Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (8): 1427-1436.doi: 10.3724/SP.J.1006.2021.01067


Chromosome transmission in hybrids between tetraploid and hexaploid wheat

LUO Jiang-Tao1(), ZHENG Jian-Min1, PU Zong-Jun1,*(), FAN Chao-Lan2, LIU Deng-Cai2, HAO Ming2,*()   

  1. 1Crop Research Institute of Sichuan Academic of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture and Rural Areas, Chengdu 610066, Sichuan, China
    2Triticeae Research Institute of Sichuan Agricultural University, Chengdu 611130, Sichuan, China
  • Received:2020-08-20 Accepted:2021-01-13 Online:2021-08-12 Published:2021-02-19
  • Contact: PU Zong-Jun,HAO Ming E-mail:jtluohao@163.com;pzjun68@163.com;haomingluo@foxmail.com
  • Supported by:
    Science and Technology Planning Project of Sichuan Province(2016NYZ0012);Science and Technology Planning Project of Sichuan Province(2017JY0077);Science and Technology Planning Project of Sichuan Province(2018JY0627);Financial Innovation Capacity Improvement Project of Sichuan Province(2016ZYPZ-016);Sichuan Provincial Breeding Research Project(2021YFYZ0002)


Tetraploid wheat (Triticum turgidum L., AABB) and common wheat (Triticum aestivum L., AABBDD) are two main types of cultivated wheat. Transferring the genes from tetraploid wheat (or hexaploid wheat) into hexaploid wheat (or tetraploid wheat) by distant hybridization is an important method for wheat genetic improvement. However, the F1 hybrid of tetraploid/ hexaploid wheat was pentaploid with unbalanced genome composition, containing two sets of genomes A and B, and only one set of genome D. The genetic divergences from both nuclear and cytoplasmic genomes of the two parents may affect the chromosome transmission efficiency of pentaploid hybrids. In the present study, tetraploid or hexaploid wheats with different genetic backgrounds were used as female or male parents to generate pentaploid F1s. The chromosome composition of F2s were analyzed by multicolor fluorescence in situ hybridization. The results showed that the genetic background of parent lines has a significant effect on the self-setting rate of F1s. The A and B genome chromosomes were relatively stable during F1 self-process, and the mean total number of A and B chromosomes per F2 individual was close to 28 in both AABB/AABBDD and AABBDD/AABB F2s (27.9 vs. 28.0). However, the average number of D chromosomes retained in F2s with tetraploid wheat as female parent was significantly higher than that with hexaploid wheat as female parent (7.0 vs. 2.9). Therefore, when tetraploid wheat was the final target progeny, hexaploid wheat should be used as the primary female parent to generate F1 hybrids; vice versa, tetraploid wheat should be used.

Key words: tetraploid wheat, hexaploid wheat, chromosome transmission

Table 1

Self-crossing seed-setting rate of F1 population of each hybrid combination"

Combination type
Cross combination
Number of spikelets
Solid number
Seed-setting rate (%)
亲2142/PI415152 Qin 2142/PI415152 64 5 7.8
亲2122/PI34945 Qin 2122/PI34945 404 288 71.3
亲2120/PI223171 Qin 2120/PI223171 389 161 41.4
亲2120/CITR14139 Qin 2120/CITR14139 431 267 62.0
贵协2号/PI185192 Guixie 2/PI185192 141 21 14.9
贵协011-2/PI190973 Guixie 011-2/PI190973 91 4 4.4
Li-50/PI185192 302 4 1.3
Li-50/PI113961 128 25 19.5
Li-22/PI190973 634 18 2.8
13L2071-2/PI190973 340 24 7.1
总计Total 2924 817 27.9
PI94666/川麦608 PI94666/Chuanmai 608 480 90 18.8
PI352369/贵协011-1 PI352369/Guixie 011-1 182 49 26.9
PI191808/WJN1428 230 72 31.3
PI185192/亲2147 PI185192/Qin 2147 417 106 25.4
PI185192/亲2122 PI185192/Qin 2122 223 142 63.7
CITR14139/WJN1428 125 184 147.2
AS2255/亲2120 AS2255/Qin 2120 83 63 75.9
总计 Total 1740 706 40.6

Fig. 1

FISH karyotypes of parental lines Guixie 011-1 (A) and Qin 2120 (B) Boxes in red indicate the reciprocal translocation chromosomes."

Fig. 2

Distribution of total chromosome number (left) and D genome chromosome number (right) in F2 plants Line in red, green, and blue in the left graph indicates average chromosome number per line in AABB/AABBDD population, AABBDD/ AABB population, and both of them, respectively. Diamonds in blue in the right graph represent the mean values."

Fig. 3

Mean number (left) and total number (right) of D chromosomes retained in F2 hybrids Each row represents an individual plant of F2 population. Dotted lines are used to divide different hybrid combinations."

Fig. 4

The ratio of D chromosomes with different copy number variation in AABB/AABBDD (upper) and AABBDD/AABB population (bottom)"

Table 2

Chromosomal variation in F2 hybrids"

Combination type
Cross combination
Material code
AABB/AABBDD PI185192/亲2122 PI185192/Qin 2122 M143-7 3*1B+3*3B
PI185192/亲2147 PI185192/Qin 2147 M145-4 1*1A
M145-5 1*5DS-
M145-10 1*7DS.7DLV
CITR14139/WJN1428 M146-4 3*6B
M146-5 1*5DS-+1*3DS-5DL+1*6DS.6DL-
M146-10 3*3B
PI352369/贵协011-1 PI352369/Guixie 011-1 M147-1 1*4AL.4AS-5DL.5DS+2*6DS.3AL+1*4B+2*?
M147-2 0*4B+2*6DS.3AL+2*?
M147-3 1*4B+2*6DS.3AL+1*3DS.3DL-+1*6DS
M147-6 2*6DS.3AL+1*?
M147-7 1*4B+1*?
M147-9 1*6DS.3AL+1*?
M147-11 1*6DS.3AL+1*?
AS2255/亲2120 AS2255/Qin 2120 M161-1 1*5BS.7BS+1*5BL.7BL
M161-8 1*3DS-
AABBDD/AABB P1561/PI85192 M149-7 1*2AS.2AL-6AL
13L2069/PI113961 M154-2 1*2AS.2AL-6AL
亲2120/CITR14139 Qin 2120/CITR14139 M157-3 1*3DSV.3DL
亲2120/PI223171 Qin 2120/PI223171 M158-2 1*5BS.7BS+1*5BL.7BL
M158-3 1*5BS.7BS+1*5BL.7BL
M158-4 3*6B+1*5BS.7BS+1*5BL.7BL
亲2142/PI415152 Qin 2142/PI415152 M160-1 1*3DS-3DS

Fig. 5

Examples of chromosome variations in F2 population Arrows in white show the chromosomes with structural variation. Arrows in yellow show A or B chromosomes with copy number variation. A: M145-4 with single copy of 1A; B: M157-3 with a copy of 3D that showed a different 3DS karyotype; C: M154-2 with a 2AS.2AL-6AL translocation; D: M149-7 with a 2AS.2AL-6AL translocation; E: M146-5 with a copy of 3DS.5DL translocation, a copy of 6DS.6DL- and 5DS-chromosome fragment respectively; F: M145-10 with a copy of 7D that showed a different 7DL karyotype; G: M145-5 with a copy of 5DS-chromosome fragment; H: M160-1 with a copy of 3DS.3DS isochromosome; I: M146-10 with a three copy of 3B chromosomes."

[1] Shewry P R, Hey S. Do “ancient” wheat species differ from modern bread wheat in their contents of bioactive components? J Cereal Sci, 2015,65:236-243.
doi: 10.1016/j.jcs.2015.07.014
[2] Kihara H. Discovery of the DD-analyser, one of the ancestors of Triticum vulgare. Agric Hort, 1944,19:889-890.
[3] McFadden E S, Sears E R. The artifcial synthesis of Triticum spelta. Rec Genet Soc Am, 1944,13:26-27.
[4] Huang S X, Sirikhachornkit A, Su X J, Faris J D, Gill B, Haselkorn R, Gornicki P. Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA, 2002,99:8133-8138.
doi: 10.1073/pnas.072223799
[5] Klymiuk V, Yaniv E, Huang L, Raats D, Fatiukha A, Chen S S, Feng L H, Frenkel Z, Krugman T, Lidzbarsky G, Chang W, Jääskeläinen M J, Schudoma C, Paulin L, Laine P, Bariana H, Sela H, Saleem K, Sørensen C K, Hovmøller M S, Distelfeld A, Chalhoub B, Dubcovsky J, Korol A B, Schulman A H, Fahima T. Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nat Commun, 2018,9:3735.
doi: 10.1038/s41467-018-06138-9
[6] He Y, Feng L H, Jiang Y, Zhang L Q, Yan J, Zhao G, Wang J R, Chen G Y, Wu B H, Liu D C, Huang L, Fahima T. Distribution and nucleotide diversity of Yr15 in wild emmer populations and Chinese wheat germplasm. Pathogens, 2020,9:212.
doi: 10.3390/pathogens9030212
[7] Li A L, Liu D C, Yang W Y, Kishii M, Mao L. Synthetic hexaploid wheat: yesterday, today, and tomorrow. Engineering, 2018,4:552-558.
doi: 10.1016/j.eng.2018.07.001
[8] Hao M, Zhang L Q, Zhao L B, Dai S F, Li A L, Yang W Y, Xie D, Li Q C, Ning S Z, Yan Z H, Wu B H, Lan X J, Yuan Z W, Huang L, Wang J R, Zheng K, Chen W S, Yu M, Chen X J, Chen M P, Wei Y M, Zhang H G, Kishii M, Hawkesford M, Mao L, Zheng Y L, Liu D C. A breeding strategy targeting the secondary gene pool of bread wheat: introgression from a synthetic hexaploid wheat. Theor Appl Genet, 2019,132:2285-2294.
doi: 10.1007/s00122-019-03354-9
[9] Dvorak J, Akhunov E D, Akhunov A R, Deal K R, Luo M C. Molecular characterization of a diagnostic DNA marker for domesticated tetraploid wheat provides evidence for gene flow from wild tetraploid wheat to hexaploid wheat. Mol Biol Evol, 2006,23:1386-1396.
pmid: 16675504
[10] Cheng H, Liu J, Wen J, Nie X J, Xu L H, Chen N B, Li Z X, Wang Q L, Zheng Z Q, Li M, Cui L C, Bian J X, Wang Z H, Xu S B, Yang Q, Appels R, Han D J, Song W N, Sun Q X, Jiang Y. Frequent intra- and inter-species introgression shapes the landscape of genetic variation in bread wheat. Genome Biol, 2019,20:136.
doi: 10.1186/s13059-019-1744-x pmid: 31300020
[11] He F, Pasam R, Shi F, Kant S, Keeble-Gagnere G, Kay P, Forrest K, Fritz A, Hucl P, Wiebe K, Knox R, Cuthbert R, Pozniak C, Akhunova A, Morrell P L, Davies J P, Webb S R, Spangenberg G, Hayes B, Daetwyler H, Tibbits J, Hayden M, Akhunov E. Exome sequencing highlights the role of wild-relative introgression in shaping the adaptive landscape of the wheat genome. Nat Genet, 2019,51:896-904.
doi: 10.1038/s41588-019-0382-2
[12] Briggle L W. Transfer of resistance to Erysiphe graminis f. sp. tritici from Khapli emmer and Yuma durum to hexaploid wheat. Crop Sci, 1966,6:459-461.
doi: 10.2135/cropsci1966.0011183X000600050020x
[13] Reader S M, Miller T E. The introduction into bread wheat of a major gene for resistance to powdery mildew from wild emmer wheat. Euphytica, 1991,53:57-60.
doi: 10.1007/BF00032033
[14] Rong J K, Millet E, Manisterski J, Feldman M. A new powdery mildew resistancegene: Introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica, 2000,115:121-126.
doi: 10.1023/A:1003950431049
[15] Liu Z Y, Sun Q X, Ni Z F, Nevo E, Yang T. Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica, 2002,123:21-29.
doi: 10.1023/A:1014471113511
[16] 张连松, 华为, 关海英, 李根桥, 张宏涛, 解超杰, 杨作民, 孙其信, 刘志勇. 野生二粒小麦导入普通小麦的抗白粉病基因MlWE29分子标记定位. 作物学报, 2009,35:998-1005.
Zhang L S, Hua W, Guan H Y, Li G Q, Xie C J, Yang Z M, Sun Q X, Liu Z Y. Molecular mapping of powdery mildew resistance gene MIWE29 in wheat originated from wild emmer (Triticum turgidum var. dicoccoides). Acta Agron Sin, 2009,35:998-1005 (in Chinese with English abstract).
[17] 解超杰, 倪中福, 孙其信, 杨作民, 刘保申, 魏艳玲. 利用小麦微卫星标记定位一个来自野生二粒小麦的抗白粉病基因. 遗传学报, 2001,28:1034-1039.
Xie C J, Ni Z F, Sun Q X, Yang Z M, Liu B K, Wei Y L. Molecular tagging of a major powdery mildew resistance gene MlG in wheat derived from wild emmer by using microsatellite maker. Acta Genet Sin, 2001,28:1034-1039 (in Chinese with English abstract)
[18] Mesfin A, Frohberg R C, Anderson J A. RFLP markers associated with high grain protein from Triticum turgidum L. dicoccoides introgressed into hard red spring wheat. Crop Sci, 1999,39:508-513.
doi: 10.2135/cropsci1999.0011183X003900020035x
[19] Lanning S P, Blake N K, Sherman J D, Talbert L E. Variable production of tetraploid and hexaploid progeny lines from spring wheat by durum wheat crosses. Crop Sci, 2008,48:199-202.
doi: 10.2135/cropsci2007.06.0334
[20] Eberhard F S, Zhang P, Lehmensiek A, Hare R A, Simpfendorfer S, Sutherland M W. Chromosome composition of an F2 Triticum aestivum × T. turgidum spp. durum cross analyzed by DArT markers and MCFISH. Crop Pasture Sci, 2010,61:619-624.
doi: 10.1071/CP10131
[21] Martin A, Simpfendorfer S, Hare R A, Eberhard F S, Sutherland M W. Retention of D genome chromosomes in pentaploid wheat crosses. Heredity, 2011,107:315-319.
doi: 10.1038/hdy.2011.17 pmid: 21427754
[22] Kalous J R, Martin J M, Sherman J D, Heo H Y, Blake N K, Lanning S P, Eckhoff J L A, Chao S, Akhunov E, Talbert L E. Impact of the D genome and quantitative trait loci on quantitative traits in a spring durum by spring bread wheat cross. Theor Appl Genet, 2015,128:1799-1811.
doi: 10.1007/s00122-015-2548-3
[23] Ren R S, Ray R, Li P F, Xu J H, Zhang M, Liu G, Yao X F, Kilian A, Yang X P. Construction of a high-density DArTseq SNP-based genetic map and identification of genomic regions with segregation distortion in agenetic population derived from a cross between feral and cultivated-type watermelon. Mol Genet Genomics, 2015,290:1457-1470.
doi: 10.1007/s00438-015-0997-7
[24] Padmanaban S, Sutherland M W, Knight N L, Martin A. Genome inheritance in populations derived from hexaploid/tetraploid and tetraploid/hexaploid wheat crosses. Mol Breed, 2017,37:48.
doi: 10.1007/s11032-017-0647-3
[25] Padmanaban S, Zhang P, Hare R A, Sutherland M W, Martin A. Pentaploid wheat hybrids: applications, characterisation, and challenges. Front Plant Sci, 2017,8:358.
doi: 10.3389/fpls.2017.00358 pmid: 28367153
[26] Padmanaban S, Zhang P, Sutherland M W, Knight N L, Martin A. A cytological and molecular analysis of D-genome chromosome retention following F2-F6 generations of hexaploid × tetraploid wheat crosses. Crop Pasture Sci, 2018,69:121-130.
doi: 10.1071/CP17240
[27] Schwarzacher T, Leitch A R, Bennett M D, Heslop-Harrison J S. In situ localization of parental genomes in a wide hybrid. Ann Bot-London, 1989,64:315-324.
doi: 10.1093/oxfordjournals.aob.a087847
[28] Lim K B, Ramanna M, Jacobsen E, van Tuyl J. Evaluation of BC2 progenies derived from 3 x-2x and 3x-4x crosses of Lilium hybrids: a GISH analysis. Theor Appl Genet, 2003,106:568-574.
doi: 10.1007/s00122-002-1070-6
[29] Huang X Y, Zhu M Q, Zhuang L F, Zhang S Y, Wang J J, Chen X Y, Wang D R, Chen J Y, Bao Y G, Guo J, Zhang J L, Feng Y G, Chu C G, Du P, Qi Z J, Wang H G, Chen P D. Structural chromosome rearrangements and polymorphisms identified in Chinese wheat cultivars by high-resolution multiplex oligonucleotide FISH. Theor Appl Genet, 2018,131:1967-1986.
doi: 10.1007/s00122-018-3126-2
[30] Luo J T, Zhao L B, Zheng J M, Li Y Z, Zhang L Q, Liu D C, Pu Z J, Hao M. Karyotype mosaicism in early generation synthetic hexaploid wheats. Genome, 2020,63:329-336.
doi: 10.1139/gen-2019-0148
[31] Du P, Zhuang L F, Wang Y Z, Yuan L, Wang Q, Dawadondup, Wang D R, Tan L J, Shen J, Xu H B, Zhao H, Chu C G, Qi Z J. Development of oligonucleotides and multiplex probes for quick and accurate identification of wheat and Thinopyrum bessarabicum chromosomes. Genome, 2017,60:93-103.
doi: 10.1139/gen-2016-0095
[32] Wickham H. Ggplot2: Elegant Graphics for Data Analysis. New York, NY: Springer-Verlag, 2016.
[33] Delhaize E, James R A, Ryan P R. Aluminium tolerance of root hairs underlies genotypic differences in Rhizosheath size of wheat (Triticum aestivum) grown on acid soil. New Phytol, 2012,195:609-619.
doi: 10.1111/nph.2012.195.issue-3
[34] Dvořák J, Gorham J. Methodology of gene transfer by homoeologous recombination into Triticum turgidum: transfer of K+/Na+ discrimination from Triticum aestivum. Genome, 1992,35:639-646.
doi: 10.1139/g92-096
[35] Luo M C, Dubcovsky J, Goyal S, Dvořáket J. Engineering of interstitial foreign chromosome segments containing the K+/Na+ selectivity gene Kna1 by sequential homoeologous recombination in durum wheat. Theor Appl Genet, 1996,93:1180-1184.
doi: 10.1007/BF00230144 pmid: 24162500
[36] Han C, Zhang P, Ryan P R, Rathjen T M, Yan Z H, Delhaize E. Introgression of genes from bread wheat enhances the Aluminium tolerance of durum wheat. Theor Appl Genet, 2016,129:729-739.
doi: 10.1007/s00122-015-2661-3
[37] Liu J, Huang L, Wang C Q, Liu Y X, Yan Z H, Wang Z Z, Xiang L, Zhong X Y, Gong F Y, Zheng Y L, Liu D C, Wu B H. Genome-wide association study reveals novel genomic regions associated with high grain protein content in wheat lines derived from wild emmer wheat. Front Plant Sci, 2019,10:464.
doi: 10.3389/fpls.2019.00464
[38] Xiang L, Huang L, Gong F Y, Liu J, Wang Y F, Jin Y R, He Y, He J S, Jiang Q T, Zheng Y L, Liu D C, Wu B H. Enriching LMW-GS alleles and strengthening gluten properties of common wheat through wide hybridization with wild emmer. 3 Biotech, 2019,9:355.
doi: 10.1007/s13205-019-1887-1 pmid: 31501756
[39] Kihara H. Wheat Studies: Retrospect and Prospects (Developments in Crop Science). Tokyo: Kodansha Ltd, 1982.
[40] Sharma H C, Gill B S. Current status of wide hybridization in wheat. Euphytica, 1983,32:17-31.
doi: 10.1007/BF00036860
[41] Friebe B, Zhang P, Linc G, Gill B S. Robertsonian translocations in wheat arise by centric misdivision of univalents at anaphase I and rejoining of broken centromeres during interkinesis of meiosis II. Cytogenet Genome Res, 2005,109:293-297.
doi: 10.1159/000082412
[1] LI Chao-Su,WU Xiao-Li,TANG Yong-Lu,LI Jun,MA Xiao-Ling,LI Shi-Zhao,HUANG Ming-Bo,LIU Miao. Response of yield and associated physiological characteristics for different wheat cultivars to nitrogen stress at mid-late growth stage [J]. Acta Agronomica Sinica, 2019, 45(8): 1260-1269.
[2] LI Jun, WEI Hui-Ting, HU Xiao-Rong, LI Chao-Su, TANG Yong-Lu, LIU De-Cai, YANG Wu-Yun. Identification of a High-Yield Introgression Locus from Synthetic Hexaploid Wheat in Chuanmai 42 [J]. Acta Agron Sin, 2011, 37(02): 255-262.
[3] LI Jun,WEI Hui-Ting,YANG Su-Jie,LI Chao-Su,TANG Yong-Lu,HU Xiao-Rong,YANG Wu-Yun. Genetic Effects of 1BS Chromosome Arm on the Main Agrionomic Traits in Chuanmai 42 [J]. Acta Agron Sin, 2009, 35(12): 2167-2173.
[4] LIAO Jie;WEI Hui-Ting;LI Jun;YANG Yu-Min;ZENG Yun-Chao;PENG Zheng-Song;YANG Wu-Yun. Detection of the Introgression Loci of Synthetic Hexaploid Wheat in Wheat Cultivar Chuanmai 42 by SSR Markers [J]. Acta Agron Sin, 2007, 33(05): 703-707.
[5] LI Gen-Ying;XIA Xian-Chun;ZHANG Ming;ZHANG Yong;HE Zhong-Hu;SUN Qi-Xin. Allelic Variations of Puroindoline a and Puroindoline b Genes in New Type of Synthetic Hexaploid Wheats from CIMMYT [J]. Acta Agron Sin, 2007, 33(02): 242-249.
Full text



No Suggested Reading articles found!