Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (7): 993-1001.doi: 10.3724/SP.J.1006.2019.84122

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Transcriptome analysis of the peanut transgenic offspring with depressing AhPEPC1 gene

PAN Li-Juan1,CHEN Na1,Ming-CHEN Na1,WANG Tong1,WANG Mian1,CHEN Jing1,YANG Zhen1,WAN Yong-Shan2,YU Shan-Lin1,CHI Xiao-Yuan1,*(),LIU Feng-Zhen2,*()   

  1. 1 Shandong Peanut Research Institute, Qingdao 266100, Shandong, China
    2 College of Agronomy, Shandong Agricultural University / National Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China;
  • Received:2018-09-20 Accepted:2019-01-19 Online:2019-07-12 Published:2019-03-22
  • Contact: Xiao-Yuan CHI,Feng-Zhen LIU E-mail:chi000@126.com;liufz@sdau.edu.cn
  • Supported by:
    This study was supported by the Grants from the National Ten Thousand Youth Talents Plan of 2014(W02070268);the China Agriculture Research System(CARS-13);the National Natural Science Foundation of China(31701464);the Natural Science Foundation of Shandong Province(ZR2017YL017);the Natural Science Foundation of Shandong Province(ZR2016CM07);the Youth Scientific Research Foundation of Shandong Academy of Agricultural Sciences(2016YQN14);Young Talents Training Program of Shandong Academy of Agricultural Sciences;Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2016B02);Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2018E21);the Basic Research Project of Qingdao(17-1-1-51-jch);Improved Variety Engineering Project of Shandong Province(2017LZGC003);Taishan Scholars Project.

Abstract:

Phosphoenolpyruvate carboxylase is considered as a key enzyme to control the ratio of protein to lipid of oilseeds. In this study, the antisense expression of the peanut PEPC isoform 1 (AhPEPC1) gene increased the lipid content by 5.7%-10.3% compared with the non-transgenic control. The high-throughput sequencing technology — RNA-Seq was used to analyze whether the inhibitory expression of AhPEPC1 gene in peanut affected the function of other genes. The results showed that 110 genes were differentially expressed, of which 25 genes were up-regulated and 85 genes were down-regulated. KEGG enrichment analysis was performed on 110 differentially expressed genes, among which 34 genes were successfully obtained KEGG annotation, and two genes (Aradu.M0JX8 and Aradu.FE0Z7) were down-regulated in the biosynthesis pathway of amino acids. Fifteen DEGs between non-transgenic control and transgenic peanut seeds were selected to analyze the gene expression levels using qRT-PCR. The results of qRT-PCR agreed well with most findings from RNA-seq analysis. This research might resolve to some extent the molecular mechanisms of AhPEPC1 gene regulating oil content of peanut seeds.

Key words: peanut, AhPEPC1 gene, transgenic, transcriptome analysis

Table 1

Primers used for real time PCR analysis"

引物名称
Primer name
引物序列
Primer sequence (5°-3°)
引物名称
Primer name
引物序列
Primer sequence (5°-3°)
Aradu.2N2A3-F TTCATTCATCCCCCTTTTCAG Aradu.CZ64T-F GGAGTAAACGACCCGATAAGC
Aradu.2N2A3-R GGCTGGTTTTGGTTGCTCC Aradu.CZ64T-R GTCCTACGATGCCCGAGAACG
Aradu.32P5Q-F TTGTTTTTGGGTCGGTTGA Aradu.FE0Z7-F TTTTCTCCGCACTCACCTAA
Aradu.32P5Q-R TTAGGTGTTGTGTAGGGTG Aradu.FE0Z7-R TGCCGACTCTTCTTCACCTT
Aradu.38MP3-F TGATTGGTGTGGTGTGTTGC Aradu.G395P-F CGTTCTTGGTGTCCCTGTG
Aradu.38MP3-R CTCCTTATGTGTTCGTGTTTTG Aradu.G395P-R TTCCTTGTGCTTGAGCCTT
Aradu.3UA04-F AGTGAAAATAAGGGAAAGAC Aradu.JE7IW-F GCAATTTGTCCTGATGACCCTA
Aradu.3UA04-R CAACTGAAACTAAACGGGAT Aradu.JE7IW-R CCTCCACTGTGCTCCTCCCT
Aradu.8XK1K-F CTCAAGCGTTCTGCATTGCC Aradu.M0JX8-F CCATTCATGTCTTCGTCGT
Aradu.8XK1K-R CCCTGAAGAGTTTTCCCCCA Aradu.M0JX8-R CTCTTCTTCACCTTCTGCG
Aradu.91JGK-F ATTCAACGAGTTATCCACGG Aradu.PU7RJ-F AGAGGAAGGGTTATGCATT
Aradu.91JGK-R GGATTCCACAACATCAGCAG Aradu.PU7RJ-R AACTTTCGATTTGGGGCTG
Aradu.94LL9-F ATTGAAAGTGGTGGCGAAGT Aradu.Y0LYZ-F GGTGGTGTCACTGCTGGTA
Aradu.94LL9-R TTGACGGAATGGGTGAGG Aradu.Y0LYZ-R GAACTCGTGGCATTGTCC
Aradu.AAS86-F TGGGCTTCCAGGAGTTACAGG β-actin-F TTGGAAT GGGTCAGAAGGATGC
Aradu.AAS86-R GTTCTTCCAGTGTCCACAGTGT β-actin-R AGTGGTGCCTCAGTAAGAAGC

Fig. 1

Contents of lipid (A), protein (B), and fatty acid (C) in transgenic and control plants WT: control plants; L6, L11, L21: transgenic plants. Bars superscripted by different letters are significant different at P = 0.05."

Fig. 2

Venn diagram of the gene expression WT: control plants; TL: transgenic plants. The sum of the numbers in each large circle represents the total number of genes expressed in the group, the overlapping circles represent common genes between groups."

Fig. 3

Volcano plot of differentially expressed gene distribution The screening standard of differential genes is Padj < 0.05. Red dots indicate the up-regulated genes with significant differences, green dots indicate the down regulated genes with significant differences, no significant difference in the expression of genes with blue dots."

Fig. 4

GO annotation of differentially expressed genes The ordinate is the enriched GO term, the abscissa is the number of differential genes in term. The green represents the biological process, the orange represents the cell component, and the purple represents the molecular function."

Table 2

KEGG enrichment of the differentially expressed genes"

条目
Term
数据库
Database
编号
ID
差异基因个数
Sample number
调控模式Regulation 注释基因个数
Background number
显著水平
P-value
矫正显著水平
Corrected P-value
Photosynthesis - antenna proteins KEGG PATHWAY adu00196 2 Up 18 0.000093 0.000560
Purine metabolism KEGG PATHWAY adu00230 2 Up 194 0.008769 0.026306
DNA replication KEGG PATHWAY adu03030 1 Up 90 0.065891 0.116645
Peroxisome KEGG PATHWAY adu04146 1 Up 107 0.077763 0.116645
Pyrimidine metabolism KEGG PATHWAY adu00240 1 Up 140 0.100427 0.120512
Metabolic pathways KEGG PATHWAY adu01100 2 Up 2197 0.508576 0.508576
Selenocompound metabolism KEGG PATHWAY adu00450 2 Down 20 0.000926 0.015741
Cysteine and methionine metabolism KEGG PATHWAY adu00270 2 Down 108 0.021504 0.182780
Stilbenoid, diarylheptanoid and gingerol biosynthesis KEGG PATHWAY adu00945 1 Down 18 0.038622 0.218860
Base excision repair KEGG PATHWAY adu03410 1 Down 46 0.092940 0.284623
Biosynthesis of amino acids KEGG PATHWAY adu01230 2 Down 250 0.095036 0.284623
Phenylalanine metabolism KEGG PATHWAY adu00360 1 Down 50 0.100455 0.284623
Flavonoid biosynthesis KEGG PATHWAY adu00941 1 Down 62 0.122643 0.297848
RNA degradation KEGG PATHWAY adu03018 1 Down 111 0.207912 0.441813
Pyrimidine metabolism KEGG PATHWAY adu00240 1 Down 140 0.254567 0.471897
RNA transport KEGG PATHWAY adu03013 1 Down 166 0.294144 0.471897
Plant-pathogen interaction KEGG PATHWAY adu04626 1 Down 182 0.317487 0.471897
Phenylpropanoid biosynthesis KEGG PATHWAY adu00940 1 Down 193 0.333104 0.471897
Endocytosis KEGG PATHWAY adu04144 1 Down 217 0.365995 0.478609
Plant hormone signal transduction KEGG PATHWAY adu04075 1 Down 314 0.483750 0.543526
Biosynthesis of secondary metabolites KEGG PATHWAY adu01110 3 Down 1282 0.505639 0.543526
Ribosome KEGG PATHWAY adu03010 1 Down 340 0.511554 0.543526
Metabolic pathways KEGG PATHWAY adu01100 4 Down 2197 0.693074 0.693074

Fig. 5

Transcriptional changes in biosynthesis of amino acids pathways"

Fig. 6

Relative expression of genes (MOJX8, FEO27) in the biosynthesis of amino acids"

Table 3

Differental fold-change between RNA-seq and RT-PCR"

基因编号
Gene ID
基因描述
Gene description
RNA-seq变化倍数
RNA-seq fold change
调控模式
Regulation
RT-PCR变化倍数
RT-PCR fold change
Aradu.2N2A3 Protein IQ-DOMAIN 14 53.7 Up 2.2
Aradu.32P5Q Transketolase, chloroplastic 164.3 Down 2.1
Aradu.38MP3 61.8 Up 1.7
Aradu.3UA04 Pollen-specific protein SF21 11.2 Down 16.8
Aradu.8XK1K DNA polymerase alpha catalytic subunit 2.3 Up 1.1
Aradu.91JGK Probable leucine-rich repeat receptor-like serine/threonine-protein kinase 10.5 Down 1.6
Aradu.94LL9 F-box/FBD/LRR-repeat protein 4.7 Up 1.9
Aradu.AAS86 ABC transporter G family member 36 2.4 Up 3.0
Aradu.CZ64T Protein FAR1-RELATED SEQUENCE 12 5.2 Down 2.4
Aradu.FE0Z7 Cystathionine beta-lyase, chloroplastic 137.4 Down 1.4
Aradu.G395P Copper-transporting ATPase PAA1, chloroplastic 30.4 Down 1.5
Aradu.JE7IW Pollen-specific protein SF21 25.1 Down 2.9
Aradu.M0JX8 Cystathionine beta-lyase, chloroplastic 201.1 Down 2.0
Aradu.PU7RJ MADS-box transcription factor 6 2.9 Down 3.4
Aradu.Y0LYZ Myb-like protein 2.0 Up 2.4
[1] 万书波 . 花生产业形势与对策. 山东农业科学, 2014,46(10):128-132.
Wan S B . Situation and developing strategies of peanut industry. Shandong Agric Sci, 2014,46(10):128-132 (in Chinese with English abstract).
[2] Chen X, Li H, Pandey M K, Yang Q, Wang X, Garg V, Li H, Chi X, Doddamani D, Hong Y, Upadhyaya H, Guo H, Khan A W, Zhu F, Zhang X, Pan L, Pierce G J, Zhou G, Krishnamohan K A, Chen M, Zhong N, Agarwal G, Li S, Chitikineni A, Zhang G Q, Sharma S, Chen N, Liu H, Janila P, Li S, Wang M, Wang T, Sun J, Li X, Li C, Wang M, Yu L, Wen S, Singh S, Yang Z, Zhao J, Zhang C, Yu Y, Bi J, Zhang X, Liu Z J, Paterson A H, Wang S, Liang X, Varshney R K, Yu S . Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oilbiosynthesis, and allergens. Proc Natl Acad Sci USA, 2016,113:6785-6790.
[3] Bertioli D J, Cannon S B, Froenicke L, Huang G, Farmer A D, Cannon E K S, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn M C, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth C E, Umale P, Araujo A C G, Kozik A, Do Kim K, Burow M D, Varshney R K, Wang X, Zhang X, Barkley N, Guimaraes P M, Isobe S, Guo B, Liao B, Stalker H T, Schmitz R J, Scheffler B E, Leal-Bertioli S C M, Xun X, Jackson S A, Michelmore R, Ozias-Akins P . The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet, 2016,48:438-446.
[4] Rolletschek H, Borisjuk L, Radchuk R, Miranda M, Heim U, Wobus U, Weber H . Seed-specific expression of a bacterial phosphoenolpyruvate carboxylase in Vicia narbonensis increases protein content and improves carbon economy. Plant Biotechnol J, 2004,2:211-219.
[5] Song D, Fu J, Shi D . Exploitation of oil-bearing microalgae for biodiesel. Chin J Biotechnol, 2008,24:341-348.
doi: 10.1016/S1872-2075(08)60016-3
[6] 陈锦清, 郎春秀, 胡张华, 刘智宏, 黄锐之 . 反义PEP基因调控油菜籽粒蛋白质/油脂含量比率的研究. 农业生物技术学报, 1999,7:316-320.
Chen J Q, Lang C X, Hu Z H, Liu Z H, Huang R Z . Antisense PEP gene regulates to ratio of protein and lipid content in Brassica napus seeds. J Agric Biotechnol, 1999,7:316-320 (in Chinese with English abstract).
[7] Sugimoto T, Kawasaki T, Kato T, Whittier R F, Shibata D, Kawamura Y . cDNA sequence and expression of a phosphoenolpyruvate carboxylase gene from soybean. Plant Mol Biol, 1992,20:743-747.
doi: 10.1007/BF00046459
[8] Pan L J, Zhang J C, Chi X Y, Chen N, Chen M N, Wang M, Wang T, Yang Z, Zhang Z M, Wan Y S, Yu S L, Liu F Z . The antisense expression of AhPEPC1 increases seed oil production in peanuts(Arachis hypogaea L.). Grasas Y Aceites, 2016,67(4):e164.
[9] Sharma N, Anderson M, Kumar A, Zhang Y, Giblin E M, Abrams S R, Zaharia L I, Taylor D C, Fobert P R . Transgenic increases in seed oil content are associated with the differential expression of novel Brassica-specific transcripts. BMC Genomics, 2008,9:619, doi: 10.1186/1471-2164-9-619.
doi: 10.1186/1471-2164-9-619
[10] Liu J, Hua W, Yang H L, Zhan G M, Li R J, Deng L B, Wang X F, Liu G H, Wang H Z . The BnGRF2 gene(GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis. J Exp Bot, 2012,63:3727-3740.
[11] Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, van Baren M J, Salzberg S L, Wold B J, Pachter L . Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 2010,28:511-515.
doi: 10.1038/nbt.1621
[12] Ruuska S A, Girke T, Benning C, Ohlrogge J B . Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell, 2002,14:1191-1206.
[13] Uhrig R G, O’Leary B, Spang H E, MacDonald J A, She Y M, Plaxton W C . Coimmunopurification of phosphorylated bacterial- and plant-type phosphoenolpyruvate carboxylases with the plastidial pyruvate dehydrogenase complex from developing castor oil seeds. Plant Physiol, 2008,146:1346-1357.
doi: 10.1104/pp.107.110361
[14] Sugimoto T, Tanaka K, Monma M, Kawamura Y, Saio K . Phosphoenolpyruvate carboxylase level in soybean seed highly correlates to its contents of protein and lipid. Agric Biol Chem, 1989,53:885-887.
[15] Vazquez-Tello A, Whittier R P, Kawasaki T, Sugimoto T, Kawamura Y, Shibata D . Sequence of a soybean (Glycine max L.) phosphoenolpyruvate carboxylase cDNA. Plant Physiol, 1993,103:1025-1026.
[16] 张占琴, 王金梅, 王学军, 汪凯华, 袁春新, 麻浩 . 油菜籽粒发育过程中PEPCase活性与油脂, 蛋白质及亚基积累的特点. 中国油料作物学报, 2009,31:14-18.
Zhang Z Q, Wang J M, Wang X J, Wang K H, Yuan C X, Ma H . The characteristics of PEPCase activity and accumulation of oil, protein and major protein subunits during seed development of rape (Brassica napus). Chin J Oil Crop Sci, 2009,31:14-18 (in Chinese with English abstract).
[17] Ward J K, Tissue D T, Thomas R B, Strain B R . Comparative responses of model C3 and C4 plants to drought in low and elevated CO2. Global Change Biol, 1999,5:857-867.
doi: 10.1046/j.1365-2486.1999.00270.x
[18] Nayyar H, Gupta D . Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants. Environ Exp Bot, 2006,58:106-113.
doi: 10.1016/j.envexpbot.2005.06.021
[19] Brown A P, Kroon J T, Swarbreck D, Febrer M, Larson T R, Graham I A, Caccamo M, Slabas A R . Tissue-specific whole transcriptome sequencing in castor, directed at understanding triacylglycerol lipid biosynthetic pathways. PLoS One, 2012,7:e301
[1] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[2] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[3] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[4] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[5] WANG Wei-Xia, LAI Feng-Xiang, HU Hai-Yan, HE Jia-Chun, WEI Qi, WAN Pin-Jun, FU Qiang. Effect of 11-year storage of GMO reference material at ultra-low temperature on nucleic acid detection of standard matrix sample of transgenic crop [J]. Acta Agronomica Sinica, 2022, 48(1): 238-248.
[6] LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62.
[7] WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653.
[8] WANG Jian-Guo, ZHANG Jia-Lei, GUO Feng, TANG Zhao-Hui, YANG Sha, PENG Zhen-Ying, MENG Jing-Jing, CUI Li, LI Xin-Guo, WAN Shu-Bo. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1666-1679.
[9] SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711.
[10] GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, WANG Ying, PAN Xiao-Yi, LAI Hua-Jiang, LI Xiang-Dong, YANG Dong-Qing. Source-sink characteristics and classification of peanut major cultivars in North China [J]. Acta Agronomica Sinica, 2021, 47(9): 1712-1723.
[11] ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767.
[12] XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778.
[13] HAO Xi, CUI Ya-Nan, ZHANG Jun, LIU Juan, ZANG Xiu-Wang, GAO Wei, LIU Bing, DONG Wen-Zhao, TANG Feng-Shou. Effects of hydrogen peroxide soaking on germination and physiological metabolism of seeds in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1834-1840.
[14] ZHANG Wang, XIAN Jun-Lin, SUN Chao, WANG Chun-Ming, SHI Li, YU Wei-Chang. Preliminary study of genome editing of peanut FAD2 genes by CRISPR/Cas9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1481-1490.
[15] DAI Liang-Xiang, XU Yang, ZHANG Guan-Chu, SHI Xiao-Long, QIN Fei-Fei, DING Hong, ZHANG Zhi-Meng. Response of rhizosphere bacterial community diversity to salt stress in peanut [J]. Acta Agronomica Sinica, 2021, 47(8): 1581-1592.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!