Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (1): 89-99.doi: 10.3724/SP.J.1006.2024.33016

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Acquisition and resistance analysis of transgenic Maize Inbred Line LG11 with insect and herbicide resistance

YUE Run-Qing*(), LI Wen-Lan, MENG Zhao-Dong   

  1. Maize Research Institute, Shandong Academy of Agricultural Sciences / National Engineering Laboratory of Wheat and Maize / Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai Rivers Plain, Ministry of Agriculture and Rural Affairs, Jinan 250100, Shandong, China
  • Received:2023-03-16 Accepted:2023-05-24 Online:2024-01-12 Published:2023-05-29
  • Contact: *E-mail: yuerunqing@126.com
  • Supported by:
    Taishan Scholars Program and China Agriculture Research System of MOF and MARA(CARS-02-09)

Abstract:

Insect pests are an important limiting factor affecting the yield and quality of maize. Bacillus thuringiensis transgenic maize has good insect resistance and can reduce the use of chemical insecticides effectively, which is very popular among growers. However, a large area of continuous planting of transgenic corn will lead to the resistance of target pests. “Multi-gene” strategy is one of the management strategies to prevent or delay the occurrence of resistant populations of target pests. The anti-insect vector constructed in this study is a fusion protein M2cryAb-vip3Aa formed by combining the main structural domains of Cry1Ab and Vip3Aa proteins using synthetic methods. These two insecticidal proteins had no evolutionary homology and different insecticidal mechanisms, which could effectively reduce the resistance probability of target pests. In this study, to obtain a new transgenic maize material with insect resistance and herbicide resistance and excellent agronomic traits, and analyze its insect resistance and herbicide resistance, m2cryAb-vip3Aa and bar genes were introduced into the recipient materials in series by transgenic method, and Chang 7-2, a backbone inbred line, was used as the backcross parent for backcross transfer. The results of this study enriches the existing germplasm resources of insect-resistant and herbicide-tolerant maize, and provides new solutions for pest control and weed control in maize fields.

Key words: m2cryAb-vip3Aa, bar, transgenic, maize (Zea mays L.)

Table 1

Criteria for evaluation of insect resistance in laboratory bioassay"

抗虫性水平
Insect resistance level
幼虫校正死亡率y
Adjusted larval mortality y (%)
高抗High resistance y ≥ 90
抗Resistance 90 > y ≥ 60
中抗Medium resistance 60 > y ≥ 40
低抗Low resistance 40 > y ≥ 20
感Sensitivity 20 > y

Fig. 1

Domain prediction of M2cryAb-vip3Aa protein"

Fig. 2

Detection of target genes of LG11 by PCR A: m2cryAb-vip3Aa, the expected size of the target band is 958 bp; B: bar, the expected size of the target band is 506 bp. M: DL2000 DNA marker; N: pure water; 1: positive control plasmid; 2: negative control (containing Chang 7-2) genomic DNA; 3: BC4F2 transformation LG11 genomic DNA; 4: BC5F2 transformation LG11 genomic DNA; 5-6: genomic DNA of other transformants with the same vector."

Fig. 3

Southern hybridization of target genes m2cryAb-vip3Aa and bar A: Southern hybridization of target gene m2cryAb-vip3Aa by Hind III digestion; B: Southern hybridization of target gene m2cryAb-vip3Aa by BamH I digestion; C: Southern hybridization of target gene bar by Hind III digestion; D: Southern hybridization of target gene bar by BamH I digestion. M: DNA marker, the size is labeled at the side; CK: negative control (containing Chang 7-2); 1: positive control plasmid; 2: BC4F2 transformation LG11 genomic DNA; 3: BC5F1 transformation LG11 genomic DNA; 4: BC5F2 transformation LG11 genomic DNA."

Table 2

Relative expression pattern of the exogenous genes in LG11 transformants"

检测基因
Gene name
生育期
Growth stage
组织
Tissue
BC5F2代LG11
BC5F2 transformation LG11
昌7-2
Chang 7-2
m2cryAb-vip3Aa 苗期Seedling stage 根Root 36.43±7.42 c
茎Stem 38.73±3.30 b
叶Leaf 70.01±9.19 a
吐丝期Silking stage 根Root 2.38±0.05 f 未检出Not detected
茎Stem 1.11±0.07 g 未检出Not detected
成熟期Maturity stage 根Root 2.77±10.56 e
叶Leaf 1.08±0.07 g
籽粒Kernel 10.06±1.77 d
bar 苗期Seedling stage 根Root 2.86±1.15 a
茎Stem 2.74±0.35 a
叶Leaf 1.51±0.62 b
吐丝期Silking stage 根Root 0.24±0.01 b 未检出Not detected
成熟期Maturity stage 根Root 1.41±0.49 b

Fig. 4

Laboratory bioassay of maize leaves at heart leaf stage and maize silks on Ostrinia furnacalis (5 days after insect ingestion) A: Chang 7-2 leaves at heart leaf stage; B: LG11 leaves at heart leaf stage; C: Chang 7-2 silks; D: LG11 silks."

Table 3

Laboratory bioassay of Ostrinia furnacalis and Spodoptera frugiperda"

靶标害虫
Target pest
材料
Material name
叶片Leaf 花丝Silk
死亡率
Mortality rate (%)
校正死亡率
Adjusted mortality rate (%)
抗性
Resistance
死亡率
Mortality
rate
(%)
校正死亡率
Adjusted mortality
rate (%)
抗性
Resistance
玉米螟
Ostrinia
ubilalis
BC5F2代LG11
BC5F2 transformation LG11
100.00±0.00 a 100.00 高抗
High resistance
100.00±0.00 a 100.00 高抗
High resistance
昌7-2
Chang 7-2
10.00±1.50 b 7.50±4.80 b
草地贪夜蛾
Spodoptera frugiperda
BC5F2代LG11
BC5F2 transformation LG11
97.50±5.00 a 97.44 高抗
High resistance
100.0±0.0 a 100.00 高抗
High resistance
昌7-2
Chang 7-2
2.50±0.50 b 7.50±5.00 b

Table 4

Field identification of resistance of LG11 to Ostrinia furnacalis"

材料
Material name
心叶期Heart leaf stage 吐丝期Silking stage
食叶级别
Level of leaf feeding
虫害级别
Level of pest infestation
抗性级别
Resistance
雌穗被害级别
Level of female panicle damage
抗性级别
Resistance
BC5F2代LG11
BC5F2 transformation LG11
1.33±0.24 b 1 高抗
High resistance
1.40±0.06 b 高抗
High resistance
昌7-2
Chang 7-2
7.73±0.31 a 7
Sensitivity
6.50±0.71 a
Sensitivity

Fig. 5

Insect resistance of silk grafted with Ostrinia furnacalis and Spodoptera frugiperda at ear stage A: Chang 7-2 grafted with Ostrinia furnacalis; B: LG11 grafted with Ostrinia furnacalis; C: Chang 7-2 grafted with Spodoptera frugiperda; D: LG11 grafted with Spodoptera frugiperda."

Table 5

Field identification of resistance of LG11 to Spodoptera frugiperda"

材料
Material
心叶期Heart leaf stage 吐丝期Silking stage
食叶级别
Level of leaf feeding
虫害级别
Level of pest infestation
抗性级别
Resistance
雌穗被害级别
Level of female
panicle damage
抗性级别
Resistance
BC5F2代LG11
BC5F2 transformation LG11
1.09±0.09 b 1 高抗
High resistance
1.41±0.41 b 高抗
High resistance
昌7-2
Chang 7-2
7.83±0.24 a 7
Sense
6.20±0.57 a
Sense

Fig. 6

Tolerance of LG11 and control Chang 7-2 after one week of spraying with glufosinate A: Chang 7-2 at 0 times dose; B: Chang 7-2 at 1 times dose; C: LG11 at 0 times dose; D: LG11 at 1 time dose; E: LG11 at 2 times dose; F: LG11 at 4 times dose."

Table 6

Tolerance of LG11 of BC5F2 generation to glufosinate herbicide"

药后时间
Time after herbicide spraying
材料
Material
剂量(倍)
Dose (times)
成苗率
Planting rate (%)
受害率
Damage rate (%)
株高
Plant height (cm)
1 week 昌7-2
Chang 7-2
0.00 b 100.00±0.00 a
100.00±0.00 a 0.00 c 66.80±1.73 b
LG11 100.00±0.00 a 0.00 c 74.80±2.25 a
100.00±0.00 a 0.00 c 76.07±2.04 a
100.00±0.00 a 4.57±3.64 b 69.40±2.80 ab
100.00±0.00 a 4.69±2.15 b 74.27±3.45 a
2 weeks 昌7-2
Chang 7-2
0.00 b 100.00±0.00 a
100.00±0.00 a 0.00 b 105.60±3.50 b
LG11 100.00±0.00 a 0.00 b 113.87±0.23 a
100.00±0.00 a 0.00 b 116.07±3.52 a
100.00±0.00 a 0.00 b 113.47±1.22 ab
100.00±0.00 a 0.00 b 114.33±5.03 a
4 weeks 昌7-2
Chang 7-2
0.00 b 100.00±0.00 a
100.00±0.00 a 0.00 b 165.60±1.40 a
LG11 100.00±0.00 a 0.00 b 163.93±2.01 a
100.00±0.00 a 0.00 b 161.13±1.68 a
100.00±0.00 a 0.00 b 164.13±0.76 a
100.00±0.00 a 0.00 b 163.20±1.22 a
[1] 韩长赋. 玉米论略. 农业经济问题, 2012, 33(6): 4-9.
Han C F. On the strategy of corn industry. Issues Agric Econ, 2012, 33(6): 4-9. (in Chinese with English abstract)
[2] 李婷婷, 李文娟. 我国玉米空间格局演变及其影响因素研究进展. 中国农业资源与区划, 2021, 42(2): 87-95.
Li T T, Li W J. Research progress on the evolution of maize spatial pattern and its influencing factors in China. Chin J Agric Resour Region Plan, 2021, 42(2): 87-95. (in Chinese with English abstract)
[3] 刘万才, 刘振东, 黄冲, 陆明红, 刘杰, 杨清坡. 近10年农作物主要病虫害发生危害情况的统计和分析. 植物保护, 2016, 42(5): 1-9.
Liu W C, Liu Z D, Huang C, Lu M H, Liu J, Yang Q P. Statistics and analysis of crop yield losses caused by main diseases and insect pests in recent 10 years. Plant Prot, 2016, 42(5): 1-9. (in Chinese with English abstract)
[4] 姜玉英, 刘万才, 黄冲, 陆明红, 刘杰, 杨清坡. 2018全国农作物重大病虫害发生趋势预报. 中国植保导刊, 2018, 38(2): 26-31.
Jiang Y Y, Liu W C, Huang C, Lu M H, Liu J, Yang Q P. Occurrence trend forecast of major diseases and insect pests of grain crops in China in 2018. China Plant Prot, 2018, 38(2): 26-31. (in Chinese with English abstract)
[5] 王振营, 王晓鸣. 我国玉米病虫害发生现状、趋势与防控对策. 植物保护, 2019, 45(1): 1-11.
Wang Z Y, Wang X M. Current status and management strategies for corn pests and diseases in China. Plant Prot, 2019, 45(1): 1-11. (in Chinese with English abstract)
[6] 张玉池, 王晓蕾, 徐文蓉, 刘琪, 相世刚, 戴伟民, 强胜, 宋小玲. 国内外抗除草剂基因专利的分析. 杂草学报, 2017, 35(2): 1-22.
Zhang Y C, Wang X L, Xu W R, Liu Q, Xiang S G, Dai W M, Qiang S, Song X L. Analysis on the patents of herbicide resistance gene at home and abroad. Weed Sci, 2017, 35(2): 1-22. (in Chinese with English abstract)
[7] 纪逸媚.转基因抗虫作物的安全性研究. 福建农林大学硕士学位论文, 福建福州, 2014.
Ji Y M. Safety of Transgenic Insect-resistant Crops. MS Thesis of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2014.
[8] 黎裕, 王天宇. 玉米转基因技术研发与应用现状及展望. 玉米科学, 2018, 26(2): 1-15.
Li Y, Wang T Y. Germplasm enhancement in maize: advances and prospects. J Maize Sci, 2018, 26(2): 1-15. (in Chinese with English abstract)
[9] ISAAA. Global status of commercialized biotech/GM crops in 2018: Biotech crops continue to help meet the challenges of increased population and climate change. The International Service for the Acquisition of Agri-biotech Applications, 2018. Brief 54.
[10] Farias J R, Andow D A, Horikoshi R J, Sorgatto R J, Fresia P, Santos A C, Omoto C. Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Prot, 2014, 64: 150-158.
doi: 10.1016/j.cropro.2014.06.019
[11] Omoto C, Bernardi O, Salmeron E, Rodrigo J, Patrick S. Field-evolved resistance to Cry1Ab maize by Spodoptera frugiperda in Brazil. Pest Manag Sci, 2015, 72: 1727-1736.
doi: 10.1002/ps.2016.72.issue-9
[12] 王月琴, 何康来, 王振营. 靶标害虫对Bt玉米的抗性发展和治理策略. 应用昆虫学报, 2019, 56: 12-23.
Wang Y Q, He K L, Wang Z Y. Evolution of resistance to transgenic Bacillus thuringiensis maize in pest insects and a strategy for managing this. Chin J Appl Entomol, 2019, 56: 12-23. (in Chinese with English abstract)
[13] Bates S L, Zhao J Z, Roush R T, Shelton A M. Insect resistance management in GM crops: past, present and future. Nat Biotechnol, 2005, 23: 57-62.
pmid: 15637622
[14] 李东阳, 肖冰, 王晨尧, 杨现明, 梁晋刚, 吴孔明. 转基因抗虫耐除草剂玉米瑞丰125 Cry1Ab/Cry2Aj杀虫蛋白的时空表达分析. 生物技术通报, 2023, 39(1): 31-39.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0339
Li D Y, Xiao B, Wang C Y, Yang X M, Liang J G, Wu K M. Spatio-temporal expression of Cry1Ab/Cry2Aj insecticidal protein in genetically modified maize Ruifeng 125 with stacked insect and herbicide resistance traits. Biotechnol Bull, 2023, 39(1): 31-39. (in Chinese with English abstract)
[15] Tan S, Evans R, Singh B. Herbicidal inhibitors of amino acid biosynthesis and herbicide-tolerant crops. Amino Acids, 2006, 30: 195-204.
doi: 10.1007/s00726-005-0254-1 pmid: 16547651
[16] Que Q D, Chilton M D, de Fontes C M, He C K, Nuccio M, Zhu T, Wu Y X, Chen J S, Shi L. Trait stacking in transgenic crops: challenges and opportunities. GM Crops, 2010, 1: 220-229.
doi: 10.4161/gmcr.1.4.13439 pmid: 21844677
[17] Hutchison W D, Burkness E C, Mitchell P D, Moon R D, Leslie T W, Fleischer S J, Abrahamson M, Hamilton K L, Steffey K L, Gray M E, Hellmich R L, Kaster L V, Hunt T E, Wright R J, Pecinovsky K, Rabaey T L, Flood B R, Raun E S. Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science, 2010, 330: 222-225.
doi: 10.1126/science.1190242 pmid: 20929774
[18] Tabashnik B E. Communal benefits of transgenic corn. Science, 330: 189-190.
doi: 10.1126/science.1196864
[19] Van Rensburg J. First report of field resistance by the stem borer, Busseola fusca (Fuller) to Bt-transgenic maize. South Afr J Plant Soil, 2007, 24: 147-151.
[20] Gassmann A J, Carrière Y, Tabashnik B E. Fitness costs of insect resistance to Bacillus thuringiensis. Annu Rev Entomol, 2009, 54: 147-163.
doi: 10.1146/annurev.ento.54.110807.090518 pmid: 19067630
[21] Chen M, Shelton A, Ye G Y. Insect-resistant genetically modified rice in China: from research to commercialization. Annu Rev Entomol, 2011, 56: 81-101.
doi: 10.1146/annurev-ento-120709-144810 pmid: 20868281
[1] LI Yan, FANG Yu-Hui, WANG Yong-Xia, PENG Chao-Jun, HUA Xia, QI Xue-Li, HU Lin, XU Wei-Gang. Transcriptomics profile of transgenic OsPHR2 wheat under different phosphorus stress [J]. Acta Agronomica Sinica, 2024, 50(2): 340-353.
[2] XIAO Sheng-Hua, LU Yan, LI An-Zi, QIN Yao-Bin, LIAO Ming-Jing, BI Zhao-Fu, ZHUO Gan-Feng, ZHU Yong-Hong, ZHU Long-Fu. Function analysis of an AP2/ERF transcription factor GhTINY2 in cotton negatively regulating salt tolerance [J]. Acta Agronomica Sinica, 2024, 50(1): 126-137.
[3] CHANG Li-Juan, LIANG Jing-Gang, SONG Jun, LIU Wen-Juan, FU Cheng-Ping, DAI Xiao-Hang, WANG Dong, WEI Chao, XIONG Mei. Event-specific PCR detection method of transgenic maize ND207 and its standardization [J]. Acta Agronomica Sinica, 2023, 49(7): 1818-1828.
[4] ZHU Xu-Dong, YANG Lan-Feng, CHEN Yuan-Yuan, HOU Ze-Hao, LUO Yi-Rou, XIONG Ze-Hao, FANG Zheng-Wu. Biological functional analysis of common buckwheat (Fagopyrum esculentum) FeSGT1 gene in enhancing drought stress resistance [J]. Acta Agronomica Sinica, 2023, 49(6): 1573-1583.
[5] SHEN Qing-Qing, WANG Tian-Ju, WANG Jun-Gang, ZHANG Shu-Zhen, ZHAO Xue-Ting, HE Li-Lian, LI Fu-Sheng. Functional identification of Saccharum spontaneum transcription factor SsWRKY1 to improve drought tolerance in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(10): 2654-2664.
[6] YANG Ying-Xia, ZHANG Guan, WANG Meng-Meng, LU Guo-Qing, WANG Qian, CHEN Rui. Molecular characterization of transgenic maize GM11061 based on high-throughput sequencing technology [J]. Acta Agronomica Sinica, 2022, 48(7): 1843-1850.
[7] WANG Wei-Xia, LAI Feng-Xiang, HU Hai-Yan, HE Jia-Chun, WEI Qi, WAN Pin-Jun, FU Qiang. Effect of 11-year storage of GMO reference material at ultra-low temperature on nucleic acid detection of standard matrix sample of transgenic crop [J]. Acta Agronomica Sinica, 2022, 48(1): 238-248.
[8] YANG Qin-Li, YANG Duo-Feng, DING Lin-Yun, ZHANG Ting, ZHANG Jun, MEI Huan, HUANG Chu-Jun, GAO Yang, YE Li, GAO Meng-Tao, YAN Sun-Yi, ZHANG Tian-Zhen, HU Yan. Identification of a cotton flower organ mutant 182-9 and cloning of candidate genes [J]. Acta Agronomica Sinica, 2021, 47(10): 1854-1862.
[9] ZHOU Lian, LIU Chao-Xian, CHEN Qiu-Lan, WANG Wen-Qin, YAO Shun, ZHAO Zi-Kun, ZHU Si-Ying, HONG Xiang-De, XIONG Yu-Han, CAI Yi-Lin. Fine mapping and candidate gene analysis of maize defective kernel mutant dek54 [J]. Acta Agronomica Sinica, 2021, 47(10): 1903-1912.
[10] HENG You-Qiang,YOU Xi-Long,WANG Yan. Pathogenesis-related protein gene SfPR1a from Salsola ferganica enhances the resistances to drought, salt and leaf spot disease in transgenic tobacco [J]. Acta Agronomica Sinica, 2020, 46(4): 503-512.
[11] Shan-Bin CHEN, Si-Fan SUN, Nan NIE, Bing DU, Shao-Zhen HE, Qing-Chang LIU, Hong ZHAI. Cloning of IbCAF1 and identification on tolerance to salt and drought stress in sweetpotato [J]. Acta Agronomica Sinica, 2020, 46(12): 1862-1869.
[12] MA Shuo, JIAO Yue, YANG Jiang-Tao, WANG Xu-Jing, WANG Zhi-Xing. Molecular characterization identification by genome sequencing of transgenic glyphosate-tolerant rice G2-7 [J]. Acta Agronomica Sinica, 2020, 46(11): 1703-1710.
[13] ZHANG Shuang-Shuang,WANG Li-Wei,YAO Nan,GUO Guang-Yan,XIA Yu-Feng,BI Cai-Li. Expression of OsUBA and its function in promoting seed germination and flowering [J]. Acta Agronomica Sinica, 2019, 45(9): 1327-1337.
[14] ZHOU Xiang-Yang,ZHAO Liang,DI Jia-Chun,CHEN Xu-Sheng. Molecular identification and chromosomal mapping of exogenous Bt gene in two insect-resistant cotton varieties [J]. Acta Agronomica Sinica, 2019, 45(9): 1440-1445.
[15] PAN Li-Juan,CHEN Na,Ming-CHEN Na,WANG Tong,WANG Mian,CHEN Jing,YANG Zhen,WAN Yong-Shan,YU Shan-Lin,CHI Xiao-Yuan,LIU Feng-Zhen. Transcriptome analysis of the peanut transgenic offspring with depressing AhPEPC1 gene [J]. Acta Agronomica Sinica, 2019, 45(7): 993-1001.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .