Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2011, Vol. 37 ›› Issue (02): 255-262.doi: 10.3724/SP.J.1006.2011.00263


Identification of a High-Yield Introgression Locus from Synthetic Hexaploid Wheat in Chuanmai 42

LI Jun1,WEI Hui-Ting2,HU Xiao-Rong1,LI Chao-Su1,TANG Yong-Lu1,LIU Deng-Cai3,4,YANG Wu-Yun1,*   

  1. 1 Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; 2 Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; 3 Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, China; 4 Northeast Plateau Institute of Biology, Chinese Academy of Sciences, Xining 810001, China
  • Received:2010-06-02 Revised:2010-08-04 Online:2011-02-12 Published:2010-11-12
  • Contact: YANG Wu-Yun, E-mail: yangwuyun@yahoo.com.cn, Tel: 028-84504657

Abstract: Synthetic hexaploid wheat, a carrier of many elite genes, is an important genetic resource in the improvement of common wheat (Triticum aestivum L.). Chuanmai 42 is a wheat cultivar with high-yield potential and resistance to strip rust(Puccinia striiformis f. sp. tritici), which was developed by crossing and backcrossing Syn769 (an elite synthetic hexaploid wheat) with Sichuan commercial wheat cultivars. For understanding the genetic effects of the introgression loci of synthetic hexaploid wheat in Chuanmai 42, a total of 78 introgression loci of synthetic hexaploid wheat were identified in Chuanmai 42 by scanning using 1029 SSR markers. Using 127 recombinant inbred lines (RILs, F8) with Chuanmai 42 (introgression loci) and Chuannong 16 (Chuannong 16 loci) backgrounds, the genetic effects of the introgression loci were evaluated across six environments in Sichuan Province, China from 2006 to 2009. One high-yield potential locus Barc1183 derived from the synthetic hexaploid wheat was detected in Chuanmai 42. It was further located on the long arm of 4D chromosome using the 4DS and 4DL telosomic lines of Chinese Spring and the 4D(4A) and 4D(4B) substitution lines of Longdon. This locus had positive effects on increasing tiller number per plant, number of effective spikes, grain number per square meter, harvest index, and grain production rate, and the average yield was increased by 8.92% compared with Chuannong 16 in the six growing environments. Therefore, the introgression locus Barc1183 of synthetic hexaploid wheat can be useful for breeding high-yield potential wheat.

Key words: Chuanmai 42, Synthetic hexaploid wheat, Introgression loci, High yield

[1]Feldman, M. Origin of cultivated wheat. In: Bonjean, A P, Angus, W J, eds. The World Wheat Book: A History of Wheat Breeding. Paris: Lavoisier Publishing Inc., 2001. pp 3-56
[2]Van Ginkle M, Francis O. Novel genetic diversity from synthetic wheats in breeding cultivars for changing production conditions. Field Crops Res, 2007, 104: 86-94
[3]David H, Mireille K, Timothy R, Jean M R, Bent S, Suketoshi T, Marilyn W. Plant genetic resources: what can they contribute toward increased crop productivity? Proc Natl Acad Sci, 1999, 96: 5937-5943
[4]Mujeeb-Kazi A, Rosas V, Roldan S. Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (T. turgidum L. S. lat. × T. tauschii; 2n = 6x = 42, AABBDD) and its potential utilization for wheat improvement. Genet Resour Crop Evol, 1996, 43: 129-134
[5]Lan X-J(兰秀锦), Yan J(颜济). An amphidiploid derived from a Chinese landrace of tetraploid wheat, Ailanmai crossed with Aegilops tauschii native to China and with reference to its utilization in wheat breeding. J Sichuan Agric Univ (四川农业大学学报), 1992, 10(4): 581-585 (in Chinese with English abstract)
[6]Xu S-J(许树军), Dong Y-C(董玉琛). Cytogenetic study on the formation of amphiploids in the F1 hybrids of Triticum carthlicum Nevski var.darginicum and Aegilops tauschii Cosson. Acta Agron Sin (作物学报), 1989, 15(3): 251-259 (in Chinese with English abstract)
[7]Liu S B, Zhou R H, Dong Y C, Li P, Jia J Z. Development, utilization of introgression lines using a synthetic wheat as donor. Theor Appl Genet, 2006, 112: 1360-1373
[8]Huang X Q, Cloutier S, Lycar L, Radovanovic N, Humphreys D G, Noll J S, Somers D J, Brown P D. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet, 2006, 113: 753-766
[9]Narasimhamoorthy B, Gill B S, Fritz A K, Nelson J C, Brown-Guedira G L. Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population. Theor Appl Genet, 2006, 112: 787-796
[10]Liao X-Z(廖祥政), Wang J(王瑾), Zhou R-H(周荣华), Ren Z-L(任正隆), Jia J-Z(贾继增). Mining favourable alleles of QTLs conferring 1000-grain weight from synthetic wheat. Acta Agron Sin (作物学报), 2008, 34(11): 1877-1884 (in Chinese with English abstract)
[11]Ge H-M(盖红梅), Wang L-F(王兰芬), You G-X(游光霞), Hao C-Y(郝晨阳), Dong Y-C(董玉琛), Zhang X-Y(张学勇). Fundamental roles of cornerstone breeding lines in wheat reflected by SSR random scanning. Sci Agri Sin (中国农业科学), 2009, 42(5): 1503-1511 (in Chinese with English abstract)
[12]Yang W Y, Liu D C, Li J, Zhang L Q, Wei H T, Hu X R, Zheng Y L, He Z H, Zou Y C. Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China. J Genet Genomics, 2009, 36: 539-546
[13]Zhang Y(张颙), Yang W-Y(杨武云), Hu X-R(胡晓蓉), Yu Y(余毅), Zou Y-C(邹裕春), Li Q-M(李青茂). Analysis of agronomic characters of new wheat variety Chuanmai 42 derived from synthetics (Triticum durum ´ Aegilops tauschii). Southwest China J Agric Sci (西南农业学报), 2004, 17(2):141-145 (in Chinese with English abstract)
[14]Hajjar R, Hodgkin T. The use of wild relatives in crop improvement: A survey of developments over the last 20 years. Euphytica, 2007, 156: 1-13
[15]Maxted N, Kell S P. Establishment of a Global Network for the In Situ Conservation of Crop Wild Relatives: Status and Needs. FAO Commission on Genetic Resources for Food and Agriculture, Rome, Italy. 2009, p 24
[16]Röder M S, Korzun V, Wendehake K, Plaschke J, Tixier M H, Leroy P, Ganal M W. A microsatellite map of wheat. Genetics, 1998, 149: 2007-2023
[17]Pestsova E, Ganal M W, Röder M S. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome, 2000, 43: 689-697
[18]Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105-1114
[19]Song Q J, Shi J R, Singh S, Fickus E W, Costa J M, Lewis J, Gill B S, Ward R, Cregan P B. Development and mapping of microsatellite (SSR) marker in wheat. Theor Appl Genet, 2005, 110: 550-560
[20]Dreccer M F, Borgognone M G, Ogbonnaya F C, Trethowan R M, Winter B. CIMMYT-selected derived synthetic bread wheat for rain fed environments: yield evaluation in Mexico and Australia. Field Crops Res, 2007, 100: 218-228
[21]Ogbonnaya F C, Ye G Y, Trethowan R, Dreccer F, Lush D, Shepperd J, van Ginkel M. Yield of synthetic backcross-derived lines in rain fed environments of Australia. Euphytica, 2007, 3: 321-336
[22]Del Blanco I A, Rajaram S, Kronstad W E. Agronomic potential of synthetic hexaploid wheat derived populations. Crop Sci, 2001, 41: 670-676
[23]Huang X Q, Coster H, Ganal M W, Röder M S. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet, 2003, 106: 1379-1389
[24]Kato K, Miura H, Sawada S. Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet, 2000, 101: 1114-1121
[25]Zhang K-P(张坤普), Xu X-B(徐宪斌), Tian J-C(田纪春). QTL mapping for grain yield and spike related traits in common wheat. Acta Agron Sin (作物学报), 2009, 35(2): 270-278 (in Chinese with English abstract)
[26]Groos C, Robert N, Bervas E, Charmet G. Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet, 2003, 106: 1032-1040
[27]McCartney C A, Somers D J, Humphreys D G, Lukow O, Ames N, Noll J, Cloutier S, McCallum B D. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ‘AC Domain’. Genome, 2005, 48: 870-883
[28]Marza F, Bai G H, Carver B Y, Zhou W C. Quantitative trait loci for yield and related traits in the wheat population Ning 7840 × Clark. Theor Appl Genet, 2006, 112: 688-698
[29]Kumar K, Kulwal P L, Balyan H S, Gupta P K. QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Mol Breed, 2007, 19: 167-177
[30]Snape J W, Foulkes M J, Simmonds J, Leverington M, Fish L J, Wang Y K, Ciavarrella M. Dissecting gene 3 environmental effects on wheat yields via QTL and physiological analysis. Euphytica, 2007, 154: 401-408
[31]Li S S, Jia J Z, Wei X Y, Zhang X C, Li L Z, Chen H M, Fan Y D, Sun H Y, Zhao X H, Lei T D, Xu Y F, Jiang F S, Wang H G, Li L H. An intervarietal genetic map and QTL analysis for yield traits in wheat. Mol Breed, 2007, 20: 167-178
[32]Wang R X, Hai L, Zhang X Y, You G X, Yan C S, Xiao S H. QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu 8679. Theor Appl Genet, 2009, 118: 313-325
[33]Börner A, Schumann E, Furste A, Coster H, Leithold B, Röder M S, Weber W E. Mapping of quantitative trait loci for agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet, 2002, 105: 921-936
[34]Liao J(廖杰), Wei H-T(魏会廷), Li J(李俊), Yang Y-M(杨玉敏), Zeng Y-C(曾云超), Peng Z-S(彭正松),Yang W-Y(杨武云). Detection of the introgression loci of synthetic hexaploid wheat in wheat cultivar Chuanmai 42 by SSR markers. Acta Agron Sin (作物学报), 2007, 33(5): 703-707 (in Chinese with English abstract)
[35]Li J(李俊), Wei H-T(魏会廷), Yang S-J(杨粟洁), Li C-S(李朝苏), Tang Y-L(汤永禄), Hu X-R(胡晓蓉), Yang W-Y(杨武云). Genetic effects of 1BS chromosome arm on the main agronomic traits in Chuanmai 42. Acta Agron Sin (作物学报), 2009, 35(12): 2167-2173 (in Chinese with English abstract)
[36]Li G Q, Li Z F, Yang W Y, Zhang Y, He Z H, Xu S C, Singh R P, Qu Y Y, Xia X C. Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai 42 and its allelism with Yr24 and Yr26. Theor Appl Genet, 2006, 112: 1434-1440
[37]Sourdille P, Cadalen T, Guyomarc’h H, Snape J W, Parretant M R, Charmet G, Boeuf C, Bernard S, Bernard M. An update of the Courlot × Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet, 2003, 106: 530-538
[38]Quarrie S A, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash D Z, Farmer P, Saker L, Clarkson D T, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti M C, Hollington P A, Aragues R, Royo A, Dodig D. A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet, 2005, 110: 865-880
[39]Kuchel H, Williams K, Langridge P, Eagles H A, Jefferies S P. Genetic dissection of grain yield in bread wheat: II. QTL-by-environment interaction. Theor Appl Genet, 2007, 115: 1015-1027
[1] Lei ZHOU,Qiu-Yuan LIU,Jin-Yu TIAN,Meng-Hua ZHU,Shuang CHENG,Yang CHE,Zhi-Jie WANG,Zhi-Peng XING,Ya-Jie HU,Guo-Dong LIU,Hai-Yan WEI,Hong-Cheng ZHANG. Differences in yield and nitrogen absorption and utilization of indica-japonica hybrid rice varieties of Yongyou series [J]. Acta Agronomica Sinica, 2020, 46(5): 772-786.
[2] LI Chao-Su,WU Xiao-Li,TANG Yong-Lu,LI Jun,MA Xiao-Ling,LI Shi-Zhao,HUANG Ming-Bo,LIU Miao. Response of yield and associated physiological characteristics for different wheat cultivars to nitrogen stress at mid-late growth stage [J]. Acta Agronomica Sinica, 2019, 45(8): 1260-1269.
[3] ZHU Ying,XU Dong,HU Lei,HUA Chen,CHEN Zhi-Feng,ZHANG Zhen-Zhen,ZHOU Nian-Bing,LIU Guo-Dong,ZHANG Hong-Cheng,WEI Hai-Yan. Characteristics of medium-maturity conventional japonica rice with good taste and high yield in Jianghuai area [J]. Acta Agronomica Sinica, 2019, 45(4): 578-588.
[4] WEI Huan-He,MENG Tian-Yao,LI Chao,ZHANG Hong-Cheng,DAI Qi-Gen,MA Rong-Rong,WANG Xiao-Yan,YANG Yun-Wen. Accumulation, Translocation and Utilization Characteristics of Nitrogen in Yongyou 12 Yielding over 13.5 t ha-1 [J]. Acta Agron Sin, 2016, 42(09): 1363-1373.
[5] WEI Huan-He,MENG Tian-Yao,LI Chao,ZHANG Hong-Cheng,DAI Qi-Gen,MA Rong-Rong,WANG Xiao-Yan,YANG Jun-Wen. Accumulation, Distribution, and Utilization Characteristics of Phosphorus in Yongyou 12 Yielding over 13.5 t ha-1#br# [J]. Acta Agron Sin, 2016, 42(06): 886-897.
[6] WEI Huan-He,LI Chao,ZHANG Hong-Cheng,SUN Yu-Hai,MA Rong-Rong,WANG Xiao-Yan,YANG Jun-Wen,DAI Qi-Gen,HUO Zhong-Yang,XU Ke,WEI Hai-Yan,GUO Bao-Wei. Plant-type Characteristics in Populations with Different Yield of Yongyou 12 [J]. Acta Agron Sin, 2014, 40(12): 2160-2168.
[7] WANG Xiao-Yan,WEI Huan-He,ZHANG Hong-Cheng,SUN Jian,ZHANG Jian-Min,LI Chao,LU Hui-Bin,YANG Jun-Wen,MA Rong-Rong,XU Jiu-Fu,WANG Jue,XU Yue-Jin,SUN Yu-Hai. Population Characteristics for Super-High Yielding Hybrid Rice Yongyou 12 (>13.5 t ha-1) [J]. Acta Agron Sin, 2014, 40(12): 2149-2159.
[8] HU Ya-Jie,ZHU Da-Wei,QIAN Hai-Jun,CAO Wei-Wei,XING Zhi-Peng,ZANG Hong-Cheng,ZHOU You-Yan,CHEN Hou-Cun,WANG Hong-Yang,DAI Qi-Gen,HUO Zhong-Yang,XU Ke,WEI Hai-Yan,GUO Bao-Wei. Some Characteristics of Mechanically Transplanted Pot Seedlings in Super High Yielding Population of Indica-japonica Hybrid Rice Yongyou 2640 [J]. Acta Agron Sin, 2014, 40(11): 2016-2027.
[9] WEI Huan-He,LI Chao,ZHANG Hong-Cheng,SUN Yu-Hai,MENG Tian-Yao1,YANG Jun-Wen,MA Rong-Rong,WANG Xiao-Yan,DAI Qi-Gen,HUO Zhong-Yang,XU Ke,WEI Hai-Yan. Tillering Characteristics and Its Relationship with Population Productivity of Super-High Yield Rice Population of Yongyou 12 [J]. Acta Agron Sin, 2014, 40(10): 1819-1829.
[10] WANG Yong-Jun,YANG Jin-Sheng,YUAN Cui-Ping,LIU Jing-Guo,LI Deng-Hai,DONG Shu-Ting. Characteristics of Senescence and Antioxidant Enzyme Activities in Leaves at Different Plant Parts of Summer Maize with the Super-high Yielding Potential after Anthesis [J]. Acta Agron Sin, 2013, 39(12): 2183-2191.
[11] ZHANG Wei,ZHAO Jing,QIU Qiang,WANG Shu-Ming,ZHANG Chun-Bao,YAN Xiao-Yan,ZHAO Li Mei,ZHANG Ming-Hao, ZHANG Wei-Long, and FAN Hui-Mei. Canopy Physiology and Characteristics of Yield Components during Reproductive Stage in Soybean Hybrids [J]. Acta Agron Sin, 2013, 39(12): 2192-2200.
[12] WEI Huan-He,JIANG Yuan-Hua,ZHAO Ke,XU Jun-Wei,ZHANG Hong-Cheng,DAI Qi-Gen,HUO Zhong-Yang,XU Ke,WEI Hai-Yan,ZHENG Fei. Characteristics of Super-high Yield Population in Yongyou Series of Hybrid Rice [J]. Acta Agron Sin, 2013, 39(12): 2201-2210.
[13] JIN Li-Bin,CUI Hai-Yan,LI Bo,YANG Jin-Sheng,DONG Shu-Ting,ZHAO Bin,LIU Peng,ZHANG Ji-Wang. Effects of Integrated Agronomic Practices on Nitrogen Efficiency and Soil Nitrate Nitrogen of Summer Maize [J]. Acta Agron Sin, 2013, 39(11): 2009-2015.
[14] XU Ke,GUO Bao-Wei,ZHANG Hong-Cheng,ZHOU Xing-Tao,CHEN Hou-Cun,ZHANG Jun,CHEN Jing-Du,ZHU Cong-Cong,LI Gui-Yun,WU Zhong-Hua,DAI Qi-Gen,HUO Zhong-Yang,WEI Hai-Yan,GAO Hui,CAO Li-Qiang,et al.. Effect of Ordered Transplanting and Optimized Broadcasting on Super High Yield and Photosynthetic Productivity and Exploration of Rice Super High Yield Model [J]. Acta Agron Sin, 2013, 39(09): 1652-1667.
[15] JING Li-Quan,ZHAO Fu-Cheng,WANG De-Cheng,YUAN Jian-Hua,LU Da-Lei,LU Wei-Ping. Effects of Nitrogen Application on Accumulation and Distribution of Nitrogen, Phosphorus, and Potassium of Summer Maize under Super-High Yield Conditions [J]. Acta Agron Sin, 2013, 39(08): 1478-1490.
Full text



No Suggested Reading articles found!