Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (7): 1002-1016.doi: 10.3724/SP.J.1006.2019.84143

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and expression analysis of sugarcane lipoxygenase gene ScLOX1

SUN Ting-Ting1,WANG Wen-Ju1,LOU Wen-Yue1,LIU Feng1,ZHANG Xu1,WANG Ling1,CHEN Yu-Feng1,QUE You-Xiong1,2,XU Li-Ping1,2,LI Da-Mei1,2,SU Ya-Chun1,2,*()   

  1. 1 Key Laboratory of Sugarcane Biology and Genetic Breeding (Fujian), Ministry of Agriculture / Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    2 Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education / Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China;
  • Received:2018-11-05 Accepted:2019-01-29 Online:2019-07-12 Published:2019-03-22
  • Contact: Ya-Chun SU E-mail:syc2009mail@163.com
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31501363);the Research Funds for Distinguished Young Scientists in Fujian Provincial Department of Education(SYC-2017);the Research Funds for Distinguished Young Scientists in Fujian Agriculture and Forestry University(xjq201630);the China Agriculture Research System(CARS-17)

Abstract:

LOX, which belongs to the lipoxygenase superfamily, is an important factor for fat oxidation and widely involved in the regulation of plant growth and development and the resistance to external stimuli. In this study, based on sugarcane (Saccharum spp.) transcriptome database, we first cloned a full-length cDNA sequence of ScLOX1 gene (GenBank accession number: MK106188) from ROC22 bud by RT-PCR. Bioinformatics analysis showed that the cDNA length of ScLOX1 gene was 2813 bp which had a 2664 bp length of open reading frame, encoding 887 amino acids. The theoretical isoelectric point, instability coefficient, and average hydrophilicity of the ScLOX1 protein were 6.23, 39.77, and -0.437, respectively. There were no signal peptide and transmembrane structure, but the PLAT_LH2 and lipoxygenase active sites in ScLOX1 protein. The similarity of amino acid sequences between ScLOX1 and Sorghum bicolor LOX (XP_002466613.1) was 95.96%. The protein encoded by ScLOX1 gene was predicted to be an acid-stable, hydrophilic, and non-secreted protein which belongs to the type I non-traditional 9-LOX. qRT-PCR results showed that ScLOX1 was specifically expressed in sugarcane bud tissue. The expression level of ScLOX1 gene was transiently increased in the smut-resistant sugarcane variety Yacheng05-179 but significantly decreased in the smut-susceptible sugarcane variety ROC22 after inoculated with Sporisorium scitamineum. When leaves of Nicotiana benthamiana were transiently overexpressed ScLOX1 gene and inoculated with tobacco pathogens Fusarium solani var. coeruleum and Ralstonia solanacearum, respectively, the results of phenotypic observation, 3,3’-diaminobenzidine (DAB) staining and expression analysis of tobacco immune-related genes revealed that the overexpression of ScLOX1 gene could enhance the defense of N. benthamiana to the F. solani var. coeruleum, but had no significant difference with the control on the defense effect against R. solanacearum. In addition, the expression level of ScLOX1 was down-regulated by methyl jasmine and salicylic acid, but up-regulated by abscisic acid, sodium chloride and polyethylene glycol. The above results provide references for further study on the function of sugarcane ScLOX1 gene.

Key words: sugarcane, lipoxygenase, bioinformatics, real-time flourescent quantitative PCR, biotic and abiotic stresses

Table 1

Sequence and purpose of the primers used in this study"

引物名称
Primer name
引物序列
Primer sequence (5'-3')
用途
Purpose
ScLOX1-cDNAF CCATCCATCCACCAACCA RT-PCR
ScLOX1-cDNAR ACGGCACAGCACAACATTTA RT-PCR
GAPDH-QF CACGGCCACTGGAAGCA qRT-PCR
GAPDH-QR TCCTCAGGGTTCCTGATGCC qRT-PCR
ScLOX1-QF ATCATTGAGGCTGTTCTT qRT-PCR
ScLOX1-QR TCTGCTATTAGTGGATTGT qRT-PCR
ScLOX1-Gate-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTTCTGGCACGGGGTCGC Transient overexpression vector construction
ScLOX1-Gate-R GGGGACCACTTTGTACAAGAAAGCTGGGTCTATGGAGATGCTGTTGGGAA Transient overexpression vector construction
M13-F TGTAAAACGACGGCCAGT Transient overexpression vector construction
M13-R CAGGAAACAGCTATGACC Transient overexpression vector construction
NtHSR201-F CAGCAGTCCTTTGGCGTTGTC qRT-PCR after transient overexpression
引物名称
Primer name
引物序列
Primer sequence (5'-3')
用途
Purpose
NtHSR201-R GCTCAGTTTAGCCGCAGTTGTG qRT-PCR after transient overexpression
NtHSR203-F TGGCTCAACGATTACGCA qRT-PCR after transient overexpression
NtHSR203-R GCACGAAACCTGGATGG qRT-PCR after transient overexpression
NtHSR515-F TTGGGCAGAATAGATGGGTA qRT-PCR after transient overexpression
NtHSR515-R TTTGGTGAAAGTCTTGGCTC qRT-PCR after transient overexpression
NtPR-1a/c-F AACCTTTGACCTGGGACGAC qRT-PCR after transient overexpression
NtPR-1a/c-R GCACATCCAACACGAACCGA qRT-PCR after transient overexpression
NtPR2-F TGATGCCCTTTTGGATTCTATG qRT-PCR after transient overexpression
NtPR2-R AGTTCCTGCCCCGCTTT qRT-PCR after transient overexpression
NtPR3-F CAGGAGGGTATTGCTTTGTTAGG qRT-PCR after transient overexpression
NtPR3-R CGTGGGAAGATGGCTTGTTGTC qRT-PCR after transient overexpression
NtEFE26-F CGGACGCTGGTGGCATAAT qRT-PCR after transient overexpression
NtEFE26-R CAACAAGAGCTGGTGCTGGATA qRT-PCR after transient overexpression
NtAccdeaminase-F TCTGAGGTTACTGATTTGGATTGG qRT-PCR after transient overexpression
NtAccdeaminase-R TGGACATGGTGGATAGTTGCT qRT-PCR after transient overexpression
NtEF-1α-F TGCTGCTGTAACAAGATGGATGC qRT-PCR after transient overexpression
NtEF-1α-R GAGATGGGGACAAAGGGGATT qRT-PCR after transient overexpression

Fig. 1

Nucleotide acid sequence and deduced amino acid sequence of ScLOX1 gene The sequences underlined are cloning primers; * indicates stop codon."

Fig. 2

Third structure prediction of ScLOX1 protein"

Fig. 3

Conserved domains of amino acid sequences of ScLOX1"

Fig. 4

Phylogenetic tree estimated by the ScLOX1 and those proteins from other plants ScLOX1 is marked with a black triangle. Zea mays LOXs: ZmLOX1 (AF271894), ZmLOX3 (AF329371), ZmLOX6 (DQ335764), ZmLOX10 (DQ335768), ZmLOX11 (DQ335769); Oryza sativa LOXs: OsLOX1 (DQ389164), r9-LOX1 (AB099850); Lycopersicum esculentum LOXs: TomLOXA (U09026), TomLOXB (U09025), TomLOXC (U37839), TomLOXD (U37840), TomLOXE (AY008278), TomLOXF (FJ617476); Arabidopsis thaliana LOXs: AtLOX1 (NM_104376), AtLOX2 (AY062611), AtLOX3 (AJ249794), AtLOX4 (NM_105911); Nicotiana tabacum LOXs: NaLOX1 (X84040), NaLOX2 (AY254348), NaLOX3 (AY254349); Solanum tuberosum LOXs: StLOX1 (X95513), StLOX2 (X96405), StLOX3 (X96406); Glycine max LOXs: GmLOX9 (EU003576), GmLOX10 (EU003577); Arachis hypogaea LOX: PnLOX2 (DQ068249); Pisum sativum LOX: LOXN2 (AJ749702); Prunus persica LOXs: PpLOX1 (EU883638), PpLOX2 (FJ029110), PpLOX3 (FJ032015), PpLOX4 (EF568783); Vitis vinifera LOXs: VvLOXA (FJ858255), VvLOXC (FJ858256), VvLOXO (FJ858257); Olea europaea LOXs: OeLOX (EU678670), Oep1LOX2 (EU513352), Oep2LOX2 (EU513353); Capsicum annuum LOXs: CaLOX1 (FJ377708), CaLOX2 (JQ219046); Populus deltoids LOXs: PdLOX1 (DQ131178), PdLOX2 (DQ131179); Prunus dulcis LOXs: LOX1:Pd:1 (AJ404331), LOX1:Pd:2 (AJ418043); Phaseolus vulgaris LOX: PvLOX6 (EF196866); Brassica oleracea LOX: BoLOX (EF123056); Caragana jubata LOX: CjLOX (EF530043); Camellia sinensis LOX: CasLOX1 (EU195885); Corylus avellana LOX: CaLOX (AJ417975)."

Fig. 5

Amino acids sequence aligenment of ScLOX1 and other plant LOXs The substrate-binding domain (Domains I and II) and C-terminus conserved regions are shown by text boxes. An arrow indicates a conserved amino acid residue related to iron binding. The plus sign indicates TH(V)/R(K), a motif proposed to be essential for determining oxygen-adding positional specificity. OsLOX1: Oryza sativa (DQ389164); ZmLOX1: Zea mays (AF271894); HvLOXC: Hordeum vulgare (L37358); SbLOX4: Sorghum bicolor (XP_ 002466613); SiLOX4: Setaria italica (XP_004982082)."

Fig. 6

Expression pattern of ScLOX1 gene in different sugarcane tissues of ROC22 Using GAPDH as an internal reference gene. Data points are means ± SE (n = 3)."

Fig. 7

Gene expression level of ScLOX1 in the interactions of different sugarcane genotypes and smut pathogen Using GAPDH as an internal reference gene. Bars superscripted by different lowercase letters are significantly different at P < 0.05. Data points are means ± SE (n = 3). Yacheng05-179 is a smut-resistant sugarcane variety. ROC22 is a smut-susceptible sugarcane variety."

Fig. 8

Transient overexpression of ScLOX1 in Nicotiana benthamiana leaves A: RT-PCR analysis of ScLOX1 gene in the N. benthamiana leaves after infiltration by Agrobacterium strain GV3101 carrying vector 35S::00 or 35S::ScLOX1 for 1 d. B: DAB staining with N. benthamiana leaves 2 d after 35S::ScLOX1-containing Agrobacterium strain infiltration. (1) and (2) represent images taken by SONY camera and microscope, respectively. C: Relative expression level of the tobacco immunity-associated marker genes in 35S::ScLOX1-transiently expressing leaves after infiltration for 1 d. D and F: The results of disease symptoms and DAB staining of N. benthamiana leaves after inoculation with 35S::ScLOX1 1 d and then infection with Ralstonia solanacearum and Fusarium solani var. coeruleum for 1 d and 7 d, respectively. (1) and (2) represent images taken by SONY camera and microscope, respectively. E and G: Analysis of the immunity related marker genes in the N. benthamiana leaves by R. solanacearum and F. solani var. coeruleum for 1 d and 7 d post inoculation. The tobacco immunity-associated marker genes including the HR marker genes NtHSR201, NtHSR203 and NtHSR515, the SA pathway related genes NtPR-1a/c, the JA pathway-associated genes NtPR2 and NtPR3, and the ET synthesis depended genes NtEFE26 and NtAccdeaminase. Using NtEF-1α as an internal reference gene. Bars superscripted by different lowercase letters are significantly different at P < 0.05. Data points are means ± SE (n = 3). The vectors of 35S::00 and 35S::ScLOX1 are indicated by a and b, respectively."

Fig. 9

Relative expression level of ScLOX1 gene under the stress of different plant hormones Using GAPDH as an internal reference gene. Bars superscripted by different lowercase letters are significantly different at P < 0.05. Data points are means ± SE (n = 3)."

Fig. 10

Expression of ScLOX1 gene under the stresses of PEG and NaCl Using GAPDH as an internal reference gene. Bars superscripted by different lowercase letters are significantly different at P < 0.05. Data points are means ± SE (n = 3)."

[1] Brash A R . Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem, 1999,274:23679-23682.
doi: 10.1074/jbc.274.34.23679
[2] 李彩凤, 赵丽影, 陈业婷, 越鹏, 谷维, 王园园, 滕祥勇, 王楠博 . 高等植物脂氧合酶研究进展. 东北农业大学学报, 2010,41(10):143-149.
Li C F, Zhao L Y, Chen Y T, Yue P, Gu W, Wang Y Y, Teng X Y, Wang N B . Research advances on higher plant. J Northeast Agric Univ, 2010,41(10):143-149 (in Chinese with English abstract).
[3] 张冲 . 甜瓜脂氧合酶基因家族成员鉴定、表达调控及CmLOX8在果实香气合成中的作用. 沈阳农业大学博士学位论文, 辽宁沈阳, 2016.
Zhang C . Identification, Expression and Regulation of Lipoxygenase Gene Family in Melon (Cucumis melo var. makuwa Maldno) and the Role of CmLOX18 in Synthesis of Fruit Aroma Volatiles. PhD Dissertation of Shenyang Agricultural University, Shenyang, Liaoning, China, 2016 (in Chinese with English abstract).
[4] 曹嵩晓, 张冲, 汤雨凡, 齐红岩 . 植物脂氧合酶蛋白特性及其在果实成熟衰老和逆境胁迫中的作用. 植物生理学报, 2014,50:1096-1108.
Cao S X, Zhang C, Tang Y F, Qi H Y . Protein characteristic of the plant lipoxygenase and the function on fruit ripening and senescence and adversity stress. Plant Physiol J, 2014,50:1096-1108 (in Chinese with English abstract).
[5] Wang R, Shen W B, Liu L L, Jiang L, Liu Y Q, Su N, Wan J M . A novel lipoxygenase gene from developing rice seeds confers dual position specificity and responds to wounding and insect attack. Plant Mol Biol, 2008,66:401-414.
doi: 10.1007/s11103-007-9278-0
[6] Feussner I, Wasternack C . The lipoxygenase pathway. Annu Rev Plant Biol, 2002,53:275-297.
doi: 10.1146/annurev.arplant.53.100301.135248
[7] Andreou A, Feussner I, Hause B, Wasternack C, Strack D . Lipoxygenases-structure and reaction mechanism. Phytochemistry, 2009,70:1504-1510.
doi: 10.1016/j.phytochem.2009.05.008
[8] Dubbs W E, Grimes H D . The mid-pericarp cell layer in soybean pod walls is a multicellular compartment enriched in specific lipoxygenase isoforms. Plant Physiol, 2000,123:1281-1288.
doi: 10.1104/pp.123.4.1281
[9] 黄洁雪 . 水稻种胚脂氧合酶基因OsLOX2的克隆与功能分析. 南京农业大学硕士学位论文, 江苏南京, 2011.
Huang J X . Isolation and Characterization of Seed OSLOX2 Gene in Rice. MS Thesis of Nanjing Agricultural University, Jiangsu, Nanjing, China, 2011 (in Chinese with English abstract).
[10] Axelrod B, Cheesbrough T M, Laakso S . Lipoxygenase from soybeans: EC 1.13.11.12 Linoleate: oxygen oxidoreductase. Method Enzymol, 1981,71:441-451.
doi: 10.1016/0076-6879(81)71055-3
[11] Melan M A, Dong X N, Endara M E, Davis K R, Ausubel F M, Peterman T K . An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyl jasmonate. Plant Physiol, 1993,101:441-450.
[12] Ida S, Masaki Y, Morita Y . The isolation of multiple forms and product specificity of rice lipoxygenase. J Agric Chem Soc Jpn, 2006,47:637-641.
[13] Ferrie B J, Beaudoin N, Burkhart W, Bowsher C G, Rothstein S J . The cloning of two tomato lipoxygenase genes and their differential expression during fruit ripening. Plant Physiol, 1994,106:109-118.
doi: 10.1104/pp.106.1.109
[14] Podolyan A, White J, Jordan B, Winefield C . Identification of the lipoxygenase gene family from Vitis vinifera and biochemical characterisation of two 13-lipoxygenases expressed in grape berries of Sauvignon Blanc. Funct Plant Biol, 2010,37:767-784.
[15] Yang X Y, Jiang W J, Yu H J . The expression profiling of the lipoxygenase (LOX) family genes during fruit development, abiotic stress and hormonal treatments in cucumber(Cucumis sativus L.). Int J Mol Sci, 2012,13:2481-2500.
[16] Liavonchanka A, Feussner I . Lipoxygenases: occurrence, functions and catalysis. J Plant Physiol, 2006,163:348-357.
doi: 10.1016/j.jplph.2005.11.006
[17] Grechkin A . Recent developments in biochemistry of the plant lipoxygenase pathway. Prog Lipid Res, 1998,37:317-352.
doi: 10.1016/S0163-7827(98)00014-9
[18] 李靖, 赵沛基, 鲁春华, 刘小烛, 曾英, 沈月毛 . 水杨酸诱导美登木悬浮细胞产生脂氧合酶及多羟基脂肪酸的研究. 植物分类与资源学报, 2004,26:543-548.
Li J, Zhao P J, Lu C H, Liu X Z, Zeng Y, Shen Y M . Studies on lipoxygenase and polyhydroxy fatty acid in SA-elicited Maytenus hookeri suspension cells. Plant Diver Resour, 2004,26:543-548 (in Chinese with English abstract).
[19] 刘南南, 江玲, 张文伟, 刘玲珑, 翟虎渠, 万建民 . 水稻种胚LOX3基因在逆境胁迫中的作用. 中国水稻科学, 2008,22:8-14.
Liu N N, Jiang L, Zhang W W, Liu L L, Zhai H Q, Wan J M . Role of embryo LOX3 gene under adversity stress in rice. Chin J Rice Sci, 2008,22:8-14 (in Chinese with English abstract).
[20] Burow G B, Gardner H W, Keller N P . A peanut seed lipoxygenase responsive to Aspergillus colonization. Plant Mol Biol, 2000,42:689-701.
[21] 邵琪 . 接种枯萎病菌对甜瓜脂氧合酶活性及CmLOXs表达的影响. 沈阳农业大学硕士学位论文, 辽宁沈阳, 2016.
Shao Q . Effects of Inoculated by Fusarium oxysporum on LOX Activity and CmLOXs Expression of Melon (Cucumis melo var. makuwa Makino). MS Thesis of Shenyang Agricultural University, Shenyang, China, 2016 (in Chinese with English abstract).
[22] Han M Y, Zhang T, Zhao C P, Zhi J H . Regulation of the expression of lipoxygenase genes in Prunus persica fruit ripening. Acta Physiol Plant, 2011,33:1345-1352.
[23] Zhang B, Chen K S, Bowen J, Allan A, Espley R, Karunairetnam S, Ferguson I . Differential expression within the LOX gene family in ripening kiwifruit. J Exp Bot, 2006,57:3825-3836.
[24] Bae K S, Rahimi S, Kim Y J, Devi B S R, Khorolragchaa A, Sukweenadhi J, Silva J, Myagmarjav D, Yang D C . Molecular characterization of lipoxygenase genes and their expression analysis against biotic and abiotic stresses in Panax ginseng. Eur J Plant Pathol, 2016,145:331-343.
[25] 贾庆利, 巩振辉, 李大伟 . 辣椒定位于叶绿体的13-脂氧合酶基因(CaLOX2)克隆及表达分析. 农业生物技术学报, 2012,20:1126-1134.
Jia Q L, Gong Z H, Li D W . Cloning and expression characterization of chloroplast-targeted 13-lipoxygenase gene (CaLOX2) in Capsicum annuum L. J Agric Biotechnol, 2012,20:1126-1134 (in Chinese with English abstract).
[26] Garsmeur O, Droc G, Antonise R, Grimwood J, Potier B, Aitken K, Jenkins J, Martin G, Charron C, Hervouet C, Costet L, Yahiaoui N, Healey A, Sims D, Cherukuri Y, Sreedasyam A, Kilian A, Chan A, Sluys M A V, Swaminathan K, Town C, Bergès H, Simmons B, Glaszmann J C, Vossen E V D, Henry R, Schmutz J, D’Hont A . A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nat Commun, 2018,9:2638, doi: 10.1038/s41467-018-05051-5.
doi: 10.1038/s41467-018-05051-5
[27] Gómez-Merino F C, Trejo-Téllez L I, Sentíes-Herrera H E . Sugarcane as a Novel Biofactory: Potentialities and Challenges. Germany: Springer International Publishing, 2014. pp 129-149.
[28] Su Y C, Guo J L, Ling H, Chen S S, Wang S S, Xu L P, Allan A C, Que Y X . Isolation of a novel peroxisomal catalase gene from sugarcane, which is responsive to biotic and abiotic stresses. PLoS One, 2014,9:e84426, doi: 10.1371/journal.pone.0084426.
doi: 10.1371/journal.pone.0084426
[29] 苏亚春 . 甘蔗应答黑穗病菌侵染的转录组与蛋白组研究及抗性相关基因挖掘. 福建农林大学博士学位论文, 福建福州, 2014.
Su Y C . Transcriptomics and Proteomics of Sugarcane Response to Sporisorium scitamineum Infection and Mining of Resistance-related Genes. PhD Dissertation of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2014 (in Chinese with English abstract).
[30] Liu F, Huang N, Wang L, Ling H, Sun T T, Ahmad W, Muhammad K, Guo J X, Xu L P, Gao S W, Que Y X, Su Y C . A novel L-ascorbate peroxidase 6 gene, ScAPX6, plays an important role in the regulation of response to biotic and abiotic stresses in sugarcane. Front Plant Sci, 2018,8:2262, doi: 10.3389/fpls. 2017.02262.
[31] Yang Y T, Zhang X, Su Y C, Zou J K, Wang Z T, Xu L P, Que Y X . miRNA alteration is an important mechanism in sugarcane response to low-temperature environment. BMC Genomics, 2017,18:833, doi: 10.1186/s12864-017-4231-3.
doi: 10.1186/s12864-017-4231-3
[32] 王玲, 刘峰, 戴明剑, 孙婷婷, 苏炜华, 王春风, 张旭, 毛花英, 苏亚春, 阙友雄 . 甘蔗ScWRKY4基因的克隆与表达特性分析. 作物学报, 2018,44:1367-1379.
Wang L, Liu F, Dai M J, Sun T T, Su W H, Wang C F, Zhang X, Mao H Y, Su Y C, Que Y X . Cloning and expression characteristic analysis of ScWRKY4 gene in sugarcane. Acta Agron Sin, 2018,44:1367-1379 (in Chinese with English abstract).
[33] Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -∆∆CT method . Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262
[34] Choi D S, Hwang I S, Hwang B K . Requirement of the cytosolic interaction between pathogenesis-related protein10 and leucine-rich repeat protein1 for cell death and defense signaling in pepper. Plant Cell, 2012,24:1675-1690.
doi: 10.1105/tpc.112.095869
[35] Su Y C, Xu L P, Xue B T, Wu Q B, Guo J L, Wu L G, Que Y X . Molecular cloning and characterization of two pathogenesis-related β-1,3-glucanase genes ScGluA1 and ScGluD1 from sugarcane infected by Sporisorium scitamineum. Plant Cell Rep, 2013,32:1503-1519.
[36] Liu F, Sun T T, Wang L, Su W H, Gao S W, Su Y C, Xu L P, Que Y X . Plant jasmonate ZIM domain genes: shedding light on structure and expression patterns of JAZ gene family in sugarcane. BMC Genomics, 2017,18:771, doi: 10.1186/s12864-017-4142-3.
[37] Kim E S, Choi E, Kim Y, Cho K, Lee A, Shim J, Rakwal R, Agrawal G K, Han O . Dual positional specificity and expression of non-traditional lipoxygenase induced by wounding and methyl jasmonate in maize seedlings. Plant Mol Biol, 2003,52:1203-1213.
doi: 10.1023/B:PLAN.0000004331.94803.b0
[38] Wilson R A, Gardner H W, Keller N P . Cultivar-dependent expression of a maize lipoxygenase responsive to seed infesting fungi. Mol Plant Microbe Interact, 2001,14:980-987.
doi: 10.1094/MPMI.2001.14.8.980
[39] 王少杰, 刘晓慧, 胡增辉, 冷平生 . 金鱼草脂氧合酶基因AmLOX1的克隆及表达分析. 中国细胞生物学学报, 2018,40:905-912.
Wang S J, Liu X H, Hu Z H, Leng P S . Cloning and expression analysis of lipoxygenase gene AmLOX1 from snapdragon. Chin J Cell Biol, 2018,40:905-912 (in Chinese with English abstract).
[40] Royo J, Vancanneyt G, Pérez A G, Sanz C, Störmann K, Rosahl S, Sánchezserrano J J . Characterization of three potato lipoxygenases with distinct enzymatic activities and different organ- specific and wound-regulated expression patterns. J Biol Chem, 1996,271:21012-21019.
doi: 10.1074/jbc.271.35.21012
[41] Kolomiets M V, Hannapel D J, Chen H, Tymeson M, Gladon R J . Lipoxygenase is involved in the control of potato tuber development. Plant Cell, 2001,13:613-626.
doi: 10.1105/tpc.13.3.613
[42] Porta H, Rueda-Benítez P, Campos F, Colmenero-Flores J M, Colorado J M, Carmona M J, Covarrubias A A, Rocha-Sosa M . Analysis of lipoxygenase mRNA accumulation in the common bean (Phaseolus vulgaris L.) during development and under stress conditions. Plant Cell Physiol, 2013,40:850-858.
[43] Marmey P, Jalloul A, Alhamdia M, Assigbetse K, Cacas J L, Voloudakis A, Champion A, Clerivet A, Jean-Luc M, Nicole M . The 9-lipoxygenase GhLOX1 gene is associated with the hypersensitive reaction of cotton Gossypium hirsutum to Xanthomonas campestris pv. malvacearum. Plant Physiol Biochem, 2007,45:596-606.
[44] 辛翠花, 郭江波 . 接种晚疫病菌对马铃薯茉莉酸合成关键酶基因表达的影响. 广东农业科学, 2012,39(16):152-153.
Xin C H, Guo J B . Effects on gene expressions of key enzymes in jasmonic acid biosynthesis after infection of Phytophthora infestans in potato. Guangdong Agric Sci, 2012,39(16):152-153 (in Chinese with English abstract).
[45] Hu T Z, Zeng H, Hu Z L, Qv X X, Chen G P . Overexpression of the tomato 13-lipoxygenase gene TomloxD increases generation of endogenous jasmonic acid and resistance to Cladosporium fulvum and high temperature. Plant Mol Biol Rep, 2013,31:1141-1149.
[46] Nalam V J, Alam S, Keereetaweep J, Venables B, Burdan D, Lee H, Trick H N, Sarowar S, Makandar R, Shah J . Facilitation of Fusarium graminearum infection by 9-lipoxygenases in Arabidopsis and wheat. Mol Plant Microbe Interact, 2015,28:1142-1152.
[47] Sundar A R, Barnabas E L, Malathi P, Viswanathan R . A Mini- review on Smut Disease of Sugarcane Caused by Sporisorium scitamineum. Croatia: InTech, 2012. pp 109-128.
[48] Melech-Bonfil S, Sessa G . Tomato MAPKKKε is a positive regulator of cell-death signaling networks associated with plant immunity. Plant J, 2010,64:379-391.
doi: 10.1111/tpj.2010.64.issue-3
[49] Lim C W, Han S W, Hwang I S, Kim D S, Hwang B K, Lee S C . The pepper lipoxygenase CaLOX1 plays a role in osmotic, drought and high salinity stress response. Plant Cell Physiol, 2015,56:930-942.
[50] Cheng Q, Zhang B, Zhuge Q, Zeng Y R, Wang M X, Huang M R . Expression profiles of two novel lipoxygenase genes in Populus deltoides. Plant Sci, 2006,170:1027-1035.
[51] Tuteja N . Abscisic acid and abiotic stress signaling. Plant Signal Behav, 2007,2:135-138.
doi: 10.4161/psb.2.3.4156
[52] Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J . Requirement of salicylic acid for the induction of systemic acquired resistance. Science, 1993,261:754-756.
doi: 10.1126/science.261.5122.754
[53] Liu B, Xue X D, Cui S P, Zhang X Y, Han Q M, Zhu L, Liang X F, Wang X J, Huang L L, Chen X M, Kang Z S . Cloning and characterization of a wheat β-1,3-glucanase gene induced by the stripe rust pathogen Puccinia striiformis f. sp. tritici. Mol Biol Rep, 2010,37:1045-1052.
[1] XIAO Jian, CHEN Si-Yu, SUN Yan, YANG Shang-Dong, TAN Hong-Wei. Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications [J]. Acta Agronomica Sinica, 2022, 48(5): 1222-1234.
[2] ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026.
[3] KONG Chui-Bao, PANG Zi-Qin, ZHANG Cai-Fang, LIU Qiang, HU Chao-Hua, XIAO Yi-Jie, YUAN Zhao-Nian. Effects of arbuscular mycorrhizal fungi on sugarcane growth and nutrient- related gene co-expression network under different fertilization levels [J]. Acta Agronomica Sinica, 2022, 48(4): 860-872.
[4] WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655.
[5] YANG Zong-Tao, LIU Shu-Xian, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane ubiquitin-like protein UBL5 responses to SCMV infection and interacts with SCMV-6K2 [J]. Acta Agronomica Sinica, 2022, 48(2): 332-341.
[6] JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98.
[7] ZHANG Hai, CHENG Guang-Yuan, YANG Zong-Tao, LIU Shu-Xian, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane PsbR subunit response to SCMV infection and its interaction with SCMV-6K2 [J]. Acta Agronomica Sinica, 2021, 47(8): 1522-1530.
[8] SU Ya-Chun, LI Cong-Na, SU Wei-Hua, YOU Chui-Huai, CEN Guang-Li, ZHANG Chang, REN Yong-Juan, QUE You-Xiong. Identification of thaumatin-like protein family in Saccharum spontaneum and functional analysis of its homologous gene in sugarcane cultivar [J]. Acta Agronomica Sinica, 2021, 47(7): 1275-1296.
[9] HUANG Ning, HUI Qian-Long, FANG Zhen-Ming, LI Shan-Shan, LING Hui, QUE You-Xiong, YUAN Zhao-Nian. Identification, localization and expression analysis of beta-carotene isomerase gene family in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(5): 882-893.
[10] WANG Heng-Bo, CHEN Shu-Qi, GUO Jin-Long, QUE You-Xiong. Molecular detection of G1 marker for orange rust resistance and analysis of candidate resistance WAK gene in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(4): 577-586.
[11] ZHANG Rong-Yue, WANG Xiao-Yan, YANG Kun, SHAN Hong-Li, CANG Xiao-Yan, LI Jie, WANG Chang-Mi, YIN Jiong, LUO Zhi-Ming, LI Wen-Feng, HUANG Ying-Kun. Identification of brown rust resistance and molecular detection of Bru1 gene in new and main cultivated sugarcane varieties [J]. Acta Agronomica Sinica, 2021, 47(2): 376-382.
[12] LI Peng, LIU Che, SONG Hao, YAO Pan-Pan, SU Pei-Lin, WEI Yao-Wei, YANG Yong-Xia, LI Qing-Chang. Identification and analysis of non-specific lipid transfer protein family in tobacco [J]. Acta Agronomica Sinica, 2021, 47(11): 2184-2198.
[13] CANG Xiao-Yan, XIA Hong-Ming, LI Wen-Feng, WANG Xiao-Yan, SHAN Hong-Li, WANG Chang-Mi, LI Jie, ZHANG Rong-Yue, HUANG Ying-Kun. Evaluation of natural resistance to smut in elite sugarcane varieties (lines) [J]. Acta Agronomica Sinica, 2021, 47(11): 2290-2296.
[14] ZHANG Hai, CHENG Guang-Yuan, YANG Zong-Tao, WANG Tong, LIU Shu-Xian, SHANG He-Yang, ZHAO He, XU Jing-Sheng. Cloning of sugarcane ScCRT1 gene and its response to SCMV infection [J]. Acta Agronomica Sinica, 2021, 47(1): 94-103.
[15] HUANG Xiao-Fang,BI Chu-Yun,SHI Yuan-Yuan,HU Yun-Zhuo,ZHOU Li-Xiang,LIANG Cai-Xiao,HUANG Bi-Fang,XU Ming,LIN Shi-Qiang,CHEN Xuan-Yang. Discovery and analysis of NBS-LRR gene family in sweet potato genome [J]. Acta Agronomica Sinica, 2020, 46(8): 1195-1207.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!