Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (02): 240-244.doi: 10.3724/SP.J.1006.2012.00240
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
DING Wo-Na1,HUANG Wei2,NING Yong-Qiang1,ZHU Shi-Hua1
[1]Cho H T, Cosgrove D J. Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell, 2002, 14: 3237–3253[2]Gilroy S, Jones D L. Through form to function: root hair development and nutrient uptake. Trends Plant Sci, 2000, 5: 56–60[3]Horn R, Yi K, Menand B, Pernas-Ochoa M, Takeda S, Walker T, Dolan L. Root epidermal development in Arabidopsis. Annu Plant Rev, 2009, 37: 64–82[4]Libault M, Brechenmacher L, Cheng J, Xu D, Gary S. Root hair systems biology. Trends Plant Sci, 2010, 15: 641–650[5]Ding W N, Yu Z M, Tong Y L, Huang W, Chen H M, Wu P. A transcription factor with a bHLH domain regulates root hair development in rice. Cell Res, 2009, 19: 1309–1311[6]Kim C M, Park S H, Je B I, Park S H, Park S J, Piao H L, Eun M Y, Dolan L, Han C D. OsCSLD1, a cellulose synthase-like D1 gene, is required for root hair morphogenesis in rice. Plant Physiol, 2007, 143: 1220–1230[7]You T, Toyota M, Ichii M, Taketa S. Molecular cloning of a root hairless gene rth1 in rice. Breed Sci, 2009, 59: 13–20[8]Yu Z M, Kang B, He X W, Lv S L, Bai Y H, Ding W N, Chen M, Cho H, Wu P. Root hair-specific EXPANSINs modulate root hair elongation in rice. Plant J, 2011, 66: 725–734[9]Won S K, Kumari S, Choi S B, Cho M, Lee S H, Cho H T. Root hair-specific EXPANSIN B genes have been selected for Graminaceae root hairs. Mol Cells, 2010, 30: 369–376[10]Yoshida S, Forno D A, Cock J H, Gomez K A. Laboratory Manual for Physiological Studies of Rice, 3rd edn. Manila: International Rice Research Institute, 1976. pp 62[11]Zhang X-Q(张向前), Zou J-S(邹金松), Zhu H-T(朱海涛), Li X-Y(李晓燕), Zeng R-Z(曾瑞珍). Genetic analysis and gene mapping of an early flowering and multi-ovary mutant in rice (Oryza sativa L.). Hereditas (遗传), 2008, 30(10): 1349–1355 (in Chinese with English abstract)[12]Michelmore R W, Papan I, Kesseli R V. Identification of markers linked to disease resistance genes by bulked segregantanalysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832[13]Vance C P, Uhde-Stone C, Allan D L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol, 2003, 157: 423–447[14]Wen T J, Schnable P S. Analyses of mutants of three genes that influence root hair development in Zea mays (Gramineae) suggest that root hairs are dispensable. Am J Bot, 1994, 81: 833–842[15]Wen T J, Hochholdinger F, Sauer M, Bruce W, Schnable P S. The roothairless1 gene of maize encodes a homolog of sec3, which is involved in polar exocytosis. Plant Physiol, 2005, 138: 1637–1643[16]Hochholdinger F, Wen T J, Zimmermann R, Chimot-Marolle P, Silva O C, Bruce W, Lamkey K R, Wienand U, Schnable P S. The maize (Zea mays L.) roothairless3 gene encodes a putative GPI-anchored, monocot-specific, COBRA-like protein that significantly affects grain yield. Plant J, 2008, 54: 888–898[17]Engvild K C, Rasmussen S K. Root hair mutants of barley. Barley Genet Newsl, 2004, 34: 13–15[18]Gahoonia T S, Nielsen N E, Joshi P A, Jahoor A. A roothairless barley mutant for elucidating genetic of root hairs and phosphorus uptake. Plant Soil, 2001, 235: 211–219[19]Kwasniewski M, Szarejko I. Molecular cloning and characterization of β-expansin gene related to root hair formation in barley. Plant Physiol, 2006, 141: 1149–1158[20]Kwasniewski M, Janiaka A, Mueller-Roeberb B, Szarejkoa I. Global analysis of the root hair morphogenesis transcriptome reveals new candidate genes involved in root hair formation in barley. J Plant Physiol, 2010, 167: 1076–1083 |
No related articles found! |
|