] LI Hui, LI De-Fang, DENG Yong, PAN Gen, CHEN An-Guo, ZHAO Li-Ning, TANG Hui-Juan. Expression analysis of abiotic stress response gene HcWRKY71 in kenaf and transformation of Arabidopsis [J]. Acta Agronomica Sinica, 2021, 47(6): 1090-1099.
[6] LU Hai, LI Zeng-Qiang, TANG Mei-Qiong, LUO Deng-Jie, CAO Shan, YUE Jiao, HU Ya-Li, HUANG Zhen, CHEN Tao, CHEN Peng. DNA methylation in response to cadmium stress and expression of different methylated genes in kenaf [J]. Acta Agronomica Sinica, 2021, 47(12): 2324-2334.
[7] GAO Guo-Ying, WU Xiao-Fang, HUANG Wei, ZHOU Ding-Gang, ZHANG Da-Wei, ZHOU Mei-Liang, ZHANG Kai-Xuan, YAN Ming-Li. Regulation of flavonoid pathway by BjuB.KAN4 gene in Brassica juncea [J]. Acta Agronomica Sinica, 2020, 46(9): 1322-1331.
[8] Hui LI, De-Fang LI, Yong DENG, Gen PAN, An-Guo CHEN, Li-Ning ZHAO, Hui-Juan TANG. Cloning of the key enzyme gene HcTPPJ in trehalose biosynthesis of kenaf and its expression in response to abiotic stress in kenaf [J]. Acta Agronomica Sinica, 2020, 46(12): 1914-1922.
[9] WAN Xue-Bei,LI Dong-Xu,XU Yi,XUJian-Tang,ZHANG Li-Lan,ZHANGLie-Mei,LINLi-Hui,QI Jian-Min,ZHANG Li-Wu. Development and Polymorphism Evaluation of EST-SSR Markers in Kenaf [J]. Acta Agron Sin, 2017, 43(08): 1170-1180.
[10] MU Chun,ZHOU Lin,LI Mao-Ying,DU Ming-Wei,ZHANG Ming-Cai,TIAN Xiao-Li,LI Zhao-Hu*. Establishment and Optimisation of Virus-Induced Gene Silencing in System Hydroponic Cotton [J]. Acta Agron Sin, 2016, 42(06): 844-849.
[11] ZHANG Li-Wu,HUANG Zhi-Miao,WAN Xue-Bei,LIN Li-Hui,XU Jian-Tang,TAO Ai-Fen,FANG Ping-Ping,QI Jian-Min. Identification and Genetic Analysis of Photoperiod Insensitive Materials in Kenaf (Hibiscus cannabinus) [J]. Acta Agron Sin, 2014, 40(12): 2098-2103.
[12] CHEN Kun-Mei,LI Hong-Wei,LIN Fan-Yun,CHEN Yao-Feng,LI Bin,ZHENG Qi,LI Zhen-Sheng. Functional Analysis of Photo-Oxidative Stress Responsive Genes in Wheat Using Virus-Induced Gene Silencing System [J]. Acta Agron Sin, 2014, 40(11): 1905-1913.
[13] WANG Xin-Yu,Lü Kun,CAI Cai-Ping,XU Jun,GUO Wang-Zhen. Establishment and Application of TRV-mediated Virus-Induced Gene Silencing in Cotton [J]. Acta Agron Sin, 2014, 40(08): 1356-1363.
[14] HE Yang, YUE Jie-Yu, WANG Hua-Zhong. Gene Expression Profiling and Silencing Reveal the Relationship between TaTST, a Wheat Thiosulfate Sulfurtransferase Gene, and the Resistance Response of Wheat to Powdery Mildew [J]. Acta Agron Sin, 2012, 38(02): 231-239.
[15] HONG Bin, QI Wei, LAN Chao, CHEN Hui-Duan, XU Jian-Tang, SU Jian-Guang, LI Ai-Jing, QI Jian-Min. Establishment of DNA Fingerprintings of Kenaf (Hibiscus Cannabinus L.) Germplasm Resources with ISSR Molecular Markers [J]. Acta Agron Sin, 2011, 37(06): 1116-1123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .