Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (7): 993-1001.doi: 10.3724/SP.J.1006.2019.84122
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
PAN Li-Juan1,CHEN Na1,Ming-CHEN Na1,WANG Tong1,WANG Mian1,CHEN Jing1,YANG Zhen1,WAN Yong-Shan2,YU Shan-Lin1,CHI Xiao-Yuan1,*(),LIU Feng-Zhen2,*()
[1] | 万书波 . 花生产业形势与对策. 山东农业科学, 2014,46(10):128-132. |
Wan S B . Situation and developing strategies of peanut industry. Shandong Agric Sci, 2014,46(10):128-132 (in Chinese with English abstract). | |
[2] | Chen X, Li H, Pandey M K, Yang Q, Wang X, Garg V, Li H, Chi X, Doddamani D, Hong Y, Upadhyaya H, Guo H, Khan A W, Zhu F, Zhang X, Pan L, Pierce G J, Zhou G, Krishnamohan K A, Chen M, Zhong N, Agarwal G, Li S, Chitikineni A, Zhang G Q, Sharma S, Chen N, Liu H, Janila P, Li S, Wang M, Wang T, Sun J, Li X, Li C, Wang M, Yu L, Wen S, Singh S, Yang Z, Zhao J, Zhang C, Yu Y, Bi J, Zhang X, Liu Z J, Paterson A H, Wang S, Liang X, Varshney R K, Yu S . Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oilbiosynthesis, and allergens. Proc Natl Acad Sci USA, 2016,113:6785-6790. |
[3] | Bertioli D J, Cannon S B, Froenicke L, Huang G, Farmer A D, Cannon E K S, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn M C, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth C E, Umale P, Araujo A C G, Kozik A, Do Kim K, Burow M D, Varshney R K, Wang X, Zhang X, Barkley N, Guimaraes P M, Isobe S, Guo B, Liao B, Stalker H T, Schmitz R J, Scheffler B E, Leal-Bertioli S C M, Xun X, Jackson S A, Michelmore R, Ozias-Akins P . The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet, 2016,48:438-446. |
[4] | Rolletschek H, Borisjuk L, Radchuk R, Miranda M, Heim U, Wobus U, Weber H . Seed-specific expression of a bacterial phosphoenolpyruvate carboxylase in Vicia narbonensis increases protein content and improves carbon economy. Plant Biotechnol J, 2004,2:211-219. |
[5] |
Song D, Fu J, Shi D . Exploitation of oil-bearing microalgae for biodiesel. Chin J Biotechnol, 2008,24:341-348.
doi: 10.1016/S1872-2075(08)60016-3 |
[6] | 陈锦清, 郎春秀, 胡张华, 刘智宏, 黄锐之 . 反义PEP基因调控油菜籽粒蛋白质/油脂含量比率的研究. 农业生物技术学报, 1999,7:316-320. |
Chen J Q, Lang C X, Hu Z H, Liu Z H, Huang R Z . Antisense PEP gene regulates to ratio of protein and lipid content in Brassica napus seeds. J Agric Biotechnol, 1999,7:316-320 (in Chinese with English abstract). | |
[7] |
Sugimoto T, Kawasaki T, Kato T, Whittier R F, Shibata D, Kawamura Y . cDNA sequence and expression of a phosphoenolpyruvate carboxylase gene from soybean. Plant Mol Biol, 1992,20:743-747.
doi: 10.1007/BF00046459 |
[8] | Pan L J, Zhang J C, Chi X Y, Chen N, Chen M N, Wang M, Wang T, Yang Z, Zhang Z M, Wan Y S, Yu S L, Liu F Z . The antisense expression of AhPEPC1 increases seed oil production in peanuts(Arachis hypogaea L.). Grasas Y Aceites, 2016,67(4):e164. |
[9] |
Sharma N, Anderson M, Kumar A, Zhang Y, Giblin E M, Abrams S R, Zaharia L I, Taylor D C, Fobert P R . Transgenic increases in seed oil content are associated with the differential expression of novel Brassica-specific transcripts. BMC Genomics, 2008,9:619, doi: 10.1186/1471-2164-9-619.
doi: 10.1186/1471-2164-9-619 |
[10] | Liu J, Hua W, Yang H L, Zhan G M, Li R J, Deng L B, Wang X F, Liu G H, Wang H Z . The BnGRF2 gene(GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis. J Exp Bot, 2012,63:3727-3740. |
[11] |
Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, van Baren M J, Salzberg S L, Wold B J, Pachter L . Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 2010,28:511-515.
doi: 10.1038/nbt.1621 |
[12] | Ruuska S A, Girke T, Benning C, Ohlrogge J B . Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell, 2002,14:1191-1206. |
[13] |
Uhrig R G, O’Leary B, Spang H E, MacDonald J A, She Y M, Plaxton W C . Coimmunopurification of phosphorylated bacterial- and plant-type phosphoenolpyruvate carboxylases with the plastidial pyruvate dehydrogenase complex from developing castor oil seeds. Plant Physiol, 2008,146:1346-1357.
doi: 10.1104/pp.107.110361 |
[14] | Sugimoto T, Tanaka K, Monma M, Kawamura Y, Saio K . Phosphoenolpyruvate carboxylase level in soybean seed highly correlates to its contents of protein and lipid. Agric Biol Chem, 1989,53:885-887. |
[15] | Vazquez-Tello A, Whittier R P, Kawasaki T, Sugimoto T, Kawamura Y, Shibata D . Sequence of a soybean (Glycine max L.) phosphoenolpyruvate carboxylase cDNA. Plant Physiol, 1993,103:1025-1026. |
[16] | 张占琴, 王金梅, 王学军, 汪凯华, 袁春新, 麻浩 . 油菜籽粒发育过程中PEPCase活性与油脂, 蛋白质及亚基积累的特点. 中国油料作物学报, 2009,31:14-18. |
Zhang Z Q, Wang J M, Wang X J, Wang K H, Yuan C X, Ma H . The characteristics of PEPCase activity and accumulation of oil, protein and major protein subunits during seed development of rape (Brassica napus). Chin J Oil Crop Sci, 2009,31:14-18 (in Chinese with English abstract). | |
[17] |
Ward J K, Tissue D T, Thomas R B, Strain B R . Comparative responses of model C3 and C4 plants to drought in low and elevated CO2. Global Change Biol, 1999,5:857-867.
doi: 10.1046/j.1365-2486.1999.00270.x |
[18] |
Nayyar H, Gupta D . Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants. Environ Exp Bot, 2006,58:106-113.
doi: 10.1016/j.envexpbot.2005.06.021 |
[19] | Brown A P, Kroon J T, Swarbreck D, Febrer M, Larson T R, Graham I A, Caccamo M, Slabas A R . Tissue-specific whole transcriptome sequencing in castor, directed at understanding triacylglycerol lipid biosynthetic pathways. PLoS One, 2012,7:e301 |
[1] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[2] | LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565. |
[3] | DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703. |
[4] | HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291. |
[5] | WANG Wei-Xia, LAI Feng-Xiang, HU Hai-Yan, HE Jia-Chun, WEI Qi, WAN Pin-Jun, FU Qiang. Effect of 11-year storage of GMO reference material at ultra-low temperature on nucleic acid detection of standard matrix sample of transgenic crop [J]. Acta Agronomica Sinica, 2022, 48(1): 238-248. |
[6] | LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62. |
[7] | WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653. |
[8] | WANG Jian-Guo, ZHANG Jia-Lei, GUO Feng, TANG Zhao-Hui, YANG Sha, PENG Zhen-Ying, MENG Jing-Jing, CUI Li, LI Xin-Guo, WAN Shu-Bo. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1666-1679. |
[9] | SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711. |
[10] | GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, WANG Ying, PAN Xiao-Yi, LAI Hua-Jiang, LI Xiang-Dong, YANG Dong-Qing. Source-sink characteristics and classification of peanut major cultivars in North China [J]. Acta Agronomica Sinica, 2021, 47(9): 1712-1723. |
[11] | ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767. |
[12] | XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778. |
[13] | HAO Xi, CUI Ya-Nan, ZHANG Jun, LIU Juan, ZANG Xiu-Wang, GAO Wei, LIU Bing, DONG Wen-Zhao, TANG Feng-Shou. Effects of hydrogen peroxide soaking on germination and physiological metabolism of seeds in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1834-1840. |
[14] | ZHANG Wang, XIAN Jun-Lin, SUN Chao, WANG Chun-Ming, SHI Li, YU Wei-Chang. Preliminary study of genome editing of peanut FAD2 genes by CRISPR/Cas9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1481-1490. |
[15] | DAI Liang-Xiang, XU Yang, ZHANG Guan-Chu, SHI Xiao-Long, QIN Fei-Fei, DING Hong, ZHANG Zhi-Meng. Response of rhizosphere bacterial community diversity to salt stress in peanut [J]. Acta Agronomica Sinica, 2021, 47(8): 1581-1592. |
|