Acta Agron Sin ›› 2011, Vol. 37 ›› Issue (02): 255-262.doi: 10.3724/SP.J.1006.2011.00263
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
LI Jun1,WEI Hui-Ting2,HU Xiao-Rong1,LI Chao-Su1,TANG Yong-Lu1,LIU Deng-Cai3,4,YANG Wu-Yun1,*
[1]Feldman, M. Origin of cultivated wheat. In: Bonjean, A P, Angus, W J, eds. The World Wheat Book: A History of Wheat Breeding. Paris: Lavoisier Publishing Inc., 2001. pp 3-56 [2]Van Ginkle M, Francis O. Novel genetic diversity from synthetic wheats in breeding cultivars for changing production conditions. Field Crops Res, 2007, 104: 86-94 [3]David H, Mireille K, Timothy R, Jean M R, Bent S, Suketoshi T, Marilyn W. Plant genetic resources: what can they contribute toward increased crop productivity? Proc Natl Acad Sci, 1999, 96: 5937-5943 [4]Mujeeb-Kazi A, Rosas V, Roldan S. Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (T. turgidum L. S. lat. × T. tauschii; 2n = 6x = 42, AABBDD) and its potential utilization for wheat improvement. Genet Resour Crop Evol, 1996, 43: 129-134 [5]Lan X-J(兰秀锦), Yan J(颜济). An amphidiploid derived from a Chinese landrace of tetraploid wheat, Ailanmai crossed with Aegilops tauschii native to China and with reference to its utilization in wheat breeding. J Sichuan Agric Univ (四川农业大学学报), 1992, 10(4): 581-585 (in Chinese with English abstract) [6]Xu S-J(许树军), Dong Y-C(董玉琛). Cytogenetic study on the formation of amphiploids in the F1 hybrids of Triticum carthlicum Nevski var.darginicum and Aegilops tauschii Cosson. Acta Agron Sin (作物学报), 1989, 15(3): 251-259 (in Chinese with English abstract) [7]Liu S B, Zhou R H, Dong Y C, Li P, Jia J Z. Development, utilization of introgression lines using a synthetic wheat as donor. Theor Appl Genet, 2006, 112: 1360-1373 [8]Huang X Q, Cloutier S, Lycar L, Radovanovic N, Humphreys D G, Noll J S, Somers D J, Brown P D. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet, 2006, 113: 753-766 [9]Narasimhamoorthy B, Gill B S, Fritz A K, Nelson J C, Brown-Guedira G L. Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population. Theor Appl Genet, 2006, 112: 787-796 [10]Liao X-Z(廖祥政), Wang J(王瑾), Zhou R-H(周荣华), Ren Z-L(任正隆), Jia J-Z(贾继增). Mining favourable alleles of QTLs conferring 1000-grain weight from synthetic wheat. Acta Agron Sin (作物学报), 2008, 34(11): 1877-1884 (in Chinese with English abstract) [11]Ge H-M(盖红梅), Wang L-F(王兰芬), You G-X(游光霞), Hao C-Y(郝晨阳), Dong Y-C(董玉琛), Zhang X-Y(张学勇). Fundamental roles of cornerstone breeding lines in wheat reflected by SSR random scanning. Sci Agri Sin (中国农业科学), 2009, 42(5): 1503-1511 (in Chinese with English abstract) [12]Yang W Y, Liu D C, Li J, Zhang L Q, Wei H T, Hu X R, Zheng Y L, He Z H, Zou Y C. Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China. J Genet Genomics, 2009, 36: 539-546 [13]Zhang Y(张颙), Yang W-Y(杨武云), Hu X-R(胡晓蓉), Yu Y(余毅), Zou Y-C(邹裕春), Li Q-M(李青茂). Analysis of agronomic characters of new wheat variety Chuanmai 42 derived from synthetics (Triticum durum ´ Aegilops tauschii). Southwest China J Agric Sci (西南农业学报), 2004, 17(2):141-145 (in Chinese with English abstract) [14]Hajjar R, Hodgkin T. The use of wild relatives in crop improvement: A survey of developments over the last 20 years. Euphytica, 2007, 156: 1-13 [15]Maxted N, Kell S P. Establishment of a Global Network for the In Situ Conservation of Crop Wild Relatives: Status and Needs. FAO Commission on Genetic Resources for Food and Agriculture, Rome, Italy. 2009, p 24 [16]Röder M S, Korzun V, Wendehake K, Plaschke J, Tixier M H, Leroy P, Ganal M W. A microsatellite map of wheat. Genetics, 1998, 149: 2007-2023 [17]Pestsova E, Ganal M W, Röder M S. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome, 2000, 43: 689-697 [18]Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105-1114 [19]Song Q J, Shi J R, Singh S, Fickus E W, Costa J M, Lewis J, Gill B S, Ward R, Cregan P B. Development and mapping of microsatellite (SSR) marker in wheat. Theor Appl Genet, 2005, 110: 550-560 [20]Dreccer M F, Borgognone M G, Ogbonnaya F C, Trethowan R M, Winter B. CIMMYT-selected derived synthetic bread wheat for rain fed environments: yield evaluation in Mexico and Australia. Field Crops Res, 2007, 100: 218-228 [21]Ogbonnaya F C, Ye G Y, Trethowan R, Dreccer F, Lush D, Shepperd J, van Ginkel M. Yield of synthetic backcross-derived lines in rain fed environments of Australia. Euphytica, 2007, 3: 321-336 [22]Del Blanco I A, Rajaram S, Kronstad W E. Agronomic potential of synthetic hexaploid wheat derived populations. Crop Sci, 2001, 41: 670-676 [23]Huang X Q, Coster H, Ganal M W, Röder M S. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet, 2003, 106: 1379-1389 [24]Kato K, Miura H, Sawada S. Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet, 2000, 101: 1114-1121 [25]Zhang K-P(张坤普), Xu X-B(徐宪斌), Tian J-C(田纪春). QTL mapping for grain yield and spike related traits in common wheat. Acta Agron Sin (作物学报), 2009, 35(2): 270-278 (in Chinese with English abstract) [26]Groos C, Robert N, Bervas E, Charmet G. Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet, 2003, 106: 1032-1040 [27]McCartney C A, Somers D J, Humphreys D G, Lukow O, Ames N, Noll J, Cloutier S, McCallum B D. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ‘AC Domain’. Genome, 2005, 48: 870-883 [28]Marza F, Bai G H, Carver B Y, Zhou W C. Quantitative trait loci for yield and related traits in the wheat population Ning 7840 × Clark. Theor Appl Genet, 2006, 112: 688-698 [29]Kumar K, Kulwal P L, Balyan H S, Gupta P K. QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Mol Breed, 2007, 19: 167-177 [30]Snape J W, Foulkes M J, Simmonds J, Leverington M, Fish L J, Wang Y K, Ciavarrella M. Dissecting gene 3 environmental effects on wheat yields via QTL and physiological analysis. Euphytica, 2007, 154: 401-408 [31]Li S S, Jia J Z, Wei X Y, Zhang X C, Li L Z, Chen H M, Fan Y D, Sun H Y, Zhao X H, Lei T D, Xu Y F, Jiang F S, Wang H G, Li L H. An intervarietal genetic map and QTL analysis for yield traits in wheat. Mol Breed, 2007, 20: 167-178 [32]Wang R X, Hai L, Zhang X Y, You G X, Yan C S, Xiao S H. QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu 8679. Theor Appl Genet, 2009, 118: 313-325 [33]Börner A, Schumann E, Furste A, Coster H, Leithold B, Röder M S, Weber W E. Mapping of quantitative trait loci for agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet, 2002, 105: 921-936 [34]Liao J(廖杰), Wei H-T(魏会廷), Li J(李俊), Yang Y-M(杨玉敏), Zeng Y-C(曾云超), Peng Z-S(彭正松),Yang W-Y(杨武云). Detection of the introgression loci of synthetic hexaploid wheat in wheat cultivar Chuanmai 42 by SSR markers. Acta Agron Sin (作物学报), 2007, 33(5): 703-707 (in Chinese with English abstract) [35]Li J(李俊), Wei H-T(魏会廷), Yang S-J(杨粟洁), Li C-S(李朝苏), Tang Y-L(汤永禄), Hu X-R(胡晓蓉), Yang W-Y(杨武云). Genetic effects of 1BS chromosome arm on the main agronomic traits in Chuanmai 42. Acta Agron Sin (作物学报), 2009, 35(12): 2167-2173 (in Chinese with English abstract) [36]Li G Q, Li Z F, Yang W Y, Zhang Y, He Z H, Xu S C, Singh R P, Qu Y Y, Xia X C. Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai 42 and its allelism with Yr24 and Yr26. Theor Appl Genet, 2006, 112: 1434-1440 [37]Sourdille P, Cadalen T, Guyomarc’h H, Snape J W, Parretant M R, Charmet G, Boeuf C, Bernard S, Bernard M. An update of the Courlot × Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet, 2003, 106: 530-538 [38]Quarrie S A, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash D Z, Farmer P, Saker L, Clarkson D T, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti M C, Hollington P A, Aragues R, Royo A, Dodig D. A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet, 2005, 110: 865-880 [39]Kuchel H, Williams K, Langridge P, Eagles H A, Jefferies S P. Genetic dissection of grain yield in bread wheat: II. QTL-by-environment interaction. Theor Appl Genet, 2007, 115: 1015-1027 |
[1] | Lei ZHOU,Qiu-Yuan LIU,Jin-Yu TIAN,Meng-Hua ZHU,Shuang CHENG,Yang CHE,Zhi-Jie WANG,Zhi-Peng XING,Ya-Jie HU,Guo-Dong LIU,Hai-Yan WEI,Hong-Cheng ZHANG. Differences in yield and nitrogen absorption and utilization of indica-japonica hybrid rice varieties of Yongyou series [J]. Acta Agronomica Sinica, 2020, 46(5): 772-786. |
[2] | LI Chao-Su,WU Xiao-Li,TANG Yong-Lu,LI Jun,MA Xiao-Ling,LI Shi-Zhao,HUANG Ming-Bo,LIU Miao. Response of yield and associated physiological characteristics for different wheat cultivars to nitrogen stress at mid-late growth stage [J]. Acta Agronomica Sinica, 2019, 45(8): 1260-1269. |
[3] | ZHU Ying,XU Dong,HU Lei,HUA Chen,CHEN Zhi-Feng,ZHANG Zhen-Zhen,ZHOU Nian-Bing,LIU Guo-Dong,ZHANG Hong-Cheng,WEI Hai-Yan. Characteristics of medium-maturity conventional japonica rice with good taste and high yield in Jianghuai area [J]. Acta Agronomica Sinica, 2019, 45(4): 578-588. |
[4] | WEI Huan-He,MENG Tian-Yao,LI Chao,ZHANG Hong-Cheng,DAI Qi-Gen,MA Rong-Rong,WANG Xiao-Yan,YANG Yun-Wen. Accumulation, Translocation and Utilization Characteristics of Nitrogen in Yongyou 12 Yielding over 13.5 t ha-1 [J]. Acta Agron Sin, 2016, 42(09): 1363-1373. |
[5] | WEI Huan-He,MENG Tian-Yao,LI Chao,ZHANG Hong-Cheng,DAI Qi-Gen,MA Rong-Rong,WANG Xiao-Yan,YANG Jun-Wen. Accumulation, Distribution, and Utilization Characteristics of Phosphorus in Yongyou 12 Yielding over 13.5 t ha-1#br# [J]. Acta Agron Sin, 2016, 42(06): 886-897. |
[6] | WEI Huan-He,LI Chao,ZHANG Hong-Cheng,SUN Yu-Hai,MA Rong-Rong,WANG Xiao-Yan,YANG Jun-Wen,DAI Qi-Gen,HUO Zhong-Yang,XU Ke,WEI Hai-Yan,GUO Bao-Wei. Plant-type Characteristics in Populations with Different Yield of Yongyou 12 [J]. Acta Agron Sin, 2014, 40(12): 2160-2168. |
[7] | WANG Xiao-Yan,WEI Huan-He,ZHANG Hong-Cheng,SUN Jian,ZHANG Jian-Min,LI Chao,LU Hui-Bin,YANG Jun-Wen,MA Rong-Rong,XU Jiu-Fu,WANG Jue,XU Yue-Jin,SUN Yu-Hai. Population Characteristics for Super-High Yielding Hybrid Rice Yongyou 12 (>13.5 t ha-1) [J]. Acta Agron Sin, 2014, 40(12): 2149-2159. |
[8] | HU Ya-Jie,ZHU Da-Wei,QIAN Hai-Jun,CAO Wei-Wei,XING Zhi-Peng,ZANG Hong-Cheng,ZHOU You-Yan,CHEN Hou-Cun,WANG Hong-Yang,DAI Qi-Gen,HUO Zhong-Yang,XU Ke,WEI Hai-Yan,GUO Bao-Wei. Some Characteristics of Mechanically Transplanted Pot Seedlings in Super High Yielding Population of Indica-japonica Hybrid Rice Yongyou 2640 [J]. Acta Agron Sin, 2014, 40(11): 2016-2027. |
[9] | WEI Huan-He,LI Chao,ZHANG Hong-Cheng,SUN Yu-Hai,MENG Tian-Yao1,YANG Jun-Wen,MA Rong-Rong,WANG Xiao-Yan,DAI Qi-Gen,HUO Zhong-Yang,XU Ke,WEI Hai-Yan. Tillering Characteristics and Its Relationship with Population Productivity of Super-High Yield Rice Population of Yongyou 12 [J]. Acta Agron Sin, 2014, 40(10): 1819-1829. |
[10] | WANG Yong-Jun,YANG Jin-Sheng,YUAN Cui-Ping,LIU Jing-Guo,LI Deng-Hai,DONG Shu-Ting. Characteristics of Senescence and Antioxidant Enzyme Activities in Leaves at Different Plant Parts of Summer Maize with the Super-high Yielding Potential after Anthesis [J]. Acta Agron Sin, 2013, 39(12): 2183-2191. |
[11] | ZHANG Wei,ZHAO Jing,QIU Qiang,WANG Shu-Ming,ZHANG Chun-Bao,YAN Xiao-Yan,ZHAO Li Mei,ZHANG Ming-Hao, ZHANG Wei-Long, and FAN Hui-Mei. Canopy Physiology and Characteristics of Yield Components during Reproductive Stage in Soybean Hybrids [J]. Acta Agron Sin, 2013, 39(12): 2192-2200. |
[12] | WEI Huan-He,JIANG Yuan-Hua,ZHAO Ke,XU Jun-Wei,ZHANG Hong-Cheng,DAI Qi-Gen,HUO Zhong-Yang,XU Ke,WEI Hai-Yan,ZHENG Fei. Characteristics of Super-high Yield Population in Yongyou Series of Hybrid Rice [J]. Acta Agron Sin, 2013, 39(12): 2201-2210. |
[13] | JIN Li-Bin,CUI Hai-Yan,LI Bo,YANG Jin-Sheng,DONG Shu-Ting,ZHAO Bin,LIU Peng,ZHANG Ji-Wang. Effects of Integrated Agronomic Practices on Nitrogen Efficiency and Soil Nitrate Nitrogen of Summer Maize [J]. Acta Agron Sin, 2013, 39(11): 2009-2015. |
[14] | XU Ke,GUO Bao-Wei,ZHANG Hong-Cheng,ZHOU Xing-Tao,CHEN Hou-Cun,ZHANG Jun,CHEN Jing-Du,ZHU Cong-Cong,LI Gui-Yun,WU Zhong-Hua,DAI Qi-Gen,HUO Zhong-Yang,WEI Hai-Yan,GAO Hui,CAO Li-Qiang,et al.. Effect of Ordered Transplanting and Optimized Broadcasting on Super High Yield and Photosynthetic Productivity and Exploration of Rice Super High Yield Model [J]. Acta Agron Sin, 2013, 39(09): 1652-1667. |
[15] | JING Li-Quan,ZHAO Fu-Cheng,WANG De-Cheng,YUAN Jian-Hua,LU Da-Lei,LU Wei-Ping. Effects of Nitrogen Application on Accumulation and Distribution of Nitrogen, Phosphorus, and Potassium of Summer Maize under Super-High Yield Conditions [J]. Acta Agron Sin, 2013, 39(08): 1478-1490. |
|