Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (2): 373-382.doi: 10.3724/SP.J.1006.2024.33021

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genomic prediction of maize agronomic and quality traits using multi-omics data

YANG Jing-Lei1,**(), WU Bing-Jie1,**(), WANG An-Zhou1, XIAO Ying-Jie1,2,*()   

  1. 1National Key Laboratory of Crop Genetic Improvement / Huazhong Agricultural University, Wuhan 430070, Hubei, China
    2Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
  • Received:2023-04-02 Accepted:2023-09-13 Online:2024-02-12 Published:2023-10-09
  • Contact: *E-mail: yxiao25@mail.hzau.edu.cn
  • About author:**Contributed equally to this work
  • Supported by:
    National Natural Science Foundation of China for Youth-Talent Fund(32122066)

Abstract:

Genomic selection predicts unknown phenotypes by using high-density genetic markers covering the genome. In the plant, this method allows early selection for traits, retaining dominant individuals and saving costs for field management and phenotype identification, which greatly accelerating the breeding process. In this study, genomic, transcriptomic, and metabolomic data were used for genomic prediction of agronomic and quality traits of maize by using two statistical models, rrBLUP, and LASSO. We found that the order of predictive power was genomic data, transcriptomic data, and metabolomic data. For different traits, genomic prediction was more powerful than agronomic traits for quality traits. For both rrBLUP and LASSO models, rrBLUP was the best model for all traits when using genomic data, 53 traits were the best predicted by rrBLUP and 2 traits were the best predicted by LASSO when using transcriptomic data, 43 traits were the best predicted by rrBLUP and 12 traits were the best predicted by LASSO, and 12 traits were the best predicted by LASSO based on metabolomic data. In addition, when performing genomic prediction using different lineages, the accuracy of predicting the temperate maize from the tropic maize was slightly better than that of predicting the tropic maize from the temperate. For quality traits, we found the cross-lineage prediction was higher than the within-lineage prediction. This study systematically evaluated the differences in the predictive ability of maize agronomic and quality traits based on various multi-omics data and statistical models, which providing a theoretical basis for future genomic breeding of important agricultural traits in maize.

Key words: maize, agronomic and quality trait, genomic prediction, multi-omics data

Fig. 1

Prediction differences in agronomic traits and quality traits based on genomic data analysis A: density distribution map for the prediction accuracy of two phenotypic traits by using genomic data. B: prediction accuracy for predicting 20 agronomic traits and 35 quality traits by using genomic data."

Fig. 2

Differences in trait prediction between omics data A: predictive differences in predicting different types of traits using different omics data; B: classification of prediction results of 55 trait based on the different omics data; C: prediction differences between two types of traits using different chromosomal markers; D: prediction differences between two types of traits using three tissue data; E: prediction differences between two types of traits using metabolite data from different environments. *: P < 0.05; **: P < 0.01; ***: P < 0.01."

Fig. 3

Integrated evaluation of models and omic-data combinations on trait prediction A: the best prediction model for predicting 55 traits using different omic data; B: prediction accuracy changes between two prediction models for 55 traits with different omics data; C: the best combination of omics data and models for predicting 55 traits."

Fig. 4

Influence of material genealogy on prediction by omics data A, B: the effects of different material genealogy based on different omics data on predicted phenotype; C-E: the effects of different genealogical materials on the prediction of two types of traits based on different omics data."

[1] He T H, Li C D. Harness the power of genomic selection and the potential of germplasm in crop breeding for global food security in the era with rapid climate change. Crop J, 2020, 8: 688-700.
doi: 10.1016/j.cj.2020.04.005
[2] Steinwand M A, Ronald P C. Crop biotechnology and the future of food. Nat Food, 2020, 1: 273-283.
doi: 10.1038/s43016-020-0072-3
[3] Hickey L T, Hafeez A N, Robinson H, Jackson S A, Leal-Bertioli S C M, Tester M, Gao C X, Godwin I D, Hayes Ben J, Wulff B B H. Breeding crops to feed 10 billion. Nat Biotechnol, 2019, 37: 744-754.
doi: 10.1038/s41587-019-0152-9 pmid: 31209375
[4] Borlaug N E. Contributions of conventional plant breeding to food production. Science, 1983, 219: 689-693.
doi: 10.1126/science.219.4585.689 pmid: 17814030
[5] Watson A, Ghosh S, Williams M J, Cubby W S, Simmonds J, Rey M D, Asyraf Md Hatta M, Hinchliffe A, Steed A, Reynolds D, Adamski N M, Breakspear A, Korolev A, Rayner T, Dixon L E, Riaz A, Martin W, Ryan M, Edwards D, Batley J, Raman H, Carter J, Rogers C, Domoney C, Moore G, Harwood W, Nicholson P, Dieters M J, DeLacy I H, Zhou J, Uauy C, Boden S A, Park R F, Wulff B B H, Hickey L T. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants, 2018, 4: 23-29.
doi: 10.1038/s41477-017-0083-8 pmid: 29292376
[6] Meuwissen T H E, Hayes B J, Goddard M E. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 2001, 157: 1819-1829.
doi: 10.1093/genetics/157.4.1819 pmid: 11290733
[7] Nakaya A, Isobe S N. Will genomic selection be a practical method for plant breeding? Ann Bot, 2012, 110: 1303-1316.
doi: 10.1093/aob/mcs109
[8] Farah M M, Swan A A, Fortes M R S, Fonseca R, Moore S S, Kelly M J. Accuracy of genomic selection for age at puberty in a multi-breed population of tropically adapted beef cattle. Anim Genet, 2016, 47: 3-11.
doi: 10.1111/age.12362 pmid: 26490440
[9] Kariuki C M, Brascamp E W, Komen H, Van Arendonk J A M. Economic evaluation of progeny-testing and genomic selection schemes for small-sized nucleus dairy cattle breeding programs in developing countries. J Dairy Sci, 2017, 100: 2258-2268.
doi: S0022-0302(17)30052-8 pmid: 28109609
[10] Schaeffer L R. Strategy for applying genome-wide selection in dairy cattle. J Anim Breed Genet, 2006, 123: 218-223.
doi: 10.1111/j.1439-0388.2006.00595.x pmid: 16882088
[11] Lorenzana R E, Bernardo R. Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet, 2009, 120: 151-161.
doi: 10.1007/s00122-009-1166-3 pmid: 19841887
[12] Zhang X C, Perez-Rodriguez P, Burgueno J, Olsen M, Buckler E, Atlin G, Prasanna B M, Vargas M, San Vicente F, Crossa J. Rapid cycling genomic selection in a multi-parental tropical maize population. G3: Gene Genome Genet, 2017, 7: 2315-2326.
doi: 10.1534/g3.117.043141
[13] Wang X, Li L, Yang Z, Zheng X, Yu S, Xu C, Hu Z. Predicting rice hybrid performance using univariate and multivariate GBLUP models based on North Carolina mating design II. Heredity, 2017, 118: 302-310.
doi: 10.1038/hdy.2016.87 pmid: 27649618
[14] Ma Y S, Liu Z X, Wen Z X, Wei S H, Yang C M, Wang H C, Yang C Y, Lu W G, Xu R, Zhang W H, Wu J A, Hu G H, Luan X Y, Fu Y S, Wang S M, Han T F, Zhang M C, Zhang L, Yuan B, Guo Y, Reif J C, Jiang Y, Li W B, Wang D C, Qiu L J. Effect of population structure on prediction accuracy of soybean 100-seed weight by genomic selection. Crop J, 2018, 44: 43-52 (in Chinese with English abstract).
[15] Charmet G, Storlie E, Oury F X, Laurent V, Beghin D, Chevarin L, Lapierre A, Perretant M R, Rolland B, Heumez E, Duchalais L, Goudemand E, Bordes J, Robert O. Genome-wide prediction of three important traits in bread wheat. Mol Breed, 2014, 34: 1843-1852.
doi: 10.1007/s11032-014-0143-y
[16] Beyene Y, Semagn K, Mugo S, Tarekegne A, Babu R, Meisel B, Sehabiague P, Makumbi D, Magorokosho C, Oikeh S, Gakunga J, Vargas M, Olsen M, Prasanna B M, Banziger M, Crossa J. Genetic gains in grain yield through genomic selection in eight bi-parental maize populations under drought stress. Crop Sci, 2015, 55: 154-163.
doi: 10.2135/cropsci2014.07.0460
[17] Zhang X, Perez-Rodriguez P, Semagn K, Beyene Y, Babu R, Lopez-Cruz M A, Vicente F S, Olsen M, Buckler E, Jannink J L, Prasanna B M, Crossa J. Genomic prediction in biparental tropical maize populations in water-stressed and well-watered environments using low-density and GBS SNPs. Heredity, 2015, 114: 291-299.
doi: 10.1038/hdy.2014.99 pmid: 25407079
[18] Cao S, Loladze A, Yuan Y B, Wu Y S, Zhang A, Chen J F, Huestis G, Cao J S, Chaikam V, Olsen M, Prasanna B M, San Vicente F, Zhang X C. Genome-wide analysis of Tar Spot Complex resistance in maize using genotyping-by-sequencing SNPs and whole-genome prediction. Plant Genome, 2017, 10: 1-14.
[19] Zhang A, Wang H W, Beyene Y, Semagn K, Liu Y, B Cao S L, Cui Z H, Ruan Y Y, Burgueno J, San Vicente F, Olsen M, Prasanna B M, Crossa J, Yu H Q, Zhang X C. Effect of trait heritability, training population size and marker density on genomic prediction accuracy estimation in 22 bi-parental tropical maize populations. Front Plant Sci, 2017, 8: 1916.
doi: 10.3389/fpls.2017.01916 pmid: 29167677
[20] Guo Z G, Tucker D M, Lu J W, Kishore V, Gay G. Evaluation of genome-wide selection efficiency in maize nested association mapping populations. Theor Appl Genet, 2012, 124: 261-275.
doi: 10.1007/s00122-011-1702-9 pmid: 21938474
[21] Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F, Sulpice R, Altmann T, Stitt M, Willmitzer L, Melchinger A E. Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat Genet, 2012, 44: 217-220.
doi: 10.1038/ng.1033 pmid: 22246502
[22] Shikha M, Kanika A, Rao A R, Mallikarjuna M G, Gupta H S, Nepolean T. Genomic selection for drought tolerance using genome-wide SNPs in maize. Front Plant Sci, 2017, 8: 550.
doi: 10.3389/fpls.2017.00550 pmid: 28484471
[23] Crossa J, Perez-Rodriguez P, Cuevas J, Montesinos-Lopez O, Jarquín D, de los Campos G, Burgueno J, Camacho-Gonzalez J M, Perez-Elizalde S, Beyene Y, Dreisigacker S, Singh R, Zhang X C, Gowda M, Roorkiwal M, Rutkoski J, Varshney R K. Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci, 2017, 22: 961-975.
doi: S1360-1385(17)30184-X pmid: 28965742
[24] Azodi C B, Pardo J, VanBuren R, De Los Campos G, Shiu S H. Transcriptome-based prediction of complex traits in maize. Plant Cell, 2020, 32: 139-151.
doi: 10.1105/tpc.19.00332
[25] Bhering L L, Junqueira V S, Peixoto L A, Cruz C D, Laviola B G. Comparison of methods used to identify superior individuals in genomic selection in plant breeding. Genet Mol Res, 2015, 14: 10888-10896.
doi: 10.4238/2015.September.9.26 pmid: 26400316
[26] Yan H L, Guo H Y, Xu W X, Dai C H, Kimani W, Xie J Y, Zhang H F, Li T, Wang F, Yu Y J, Ma M, Hao Z F, He Z Y. GWAS-assisted genomic prediction of cadmium accumulation in maize kernel with machine learning and linear statistical methods. J Hazard Mater, 2023, 441: 129929.
doi: 10.1016/j.jhazmat.2022.129929
[27] Tibshirani R. Regression shrinkage and selection via the lasso. J Roy Stat Soc B, 1996, 58: 267-288.
[28] Ahmad I, Singh A, Fahad M, Waqas M M. Remote sensing-based framework to predict and assess the interannual variability of maize yields in Pakistan using Landsat imagery. Comput Electron Agric, 2020, 178: 105732-105732.
doi: 10.1016/j.compag.2020.105732
[29] Islam M S, Fang D D, Jenkins J N, Guo J, McCarty J C, Jones D C. Evaluation of genomic selection methods for predicting fiber quality traits in Upland cotton. Mol Genet Genom, 2020, 295: 67-79.
doi: 10.1007/s00438-019-01599-z
[30] Tsai H Y, Janss L L, Andersen J R, Orabi J, Jensen J D, Jahoor A, Jensen J. Genomic prediction and GWAS of yield, quality and disease-related traits in spring barley and winter wheat. Sci Rep, 2020, 10: 1-15.
doi: 10.1038/s41598-019-56847-4
[31] Zhang F, Wu J F, Sade N, Wu S, Egbaria A, Fernie A R, Yan J B, Qin F, Wei C, Brotman Y, Dai M Q. Genomic basis underlying the metabolome-mediated drought adaptation of maize. Genome Biol, 2021, 22: 260-260.
doi: 10.1186/s13059-021-02481-1 pmid: 34488839
[32] Qin S, Xu Y, Nie Z, Liu H, Gao W, Li C, Zhao P. Metabolomic and antioxidant enzyme activity changes in response to cadmium stress under boron application of wheat (Triticum aestivum). Environ Sci Pollut Res Int, 2022, 29: 34701-34713.
doi: 10.1007/s11356-021-17123-z
[33] Hu X H, Xie W B, Wu C C, Xu S Z. A directed learning strategy integrating multiple omic data improves genomic prediction. Plant Biotechnol J, 2019, 17: 2011-2020.
doi: 10.1111/pbi.13117 pmid: 30950198
[34] Li H, Peng Z Y, Yang X H, Wang W D, Fu J J, Wang J H, Han Y J, Chai Y C, Guo T T, Yang N, Liu J, Warburton M L, Cheng Y B, Hao X M, Zhang P, Zhao J Y, Liu Y J, Wang G Y, Li J S, Yan J B. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet, 2013, 45: 43-50.
doi: 10.1038/ng.2484 pmid: 23242369
[35] Yang N, Lu Y L, Yang X H, Huang J, Zhou Y, Ali F, Wen W W, Liu J, Li J S, Yan J B. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genet, 2014, 10: e1004573.
doi: 10.1371/journal.pgen.1004573
[36] Wang H, Xu S T, Fan Y M, Liu N N, Zhan W, Liu H J, Xiao Y J, Li K, Pan Q C, Li W Q, Deng M, Liu J, Jin M, Yang X H, Li J S, Li Q, Yan J B. Beyond pathways: genetic dissection of tocopherol content in maize kernels by combining linkage and association analyses. Plant Biotechnol J, 2018, 16: 1464-1475.
doi: 10.1111/pbi.12889 pmid: 29356296
[37] Deng M, Li D Q, Luo J Y, Xiao Y J, Liu H J, Pan Q C, Zhang X H, Jin M L, Zhao M C, Yan J B. The genetic architecture of amino acids dissection by association and linkage analysis in maize. Plant Biotechnol J, 2017, 15: 1250-1263.
doi: 10.1111/pbi.12712 pmid: 28218981
[38] Wen W W, Li D, Li X, Gao Y Q, Li W Q, Li H H, Liu J, Liu H J, Chen W, Luo J, Yan J B. Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nat Commun, 2014, 5: 1-10.
[39] Endelman J B. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome, 2011, 4: 250-255.
doi: 10.3835/plantgenome2011.08.0024
[40] Zheng L W, Ma S J, Shen D D, Fu H, Wang Y, Liu Y, Shah K, Yue C P, Huang J Y. Genome-wide identification of Gramineae histone modification genes and their potential roles in regulating wheat and maize growth and stress responses. BMC Plant Biol, 2021, 21: 543.
doi: 10.1186/s12870-021-03332-8 pmid: 34800975
[41] De Los Campos G, Hickey J M, Pong-Wong R, Daetwyler H D, Calus M P. Whole-genome regression and prediction methods applied to plant and animal breeding. Genetics, 2013, 193: 327-345.
doi: 10.1534/genetics.112.143313 pmid: 22745228
[1] ZHAO Rong-Rong, CONG Nan, ZHAO Chuang. Optimal phase selection for extracting distribution of winter wheat and summer maize over central subregion of Henan Province based on Landsat 8 imagery [J]. Acta Agronomica Sinica, 2024, 50(3): 721-733.
[2] LIANG Xing-Wei, YANG Wen-Ting, JIN Yu, HU Li, FU Xiao-Xiang, CHEN Xian-Min, ZHOU Shun-Li, SHEN Si, LIANG Xiao-Gui. Is cob color variation in maize accidental or incidental to any agronomic traits? —An example of national approved common hybrids over the past years [J]. Acta Agronomica Sinica, 2024, 50(3): 771-778.
[3] XUE Ming, WANG Chen-Chen, JIANG Lu-Guang, LIU Hao, ZHANG Lu-Yao, CHEN Sai-Hua. Mapping and functional analysis of maize inflorescence development gene AFP1 [J]. Acta Agronomica Sinica, 2024, 50(3): 603-612.
[4] MAO Yan, ZHENG Ming-Min, MOU Cheng-Xiang, XIE Wu-Bing, TANG Qi. Function analysis of the promoter of natural antisense transcript cis- NATZmNAC48 in maize under osmotic stress [J]. Acta Agronomica Sinica, 2024, 50(2): 354-362.
[5] MA Juan, CAO Yan-Yong. Genome-wide association study of yield traits and special combining ability in maize hybrid population [J]. Acta Agronomica Sinica, 2024, 50(2): 363-372.
[6] YANG Chen-Xi, ZHOU Wen-Qi, ZHOU Xiang-Yan, LIU Zhong-Xiang, ZHOU Yu-Qian, LIU Jie-Shan, YANG Yan-Zhong, HE Hai-Jun, WANG Xiao-Juan, LIAN Xiao-Rong, LI Yong-Sheng. Mapping and cloning of plant height gene PHR1 in maize [J]. Acta Agronomica Sinica, 2024, 50(1): 55-66.
[7] YUE Run-Qing, LI Wen-Lan, MENG Zhao-Dong. Acquisition and resistance analysis of transgenic Maize Inbred Line LG11 with insect and herbicide resistance [J]. Acta Agronomica Sinica, 2024, 50(1): 89-99.
[8] SONG Xu-Dong, ZHU Guang-Long, ZHANG Shu-Yu, ZHANG Hui-Min, ZHOU Guang-Fei, ZHANG Zhen-Liang, MAO Yu-Xiang, LU Hu-Hua, CHEN Guo-Qing, SHI Ming-Liang, XUE Lin, ZHOU Gui-Sheng, HAO De-Rong. Identification of heat tolerance of waxy maizes at flowering stage and screening of evaluation indexes in the middle and lower reaches of Yangtze River region [J]. Acta Agronomica Sinica, 2024, 50(1): 172-186.
[9] YANG Li-Da, REN Jun-Bo, PENG Xin-Yue, YANG Xue-Li, LUO Kai, CHEN Ping, YUAN Xiao-Ting, PU Tian, YONG Tai-Wen, YANG Wen-Yu. Crop growth characteristics and its effects on yield formation through nitrogen application and interspecific distance in soybean/maize strip relay intercropping [J]. Acta Agronomica Sinica, 2024, 50(1): 251-264.
[10] WANG Li-Ping, WANG Xiao-Yu, FU Jing-Ye, WANG Qiang. Functional identification of maize transcription factor ZmMYB12 to enhance drought resistance and low phosphorus tolerance in plants [J]. Acta Agronomica Sinica, 2024, 50(1): 76-88.
[11] AI Rong, ZHANG Chun, YUE Man-Fang, ZOU Hua-Wen, WU Zhong-Yi. Response of maize transcriptional factor ZmEREB211 to abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(9): 2433-2445.
[12] HUANG Yu-Jie, ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei, DING Shuang-Cheng. Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(9): 2331-2343.
[13] YANG Wen-Yu, WU Cheng-Xiu, XIAO Ying-Jie, YAN Jian-Bing. ALGWAS: two-stage Adaptive Lasso-based genome-wide association study [J]. Acta Agronomica Sinica, 2023, 49(9): 2321-2330.
[14] BAI Yan, GAO Ting-Ting, LU Shi, ZHENG Shu-Bo, LU Ming. A retrospective analysis of the historical evolution and developing trend of maize mega varieties in China from 1982 to 2020 [J]. Acta Agronomica Sinica, 2023, 49(8): 2064-2076.
[15] WANG Xing-Rong, ZHANG Yan-Jun, TU Qi-Qi, GONG Dian-Ming, QIU Fa-Zhan. Identification and gene localization of a novel maize nuclear male sterility mutant ms6 [J]. Acta Agronomica Sinica, 2023, 49(8): 2077-2087.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .