Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (02): 231-239.doi: 10.3724/SP.J.1006.2012.00231
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
HE Yang, YUE Jie-Yu, WANG Hua-Zhong
[1]Cipollone R, Ascenzi P, Visca P. Common themes and variations in the rhodanese superfamily. IUBMB Life, 2007, 59: 51–59 [2]Saidu Y. Physicochemical features of rhodanese: A review. Afr J Biotechnol, 2004, 3: 370–374 [3]Papenbrock J, Guretzki S, Henne M. Latest news about the sulfurtransferase protein family of higher plants. Amino Acids, 2011, 41: 43–57[4]Bartels A, Mock H P, Papenbrock J. Differential expression of Arabidopsis sulfurtransferases under various growth conditions. Plant Physiol Biochem, 2007, 45: 178–187[5]Papenbrock J, Schmidt A. Characterization of two sulfurtransferase isozymes from Arabidopsis thaliana. Eur J Biochem, 2000, 267: 5571–5579[6]Mao G H, Wang R G, Guan Y F, Liu Y D, Zhang S Q. Sulfurtransferases 1 and 2 play essential roles in embryo and seed development in Arabidopsis thaliana. Biol Chem, 2011, 286: 7548–7557[7]Niu J-S(牛吉山), Yu L(于玲), Ma Z-Q(马正强), Chen P-D(陈佩度), Liu D-J(刘大钧). Molecular cloning, characterization and mapping of a rhodanese like gene in wheat. Acta Genet Sin (遗传学报), 2002, 29(3): 266–272 (in Chinese with English abstract)[8]Walz C, Giavalisco P, Schad M, Juenger M, Klose J, Kehr J. Proteomics of curcurbit phloem exudate reveals a network of defence proteins. Phytochemistry, 2004, 65: 1795–1804[9]Dubuis P H, Marazzi C, Staedler E, Mauch F. Sulphur deficiency causes a reduction in anti- microbial potential and leads to increased disease susceptibility of oilseed rape. Phytopathology, 2005, 153: 27–36[10]Bartels A. Functional charactersation of sulfurtransferase proteins in higher plants. PhD Dissertation of Leibniz University, Hannover, Germany, 2006[11]Vennesland B, Castric P A, Conn E E, Solomonson L P, Volini M, Westley J. Cyanide metabolism. Fed Proc, 1982, 41: 2639–2648[12]Grossmann K. A role for cyanide, derived from ethylene biosynthesis, in the development of stress symptoms. Physiol Plant, 1996, 97: 772–775[13]Seo S, Mitsuhara I, Feng J, Iwai T, Hasegawa M, Ohashi Y. Cyanide, a coproduct of plant hormone ethylene biosynthesis, contributes to the resistance of rice to blast fungus. Plant Physiol, 2011, 155: 502–514[14]Donadio S, Sha?ee A, Hutchinson R. Disruption of a rhodanese like gene results in cysteine auxotrophy in Saccharopolyspora erythraea. J Bacteriol, 1990, 172: 350–360[15]Rausch T, Wachter A. Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci, 2005, 10: 504–509[16]Papenbrock J, Bartels A, Hartmann F, Hartmann J, Triulzi T. Reduced sulfur in the plant cell: enzymatic formation and functional roles. In: Sirko A, De Kok L J, Haneklaus S, Hawkesford M J, Rennenberg H, Kaito S, Schnug E, Stulen I, eds. Sulfur metabolism in higher plants. Weikersheim: Markgraf Publishers, 2009. pp 217–219[17]Nandi D L, Horowitz P M, Westley J. Rhodanese as a thioredoxin oxidase. Int J Biochem Cell Biol, 2000, 32: 465–473[18]Petty I T, Hunter B G, Wei N, Jackson A O. Infectious barley stripe mosaic virus RNA transcribed in vitro from full-length genomic cDNA clones. Virology, 1989, 171: 342–349[19]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 2001, 25: 402–408[20]Hückelhoven R, Fodor J, Preis C, Kogel K H. Hypersensitive cell death and papilla formation in barley attacked by the powdery mildew fungus are associated with hydrogen peroxide but not with salicylic acid accumulation. Plant Physiol, 1999, 119: 1251–1260[21]Caldo R A, Nettleton D, Wise R P. Interaction-dependent gene expression in Mla-specified response to barley powdery mildew. Plant Cell, 2004, 16: 2514–2528[22]Hückelhoven R, Kogel K H. Reactive oxygen intermediates in plant-microbe interactions: Who is who in powdery mildew resistance? Planta, 2003, 216: 891–902[23]Liu G S, Sheng X Y, Greenshields D L, Ogieglo A, Kaminskyj S, Selvaraj G, Wei Y D. Profiling of wheat class III peroxidase genes derived from powdery mildew-attacked epidermis reveals distinct sequence-associated expression patterns. Mol Plant Microbe Interact, 2005, 18: 730–741[24]Harrach B D, Fodor J, Pogány M, Preuss J, Barna B. Antioxidant, ethylene and membrane leakage responses to powdery mildew infection of near-isogenic barley lines with various types of resistance. Eur J Plant Pathol, 2008, 121: 21–33[25]Caplan J L, Mamillapalli P, Burch-Smith T M, Czymmek K, Dinesh-Kumar S P. Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell, 2008, 132: 449–462[26]Feng H Q, Sun K, Li M Q, Li H Y, Li X, Li Y, Wang Y F. The expression, function and regulation of mitochondrial alternative oxidase under biotic stresses. Mol Plant Pathol, 2010, 11: 429–40[27]Li Z-H(李政红), Gao D-S(高东升), Li X-L(李宪利). The relation between endormancy and changes in two main electron transport pathways of nectarine (Prunus persica var. nectariana) buds. J Plant Physiol Mol Biol (植物生理与分子生物学学报), 2006, 32(2): 156–162 (in Chinese with English abstract) |
[1] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[2] | GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272. |
[3] | LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221. |
[4] | FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589. |
[5] | FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715. |
[6] | LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725. |
[7] | XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447. |
[8] | YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436. |
[9] | WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462. |
[10] | CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487. |
[11] | MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164. |
[12] | MENG Ying, XING Lei-Lei, CAO Xiao-Hong, GUO Guang-Yan, CHAI Jian-Fang, BEI Cai-Li. Cloning of Ta4CL1 and its function in promoting plant growth and lignin deposition in transgenic Arabidopsis plants [J]. Acta Agronomica Sinica, 2022, 48(1): 63-75. |
[13] | WEI Yi-Hao, YU Mei-Qin, ZHANG Xiao-Jiao, WANG Lu-Lu, ZHANG Zhi-Yong, MA Xin-Ming, LI Hui-Qing, WANG Xiao-Chun. Alternative splicing analysis of wheat glutamine synthase genes [J]. Acta Agronomica Sinica, 2022, 48(1): 40-47. |
[14] | LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62. |
[15] | LUO Jiang-Tao, ZHENG Jian-Min, PU Zong-Jun, FAN Chao-Lan, LIU Deng-Cai, HAO Ming. Chromosome transmission in hybrids between tetraploid and hexaploid wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1427-1436. |
|