Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (3): 603-612.doi: 10.3724/SP.J.1006.2024.33035

• CROP GENETICS & BREEDINGZ·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Mapping and functional analysis of maize inflorescence development gene AFP1

XUE Ming1(), WANG Chen-Chen1, JIANG Lu-Guang2, LIU Hao1, ZHANG Lu-Yao1, CHEN Sai-Hua1,*()   

  1. 1Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China
    2MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
  • Received:2023-05-26 Accepted:2023-09-13 Online:2024-03-12 Published:2023-10-08
  • Contact: *E-mail: chensaihua@yzu.edu.cn
  • Supported by:
    Jiangsu Province Government(JBGS[2021]002);Key Research and Development Program of Jiangsu Province(BE2022343)

Abstract:

The normal development of maize inflorescence is the foundation of yield. Mining genes and metabolic pathways can reveal the molecular mechanism of inflorescence development, which will provide a theoretical guidance for maize yield improvement. In this study, a mutant with altered flower pattern 1 (named afp1) was screened from a Mo17 EMS mutant library. The afp1 mutant showed excrescent branches with no silk in the ear, while it increased the lateral spikelet number in the tassel. Genetic analysis revealed that the afp1 phenotype was controlled by a single recessive gene. The gene was initially restricted between M150 and M176 on chromosome 7 by linkage analysis in the afp1×B73 F2 population. It was further narrowed into a 300 kb region between M1722 and M1725 with 14 newly developed molecular markers. Within the mapping region, a known gene related to inflorescence development, BD1 (Branched silkless 1), was located. Due to a C-T mutation in afp1, the 67th conserved arginine (R) in the ERF/AP2 domain of the BD1 protein was altered into tryptophan (W). A total of 274 differentially expressed genes (DEGs) were identified between young ears in afp1 and the wild-type by RNA-seq. Among these genes, 56.20% were down-regulated and 43.80% were up-regulated, which were enriched in multiple metabolic pathways by KEGG analysis. Among them, 83.3% of DEGs in phytohormone signaling pathways were significantly down-regulated, suggesting that afp1 may modulate inflorescence development via a hormone-dependent pathway.

Key words: maize, inflorescence development, BD1, hormone signaling

Table 1

Primers used in this study"

引物名称
Primer name
正向引物
Forward primer (5'-3')
反向引物
Reverse primer (5'-3')
备注
Note
M150 GACATTCCGTCCTTGAAATC AGGGATCGGCGTTTGATG 图位克隆 Map-based cloning
M158 ATGACTCACGATGGGTATTG CCAAGCAGGTCAGGGTTC 图位克隆 Map-based cloning
M168 TCACGAGTCACGCGACAA GGAAGACGACAGCGAGGA 图位克隆 Map-based cloning
M1690 AGGAGTAGTAGCGGGTGG CACCTGATTTGTGCAAGGG 图位克隆 Map-based cloning
M1696 GTTGAGACGGCGACGACA AAGTGGAGGACGAAAGGA 图位克隆 Map-based cloning
M1702 GTATGGTTTGGGCGTTTG TGCTGGCAAGAATCCACT 图位克隆 Map-based cloning
M1705 CTTGTTTTGAGTTTGCTGCTTC TAACTGCTGGCTATGTCGAGC 图位克隆 Map-based cloning
M171 GTAGCGGCGGTGGAGAAT CCGTGGCTGACAAAGGGA 图位克隆 Map-based cloning
M1718 GCGTATGCGTCTTGGTTG TCGGCTTTAATACTTGCTATCT 图位克隆 Map-based cloning
M1721 GATTCTCGTAGAAGCGGACTG CTGGAGCAATGGCTGTCG 图位克隆 Map-based cloning
M1722 CTGTACATGTGCAGTGTCC TGCTACTGGTCGATCTATC 图位克隆 Map-based cloning
M1725 CGCCGCTGCTTTCTACTCAT TCAATCGTTTCTGGTGGG 图位克隆 Map-based cloning
M173 GCGTCGCTTTCGGGTCTT ATCGGCCTGAAATCGTGT 图位克隆 Map-based cloning
M176 AGGGTGGAACGGATAGGG TGTCGTGGCTGGCTCACT 图位克隆 Map-based cloning
BD1-promoter AGTGGGCCGATTGACGTTGC AATGCCGCTCCTTGGTCGTG 测序 Sequencing
BD1-gene TAAACAGCAGGGATCGGAAGA CAGGCCACCCAGCACTCA 测序 Sequencing
Zm00001d039958 ATTGATATGGCGTTCGCTGAG CTCGTTGTTGACCTCGTAGTGC 实时定量PCR qRT-PCR
Zm00001d014840 TCGTCACCGAGCAGTGGACC CGCCAAGGATGTCGCAGAA 实时定量PCR qRT-PCR
Zm00001d047736 GCCCGTCAACAAGGAGG GGAGTCGTGGGAGGAGATG 实时定量PCR qRT-PCR
Zm00001d007464 CTTGCCGAGCAGAGGAG TTCGTTGTTAGCAGGGAC 实时定量PCR qRT-PCR
Zm00001d037737 ACAACCATGAGCCACAA CAACTCCATTTCCCTTCT 实时定量PCR qRT-PCR
Zm00001d028216 GAGATTCAGCGCATCAAAG CAAAGCGTGGCTCAGTT 实时定量PCR qRT-PCR
Zm00001d049641 GTCACCGTCTTTGGCATCAG AGCAGCCTTGTCCTTGTCAGT 实时定量PCR qRT-PCR

Fig. 1

Ear and tassel of Mo17 and afp1 (A): schematic of branching in maize inflorescence; AM: axillary meristem; IM: inflorescence meristem; SPM: spikelet-paired meristem; BM: branch meristems; SM: spikelet meristem; FM: floral meristem; (B): female inflorescence[8]; (C): male inflorescence[8]; (D): ear of Mo17; (E): ear of Mo17 without husk; (F): ear of afp1; (G): ear of afp1 without husk; (H): tassel and spikelet of Mo17; (I): tassel and spikelet of afp1."

Table 2

Genetic analysis of the afp1 locus"

群体
Population
总植株数
Total number
突变体植株数
Mutant plants
野生型植株数
Wild type plants
突变体/野生型(1:3)
Mutant plants/wild type plants (1:3)
χ2 χ2(0.05)
B73×afp1 F2 171 45 126 1:2.8 0.69 3.84

Table 3

Data analysis identified by SNP array"

样本
Sample
缺失数
Number of missing genotypes
缺失率
Missing rate (%)
杂合数
Number of heterogeneities
杂合率
Heterogeneity rate (%)
WM1 2865 4.6956 26,377 43.2304
WM2 3056 5.0086 26,126 42.819
MM1 2709 4.4399 26,426 43.3107
MM2 2826 4.6316 26,143 42.8468
Mo17 777 1.2735 4351 7.131
B73 243 0.3969 238 0.3888
afp1 1117 1.8307 5356 8.7782

Fig. 2

Fine mapping of afp1 and analysis of candidate gene (A): fine mapping of afp1. (B): structure of BD1 (Branched silkless 1) and mutant loci. Single-nucleotide mutations and the corresponding amino acid changes in afp1 are shown beneath the schematic illustration of BD1, red boxes indicate the positions of the AP2/ERF domain. (C): the conservation of AP2/ERF domain was examined among gramineous species."

Table 4

Overview of the sequence assembly after Illumina sequencing"

样品
Sample
过滤后序列
Clean reads
Q20比例
Q20 (%)
Q30比例
Q30 (%)
GC含量
GC (%)
比对到基因组比例
Total mapping ratio (%)
单一位置序列比例
Unique mapping ratio (%)
CK1 48,448,700 96.84 91.62 55.74 86.61 84.16
CK2 71,004,610 96.79 91.57 56.21 85.73 83.44
CK3 53,127,902 96.76 91.46 55.26 86.03 83.73
601-1 51,585,326 96.85 91.74 55.60 85.41 82.82
601-4 56,660,540 96.67 91.24 55.40 85.29 82.75
600-3 57,037,362 96.81 91.59 55.13 85.51 83.17

Fig. 3

Volcano plot of differentially expressed genes (DEGs) and the relative expression patterns of genes (A): Volcano plot of DEGs. (B): qRT-PCR analysis."

Fig. 4

KEGG analysis based on the differentially expressed genes (DEGs)"

Table 5

Genes involved in phytohormone signaling pathway"

激素
Hormones
基因编号
Gene ID
差异倍数
log2 (Fold Change)
基因注释
Gene description
生长素信号 Auxin signaling Zm00001d039513 -1.33 生长素响应蛋白 Auxin-responsive protein IAA
Zm00001d043350 -6.38 生长素响应GH3基因家族 Auxin responsive GH3 gene family
水杨酸Salicylic acid Zm00001d018738 6.07 病害相关蛋白1 Pathogenesis-related protein 1
Zm00001d004966 -2.08 调节蛋白NPR1 Regulatory protein NPR1
Zm00001d010658 -5.12 转录因子TGA Transcription factor TGA
乙烯信号Ethylene signaling Zm00001d021687 -2.59 乙烯受体 Ethylene receptor

Fig. 5

Relative expression pattern of differentially expressed genes (DEGs) (A): the relative expression pattern of reported genes involved in SM and FM development; (B): the relative expression pattern of the MADS-box family; (C): the relative expression pattern of genes specifically expressed in inflorescences of afp1; (D): the relative expression pattern of low-expressed genes in the ear of afp1."

[1] 朱璨. 一个玉米花序发育突变体的鉴定与初步遗传分析. 华中农业大学硕士学位论文, 湖北武汉, 2017.
Zhu C. Identification and Primary Genetic Analysis of a Maize Inflorescence Mutant. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2017 (in Chinese with English abstract).
[2] Irish E E. Regulation of sex determination in maize. BioEassays, 1996, 18: 363-369.
[3] Vollbrecht E, Springer P S, Goh L, Buckler E S, Martienssen R. Architecture of floral branch systems in maize and related grasses. Nature, 2005, 436: 1119-1126.
[4] Kynast R G. Handbook of maize:its biology. Ann Bot, 2012, 109: 7-8.
[5] Zhang D, Yuan Z. Molecular control of grass inflorescence development. Annu Rev Plant Biol, 2014, 65: 553-578.
doi: 10.1146/annurev-arplant-050213-040104 pmid: 24471834
[6] Zhou L Z, Juranic M, Dresselhaus T. Germline development and fertilization mechanisms in maize. Mol Plant, 2017, 10: 389-401.
doi: 10.1016/j.molp.2017.01.012
[7] Chuck G, Muszynski M, Kellogg E, Hake S, Schmidt R J. The control of spikelet meristem identity by the branched silkless1gene in maize. Science, 2002, 298: 1238-1241.
doi: 10.1126/science.1076920
[8] Laudencia-Chingcuanco D, Hake S. The indeterminate floral apex1 gene regulates meristem determinacy and identity in the maize inflorescence. Development, 2002, 129: 2629-2638.
doi: 10.1242/dev.129.11.2629 pmid: 12015291
[9] Chuck G, Meeley R, Hake S. Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sid1. Development, 2008, 135: 3013-3019.
doi: 10.1242/dev.024273
[10] Nicholas J. Kaplinsky M F. Combinatorial control of meristem identity in maize inflorescences. Development, 2003, 130: 1149-1158.
pmid: 12571106
[11] Tanaka W, Pautler M, Jackson D, Hirano H Y. Grass meristems II: inflorescence architecture, flower development and meristem fate. Plant Cell Physiol, 2013, 54: 313-324.
doi: 10.1093/pcp/pct016 pmid: 23378448
[12] 赵然, 蔡曼君, 杜艳芳, 张祖新. 玉米籽粒形成的分子生物学基础. 中国农业科学, 2019, 52: 3495-3506.
doi: 10.3864/j.issn.0578-1752.2019.20.001
Zhao R, Cai M J, Du Y F, Zhang Z X. Molecular basis of kernel development and kernel number in maize (Zea mays L.). Sci Agric Sin, 2019, 52: 3495-3506 (in Chinese with English abstract).
[13] Thompson B E, Bartling L, Whipple C, Hall D H, Sakai H, Schmidt R, Hake S. Bearded-ear encodes a MADS box transcription factor critical for maize floral development. Plant Cell, 2009, 21: 2578-2590.
doi: 10.1105/tpc.109.067751
[14] Bartlett M E, Williams S K, Taylor Z, DeBlasio S, Goldshmidt A, Hall D H, Schmidt R J, Jackson D P, Whipple C J. The maize PI/GLO ortholog Zmm16/sterile tassel silky ear1 interacts with the zygomorphy and sex determination pathways in flower development. Plant Cell, 2015, 27: 3081-3098.
doi: 10.1105/tpc.15.00679
[15] Barbara A, Ambrose D R, Ciceri P, Padilla C M, Yanofsky M F, Schmidt R J. Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol Cell, 2000, 5: 569-579.
doi: 10.1016/s1097-2765(00)80450-5 pmid: 10882141
[16] Feng K, Hou X L, Xing G M, Liu J X, Duan A Q, Xu Z S, Li M Y, Zhuang J, Xiong A S. Advances in AP2/ERF super- family transcription factors in plant. Crit Rev Biotechnol, 2020, 40: 750-776.
doi: 10.1080/07388551.2020.1768509 pmid: 32522044
[17] 悦曼芳, 张春, 吴忠义. 植物转录因子AP2/ERF家族蛋白结构和功能的研究进展. 生物技术通报, 2022, 38(12): 11-26.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0432
Yue M F, Zhang C, Wu Z Y. Research progress in the structural and functional analysis of plant transcription factor AP2/ ERF protein family. Biotechnol Bull, 2022, 38(12): 11-26 (in Chinese with English abstract).
[18] Rood S B, Pharis R P, Major D J. Changes of endogenous gibberellin-like substances with sex reversal of the apical inflorescence of corn. Plant Physiol, 1980, 66: 793-796.
doi: 10.1104/pp.66.5.793 pmid: 16661527
[19] Young T E, Giesler-Lee J, Gallie D R. Senescence-induced expression of cytokinin reverses pistil abortion during maize flower development. Plant J, 2004, 38: 910-922.
doi: 10.1111/j.1365-313X.2004.02093.x pmid: 15165184
[20] Hartwig T, Chuck G S, Fujioka S, Klempien A, Weizbauer R, Potluri D P V, Choe S, Johal G S, Schulz B. Brassinosteroid control of sex determination in maize. Proc Natl Acad Sci USA, 2011, 108: 19814-19819.
doi: 10.1073/pnas.1108359108 pmid: 22106275
[21] Gallia M, Liu Q L, Moss B L, Malcomberc S, Li W, Gaines C, Federici S, Roshkovan J, Meeley R, Nemhauser J L, Gallavotti A. Auxin signaling modules regulate maize inflorescence architecture. Proc Natl Acad Sci USA, 2015, 112: 13372-13377.
doi: 10.1073/pnas.1516473112 pmid: 26464512
[22] Acosta I F, Laparra H, Romero S P, Schmelz E, Hamberg M, Mottinger J P, Moreno M A, Dellaporta S L. tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. Science, 2009, 323: 262-265.
doi: 10.1126/science.1164645 pmid: 19131630
[23] Zhao Y, Zhang Y Z, Wang L J, Wang X R, Xu W R, Gao X Y, Liu B S. Mapping and functional analysis of a maize silk less mutant sk-A7110. Front Plant Sci, 2018, 9: 1227.
doi: 10.3389/fpls.2018.01227 pmid: 30186299
[24] Mena M, Ambrose B A, Meeley R B, Briggs S P, Yanofsky M F, Schmidt R J. Diversification of C-function activity in maize flower development. Science, 1996, 274: 1537-1540.
doi: 10.1126/science.274.5292.1537 pmid: 8929416
[25] Strable J, Wallace J G, Unger-Wallace E, Briggs S, Bradbury P J, Buckler E S, Vollbrecht E. Maize YABBY genes drooping leaf1 and drooping leaf2 regulate plant architecture. Plant Cell, 2017, 29: 1622-1641.
doi: 10.1105/tpc.16.00477
[26] McSteen P. Hormonal regulation of branching in grasses. Plant Physiol, 2009, 149: 46-55.
doi: 10.1104/pp.108.129056 pmid: 19126694
[27] Ritter M K, Padilla C M, Schmidt R J. The maize mutant barren stalk1 is defective in axillary meristem development. Am J Bot, 2002, 89: 203-210.
doi: 10.3732/ajb.89.2.203
[28] Vollbrecht E, Reiser L, Hake S. Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene knotted1. Development, 2000, 127: 3161-3172.
doi: 10.1242/dev.127.14.3161 pmid: 10862752
[29] Dellaporta S L, Calderon-Urrea A. The sex determination process in maize. Science, 1994, 266: 1501-1505.
doi: 10.1126/science.7985019 pmid: 7985019
[30] Calderon-Urrea A, Dellaporta S L. Cell death and cell protection genes determine the fate of pistils in maize. Development, 1999: 435-441.
[31] Yin M, Ma H Y, Wang M J, Chu G, Liu Y H, Xu C M, Zhang X F, Wang D Y, Chen S. Transcriptome analysis of flowering regulation by sowing date in japonica rice (Oryza sativa L.). Sci Rep, 2021, 11: 15026.
doi: 10.1038/s41598-021-94552-3
[32] Yan P S, Li W L, Zhou E X, Xing Y, Li B, Liu J, Zhang Z H, Ding D, Fu Z Y, Xie H L, Tang J H. Integrating BSA-seq with RNA-seq reveals a novel fasciated ear5mutant in maize. Int J Mol Sci, 2023, 24: 1-18.
doi: 10.3390/ijms24010001
[33] Zhao D, Chen Z, Xu L, Zhang L J, Zou Q. Genome-wide analysis of the MADS-Box gene family in maize: gene structure, evolution, and relationships. Genes, 2021, 12: 1956.
doi: 10.3390/genes12121956
[34] Hayward A P, Moreno M A, Howard III T P, Hague J, Nelson K, Heffelfinger C, Romero S, Kausch A P, Glauser G, Acosta I F, Mottinger J P, Dellaporta S L. Control of sexuality by the sk1-encoded UDP-glycosyltransferase of maize. Sci Adv, 2016, 2: e1600991.
doi: 10.1126/sciadv.1600991
[1] LOU Fei, ZUO Yi-Ping, LI Meng, DAI Xin-Meng, WANG Jian, HAN Jin-Ling, WU Shu, LI Xiang-Ling, DUAN Hui-Jun. Effects of organic fertilizer substituting chemical fertilizer nitrogen on yield, quality, and nitrogen efficiency of waxy maize [J]. Acta Agronomica Sinica, 2024, 50(4): 1053-1064.
[2] YUE Hai-Wang, WEI Jian-Wei, LIU Peng-Cheng, CHEN Shu-Ping, BU Jun-Zhou. Comprehensive evaluation of maize hybrids in the mega-environments of Huanghuaihai plain based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2024, 50(4): 836-856.
[3] ZOU Jia-Qi, WANG Zhong-Lin, TAN Xian-Ming, CHEN Liao-Yuan, YANG Wen-Yu, YANG Feng. Estimation of maize grain yield under drought stress based on continuous wavelet transform [J]. Acta Agronomica Sinica, 2024, 50(4): 1030-1042.
[4] ZHAO Rong-Rong, CONG Nan, ZHAO Chuang. Optimal phase selection for extracting distribution of winter wheat and summer maize over central subregion of Henan Province based on Landsat 8 imagery [J]. Acta Agronomica Sinica, 2024, 50(3): 721-733.
[5] LIANG Xing-Wei, YANG Wen-Ting, JIN Yu, HU Li, FU Xiao-Xiang, CHEN Xian-Min, ZHOU Shun-Li, SHEN Si, LIANG Xiao-Gui. Is cob color variation in maize accidental or incidental to any agronomic traits? —An example of nationally approved common hybrids over the years [J]. Acta Agronomica Sinica, 2024, 50(3): 771-778.
[6] MAO Yan, ZHENG Ming-Min, MOU Cheng-Xiang, XIE Wu-Bing, TANG Qi. Function analysis of the promoter of natural antisense transcript cis- NATZmNAC48 in maize under osmotic stress [J]. Acta Agronomica Sinica, 2024, 50(2): 354-362.
[7] MA Juan, CAO Yan-Yong. Genome-wide association study of yield traits and special combining ability in maize hybrid population [J]. Acta Agronomica Sinica, 2024, 50(2): 363-372.
[8] YANG Jing-Lei, WU Bing-Jie, WANG An-Zhou, XIAO Ying-Jie. Genomic prediction of maize agronomic and quality traits using multi-omics data [J]. Acta Agronomica Sinica, 2024, 50(2): 373-382.
[9] YANG Chen-Xi, ZHOU Wen-Qi, ZHOU Xiang-Yan, LIU Zhong-Xiang, ZHOU Yu-Qian, LIU Jie-Shan, YANG Yan-Zhong, HE Hai-Jun, WANG Xiao-Juan, LIAN Xiao-Rong, LI Yong-Sheng. Mapping and cloning of plant height gene PHR1 in maize [J]. Acta Agronomica Sinica, 2024, 50(1): 55-66.
[10] YUE Run-Qing, LI Wen-Lan, MENG Zhao-Dong. Acquisition and resistance analysis of transgenic Maize Inbred Line LG11 with insect and herbicide resistance [J]. Acta Agronomica Sinica, 2024, 50(1): 89-99.
[11] SONG Xu-Dong, ZHU Guang-Long, ZHANG Shu-Yu, ZHANG Hui-Min, ZHOU Guang-Fei, ZHANG Zhen-Liang, MAO Yu-Xiang, LU Hu-Hua, CHEN Guo-Qing, SHI Ming-Liang, XUE Lin, ZHOU Gui-Sheng, HAO De-Rong. Identification of heat tolerance of waxy maizes at flowering stage and screening of evaluation indexes in the middle and lower reaches of Yangtze River region [J]. Acta Agronomica Sinica, 2024, 50(1): 172-186.
[12] YANG Li-Da, REN Jun-Bo, PENG Xin-Yue, YANG Xue-Li, LUO Kai, CHEN Ping, YUAN Xiao-Ting, PU Tian, YONG Tai-Wen, YANG Wen-Yu. Crop growth characteristics and its effects on yield formation through nitrogen application and interspecific distance in soybean/maize strip relay intercropping [J]. Acta Agronomica Sinica, 2024, 50(1): 251-264.
[13] WANG Li-Ping, WANG Xiao-Yu, FU Jing-Ye, WANG Qiang. Functional identification of maize transcription factor ZmMYB12 to enhance drought resistance and low phosphorus tolerance in plants [J]. Acta Agronomica Sinica, 2024, 50(1): 76-88.
[14] AI Rong, ZHANG Chun, YUE Man-Fang, ZOU Hua-Wen, WU Zhong-Yi. Response of maize transcriptional factor ZmEREB211 to abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(9): 2433-2445.
[15] HUANG Yu-Jie, ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei, DING Shuang-Cheng. Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(9): 2331-2343.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .