Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (12): 3239-3249.doi: 10.3724/SP.J.1006.2023.24256

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Relative expression profile of the related genes with carotenoids metabolism in sweetpotato (Ipomoea batatas) based on RNA-seq data

ZHAO Dong-Lan*(), ZHAO Ling-Xiao, LIU Yang, ZHANG An, DAI Xi-Bin, ZHOU Zhi-Lin, CAO Qing-He   

  1. Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District / Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou 221131, Jiangsu, China
  • Received:2022-11-18 Accepted:2023-05-24 Online:2023-12-12 Published:2023-06-14
  • Supported by:
    Natural Fund Project of Xuzhou Science and Technology Bureau(KC21072);China Agriculture Research System of MOF and MARA(Sweetpotato, CARS-10)

Abstract:

The objective of this study is to explore the molecular mechanism of carotenoid metabolism and color mutation of sweetpotato and to study the carotenoid metabolism related genes by RNA-seq technology. Zheshu 81 and its mutant line with color mutation in root skin (from red to yellow) and leaf vein base (from purple to green) were used as the experimental materials. Bioinformatics analysis showed that the carotenoid biosynthesis (ko00906) pathway was significantly enriched in root skin and leaf vein base. The 24 differentially expressed genes (DEGs) and 10 DEGs in the ko00906 were screened from root skin and vein base, among which four were screened in both two parts, respectively. In the upstream pathway of carotenoid anabolism, compared with Zheshu 81, the geranylgeranyl pyrophosphate synthase gene GGDPS (g29773, g38646), lycopene synthase gene PSY (g11630) and ζ-carotene isomerase gene Z-ISO (g42608) were significantly up-regulated in mutant line, and GGDPS (g29773) was only expressed in mutant lines. DEGs were not screened in the upstream metabolic pathway of carotenoids in vein base. After the branching point of lycopene cyclization, two β-carotene hydroxylase genes CHYB (g33351, g953) were screened in root skin, one up-regulated and the other down-regulated. Two zeaxanthin epoxidase gene ZEP (g41700, g1103) were detected in root skin and vein base, respectively. And g41700 in root skin was significantly down-regulated, and g1103 in vein base was significantly up-regulated. In carotenoid catabolism, CCD8 (g21348), a carotenoid cleavage dioxygenase gene, was significantly up-regulated in root skin of mutant line. Two 9-cis epoxide carotenoid oxygenase genes NCED (g30636, g43412) were down-regulated in root skin and vein base of the mutant line. In addition, ten xanthoxin dehydrogenase ABA2 genes were detected in root skin and vein base, and nine of them were up-regulated. The relative expression levels of some genes by qRT-PCR were highly consistent with those of RNA-seq data. This study provides an important reference for the molecular mechanism of carotenoid metabolism and the analysis of different color mutations in root skin and vein base of sweetpotato.

Key words: sweetpotato, carotenoid, RNA-seq, differentially expressed gene, color variation

Fig. 1

Color variation of Zheshu 81 and its mutant A, B: phenotype comparison of leaf vein base color of Zheshu 81 (A) and its mutant (B). C: phenotype comparison of storage root skin color of Zheshu 81 (left) and its mutant (right). D: the mutant of Zheshu 81 discovered in field. Bar: 5 cm"

Fig. 2

Carotenoid content of Zheshu 81 and its mutant line"

Fig. 3

Scatter plots of KEGG pathway enrichment in sweetpotato A: the top 20 of KEGG enrichment pathways of DEGs of the base of leaf vein; B: the top 20 of KEGG enrichment pathways of DEGs of root skin. The pathways in the red box are the focus of this study."

Fig. 4

Transcript profiling of the carotenoids metabolism in Zheshu 81 and its mutant line (LVB) indicates that this DEG is from the base of the leaf vein, and (RS) indicates that the gene is from root skin."

Fig. 5

Relative expression level of DEGs related to the carotenoid in root skin of Zheshu 81 and its mutant line A: the correlation analysis of DEGs of Zheshu 81 and its mutant line based on RNA-seq and qRT-PCR data; B: the relative expression level of DEGs related to the carotenoid in root skin of Zheshu 81 and its mutant line. * represents significantly different at P < 0.05; ** represents significantly different at P < 0.01."

[1] Nisar N, Li L, Lu S, Khin N C, Pogson B J. Carotenoid metabolism in plants. Mol Plant, 2015, 8: 68-82.
doi: 10.1016/j.molp.2014.12.007 pmid: 25578273
[2] 何静娟, 范燕萍. 观赏植物花色相关的类胡萝卜素组成及代谢调控研究进展. 园艺学报, 2022, 49: 1162-1172.
doi: 10.16420/j.issn.0513-353x.2021-0623
He J J, Fan Y P. Progress in Composition and metabolic regulation of carotenoids related to floral color. Acta Hortic Sin, 2022, 49: 1162-1172. (in Chinese with English abstract)
doi: 10.16420/j.issn.0513-353x.2021-0623
[3] Frank H A, Brudvig G W. Redox functions of carotenoids in photosynthesis. Biochemistry, 2004, 43: 8607-8615.
pmid: 15236568
[4] Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S. The path from β-Carotene to carlactone, a strigolactone-Like plant hormone. Science, 2012, 335: 1348-1351.
doi: 10.1126/science.1218094 pmid: 22422982
[5] Yang F W, Feng X Q. Abscisic acid biosynthesis and catabolism and their regulation roles in fruit ripening. Phyton, 2015, 84: 444-453.
doi: 10.32604/phyton.2015.84.444
[6] Eggersdorfer M, Wyss A. Carotenoids in human nutrition and health. Arch Biochem Biophys, 2018, 652: 18-26.
doi: S0003-9861(18)30165-6 pmid: 29885291
[7] 张冠华, 刁倩楠. 类胡萝卜素研究进展. 现代农业, 2021, (4): 46-49.
Zhang G H, Diao Q N. Research progress of carotenoids. Mod Agric, 2021, (4): 46-49. (in Chinese)
[8] 谢一芝, 邱瑞镰, 戴起伟, 吴纪中, 张黎玉, 徐品莲. 甘薯胡萝卜素含量的变化及高胡萝卜素育种. 国外农学——杂粮作物, 1998, 18(4): 44-47.
Xie Y Z, Qiu R L, Dai Q W, Wu J Z, Zhang L Y, Xu P L. Changes of carotene content in sweet potato and breeding for high carotene content. Foreign Agron: Miscellaneous Crops, 1998, 18(4): 44-47. (in Chinese)
[9] 后猛, 张允刚, 王欣, 唐维, 刘亚菊, 唐忠厚, 靳容, 闫会, 马代夫, 李强. 橘红肉甘薯块根类胡萝卜素的变化规律及其与主要经济性状的相关性. 中国农业科学, 2013, 46: 3988-3996.
doi: 10.3864/j.issn.0578-1752.2013.19.004
Hou M, Zhang Y G, Wang X, Tang W, Liu Y J, Tang Z H, Jin R, Yan H, Ma D F, Li Q. Variationlaws of carotenoids content in storage root of orange-fleshed sweetpotato and its relationships with major economic traits. Sci Agric Sin, 2013, 46: 3988-3996. (in Chinese with English abstract)
[10] 陈永水. 甘薯品种β-胡萝卜素含量的HPLC测定及其与色值的关系. 国外农学: 杂粮作物, 1995, (3): 36-39.
Chen Y S. Determination of β-carotene content in sweet potato cultivars by HPLC and its relationship with color value. Foreign Agron: Miscellaneous Crops, 1995, (3): 36-39. (in Chinese)
[11] 李帑洛, 蒋进勇, 何伟国. 甘薯类胡萝卜素提取工艺的优化. 湖南农业科学, 2016, (8): 93-95.
Li T L, Jiang J Y, He W G. Optimization of extraction technology of carotenoids from sweet potato. Hunan Agric Sci, 2016, (8): 93-95. (in Chinese with English abstract)
[12] Rodriguez-Amaya B D, Nutti M R, Carvalho L V. Flour and Breads and Their Fortification in Health & Disease Prevention. San Diego: Academic Press, 2011. pp 301-311.
[13] 陆国权, 黄华宏, 何腾弟. 甘薯维生素C和胡萝卜素含量的基因型, 环境及基因型与环境互作效应的分析. 中国农业科学, 2002, 35: 482-486.
Lu G Q, Huang H H, He T D. Genotype and environmental effects on vitamin C and carotene contents in sweetpotato. Sci Agric Sin, 2002, 35: 482-486. (in Chinese with English abstract)
[14] Waramboi J G, Gidley M J, Sopade P A. Carotenoid contents of extruded and non-extruded sweetpotato flours from Papua New Guinea and Australia. Food Chem, 2013, 141: 1740-1746.
doi: 10.1016/j.foodchem.2013.04.070 pmid: 23870886
[15] Vimala B, Nambisan B, Hariprakash B. Retention of carotenoids in orange-fleshed sweet potato during processing. J Food Sci Technol, 2011, 48: 520-524.
doi: 10.1007/s13197-011-0323-2 pmid: 23572783
[16] 程洁, 赵腾飞, 廖志华, 杨春贤. 甘薯八氢番茄红素合成酶基因的克隆与功能验证. 植物生理学报, 2017, 53: 865-872.
Cheng J, Zhao T F, Liao Z H, Yang C X. Cloning and functional identification of phytoene synthase gene from sweetpotat. J Plant Physiol, 2017, 53: 865-872. (in Chinese with English abstract)
[17] Chen K, Hong Z, Xue L, Zhao N, He S, Liu Q. A lycopene β-cyclase gene, IbLCYB2, enhances carotenoid contents and abiotic stress tolerance in transgenic sweetpotato. Plant Sci, 2018, 272: 243-254.
doi: S0168-9452(18)30157-2 pmid: 29807598
[18] Park S C, Kang L, Park W S, Ahn M J, Kwak S S, Kim H S. Carotenoid cleavage dioxygenase 4 (CCD4) cleaves β-carotene and interacts with IbOr in sweetpotato. Plant Biotechnol Rep, 2020, 14: 737-742.
doi: 10.1007/s11816-020-00649-y
[19] 江苏省农业科学院、 山东省农业科学院. 中国甘薯栽培学. 上海: 上海科学技术出版社, 1984. pp 175-177.
Jiangsu Academy of Agricultural Sciences, Shandong Academy of Agricultural Sciences. Chinese Sweet Potato Cultivation. Shanghai: Shanghai Scientific and Technical Publishers, 1984. pp 175-177.
[20] 张小贝, 王光俊. 芽变育种在甘薯品种选育种的应用. 园艺与育苗, 2019, 39(1): 44-45.
Zhang X B, Wang G J. Application of bud mutation in the breeding of sweetpotato. Hortic Seed, 2019, 39(1): 44-45. (in Chinese with English abstract)
[21] Ma D, Li Q, Li X, Li H, Tang Z. Selection of parents for breeding edible varieties of sweetpotato with high carotene content. Agric Sci China, 2009, 10: 20-27.
[22] Yang J, Moeinzadeh M, Kuhl H, Helmuth J, Xiao P, Liu G, Zheng J, Sun Z, Fan W, Deng G. The haplotype-resolved genome sequence of hexaploid Ipomoea batatas reveals its evolutionary history. Nat Plants, 2017, 3: 696-703.
doi: 10.1038/s41477-017-0002-z pmid: 28827752
[23] Zhao D, Zhao L, Liu Y, Zhang A, Xiao S, Dai X, Yuan R, Zhou Z, Cao Q. Metabolomic and transcriptomic analyses of the flavonoid biosynthetic pathway for the accumulation of anthocyanins and other flavonoids in sweetpotato root skin and leaf vein base. J Agric Food Chem, 2022, 70: 2574-2588.
doi: 10.1021/acs.jafc.1c05388
[24] Park S C, Kim Y H, Ji C Y, Park S, Jeong J C, Lee H S, Kwak S S. Stable internal reference genes for the normalization of real-time pcr in different sweetpotato cultivars subjected to abiotic stress conditions. PLoS One, 2012, 7: e51502.
doi: 10.1371/journal.pone.0051502
[25] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCt method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[26] Minoru K, Michihiro A, Susumu G, Masahiro H, Mika H, Masumi I, Toshiaki K, Shuichi K, Shujiro O, Toshiaki T. KEGG for linking genomes to life and the environment. Nucleic Acids Res, 2008, 36: 480-484.
pmid: 18077471
[27] Fraser P D, Bramley P M. The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res, 2004, 43: 228-265.
doi: 10.1016/j.plipres.2003.10.002 pmid: 15003396
[28] Sandmann G, Rmer S, Fraser P D. Understanding carotenoid metabolism as a necessity for genetic engineering of crop plants. Metab Eng, 2006, 8: 291-302.
pmid: 16621640
[29] 潘鹤立, 潘腾飞, 佘文琴, 徐世荣, 李小婷, 黄汉唐, 陈源, 吴少华, 潘东明. 柚芽变株系类胡萝卜素代谢差异基因的转录组学分析. 热带作物学报, 2020, 41: 2165-2175.
Pan H L, Pan T F, She W Q, Xu S R, Li X R, Huang H T, Chen Y, Wu S H, Pan D M. Transcriptome analysis of carotenoid metabolism differential genes in pomelo bud strain. Chin J Trop Crops, 2020, 41: 2165-2175. (in Chinese with English abstract)
[30] 陆晨飞, 高月霞, 黄河, 戴思兰. 植物类胡萝卜素代谢及调控研究进展. 园艺学报, 2022, 49: 2559-2578.
doi: 10.16420/j.issn.0513-353x.2021-0531
Lu C F, Gao Y X, Huang H, Dai S L. Carotenoid metabolism and regulation in plants. Acta Hortic Sin, 2022, 49: 2559-2578. (in Chinese with English abstract)
doi: 10.16420/j.issn.0513-353x.2021-0531
[31] Wisutiamonkul A, Ampomah-Dwamena C, Allan A C, Ketsa S. Carotenoid accumulation in durian (Durio zibethinus) fruit is affected by ethylene via modulation of carotenoid pathway gene expression. Plant Physiol Biochem, 2017, 115: 308-319.
doi: 10.1016/j.plaphy.2017.03.021
[32] Rahimi S, Kim Y J, Devi B S R, Khorolragchaa A, Sukweenadhi J, Yang D C. Isolation and characterization of Panax ginseng geranylgeranyl-diphosphate synthase genes responding to drought stress. Eur J Plant Pathol, 2015, 142: 747-758.
doi: 10.1007/s10658-015-0648-1
[33] Kuntz M, Romer S, Suire C, Hugueney P, Weil J H, Schantz R, Camara B. Identification of a cDNA for the plastid-located geranylgeranyl pyrophosphate synthase from Cap sicumannuum: correlative increase in enzyme activity and transcript level during fruit ripening. Plant J, 2002, 2: 25-34.
doi: 10.1111/tpj.1992.2.issue-1
[34] Oh S K, Jeong K, Dong H S, Yang J, Han K H. Cloning, characterization, and heterologous expression of a functional geranylgeranyl pyrophosphate synthase from sunflower (Helianthus annuus L.). J Plant Physiol, 2000, 157: 535-542.
[35] Ma X W, Zheng B, Ma Y L, Xu W T, Wu H X, Wang S B. Carotenoid accumulation and expression of carotenoid biosynthesis genes in mango flesh during fruit development and ripening. Sci Hortic, 2018, 237: 201-206.
doi: 10.1016/j.scienta.2018.04.009
[36] Liu L H, Shao Z Y, Zhang M, Wang Q M. Regulation of carotenoid metabolism in tomato. Mol Plant, 2015, 8: 28-39.
doi: 10.1016/j.molp.2014.11.006 pmid: 25578270
[37] 汤雨晴, 万水林, 闫承璞, 王雨亭, 胡钟东. 朱红橘果实成熟过程中类胡萝卜素的积累及相关基因的表达分析. 核农学报, 2022, 36: 567-577.
doi: 10.11869/j.issn.100-8551.2022.03.0567
Tang Y Q, Wan S L, Yan C P, Wang Y T, Hu Z D. Carotenoids accumalation and relative genes expression during the maturation of Zhuhong mandarin. J Nucl Agric Sci, 2022, 36: 567-577. (in Chinese with English abstract)
[38] 周徐子鑫, 杨威, 毛美琴, 薛彦斌, 马均. 金边红苞凤梨叶色突变体色素鉴定及类胡萝卜素合成限速基因筛选. 园艺学报, 2022, 49: 1081-109.
doi: 10.16420/j.issn.0513-353x.2021-0355
Zhou X Z X, Yang W, Mao M Q, Xue Y B, Ma J. Identification of pigment components and key genes in carotenoid pathway in mutants of chimeric Ananas comosus var. bracteatus. Acta Hortic Sin, 2022, 49: 1081-109. (in Chinese with English abstract)
[39] Hirschberg J. Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol, 2001, 4: 210-218.
doi: 10.1016/s1369-5266(00)00163-1 pmid: 11312131
[40] Yagiz A, Pranjali N, Namraj D, Cazzonelli C. Cis-carotene biosynthesis, evolution and regulation in plants: the emergence of novel signaling metabolites. Arch Biochem Biophys, 2018, 654: 172-184.
doi: S0003-9861(18)30171-1 pmid: 30030998
[41] Al-Babili S, Bouwmeester H J. Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol, 2015, 66: 161-186.
doi: 10.1146/annurev-arplant-043014-114759 pmid: 25621512
[42] Stange J. Apocarotenoids: a new carotenoid-derived pathway. Sub-cellular Biochem, 2016, 79: 239-272.
[43] 安奕霖, 尹克林. 独脚金内酯合成路径及抗逆性研究进展. 现代农业科技, 2019, (9): 120-122.
An Y L, Yin K L. Research progress of synthetic pathway and stress resistance of strigolactone. Mod Agric Sci Technol, 2019, (9): 120-122. (in Chinese)
[44] Leila R, Nejia Z, Alexis D, Valerie L, Ahmed M, Patrice T. Molecular characterization and evolutionary pattern of the 9-cis-epoxycarotenoid dioxygenase NCED1 gene in grapevine. Mol Breed, 2013, 32: 253-266.
doi: 10.1007/s11032-013-9866-4
[45] Rose I M, Vasanthakaalam H. Comparison of the nutrient composition of four sweet potato varieties cultivated in Rwanda. Am J Food Nutr, 2011, 1: 34-38.
doi: 10.5251/ajfn.2011.1.1.34.38
[46] Park S C, Kim S H, Park S, Lee H U, Lee J S, Park W S, Ahn M J, Kim Y H, Jeong J C, Lee H S, Kwak S S. Enhanced accumulation of carotenoids in sweetpotato plants overexpressing IbOr-Ins gene in purple-fleshed sweetpotato cultivar. Plant Physiol Biochem, 2015, 86: 82-90.
doi: 10.1016/j.plaphy.2014.11.017
[47] 万东璞, 于卓, 吴燕民, 丁梦琦, 李金博, 周美亮. 花青素代谢调控植物彩叶研究进展. 中国农业科技导报, 2020, 22(2): 30-38.
doi: 10.13304/j.nykjdb.2018.0233
Wan D P, Yu Z, Wu Y M, Ding M Q, Li J B, Zhou M L. Regulation of anthocyanin metabolism on colored leaves of plants. J Agric Sci Technol, 2020, 22(2): 30-38 (in Chinese with English abstract).
[48] 唐俊. 甘薯GGPPS基因的克隆分析及抗草甘膦半夏的获得. 西南大学硕士学位论文, 重庆, 2008.
Tang J. Molecular Characterization of Geranylgeranyl Diphosphate Synthase Gene from Ipomoea batatas and Obtaining of Anti-glyphosate Pinellia Ternate. MS Thesis of Southwest University, Chongqing, China, 2008. (in Chinese with English abstract)
[49] 王飞. 甘薯类胡萝卜素合成酶基因pds全长cDNA的克隆. 安徽理工大学学报(自然科学版), 2007, 27(1): 55-58.
Wang F. Clone of full-length cDNA of phytoene desaturase (gene pds) gene in sweet potato (Ipomoea batatas L.). J Anhui Univ Sci Technol (Nat Sci Edn)l, 2007, 27(1): 55-58. (in Chinese with English abstract)
[50] Yang Y, Shi D, Wang Y, Zhang L, Shi A. Transcript profiling for regulation of sweet potato skin color in Sushu 8 and its mutant Zhengshu 20. Plant Physiol Biochem, 2019, 148: 1-9.
doi: 10.1016/j.plaphy.2019.12.035
[51] Berman J, Sheng Y, Gómez L G, Veiga T, Ni X, Farré G, Capell T, Guitián J, Guitián P, Sandmann G, Christou P, Zhu C. Red anthocyanins and yellow carotenoids form the color of orange-flower gentian (Gentiana lutea L. var. aurantiaca). PLoS One, 2016, 11: e0162410.
doi: 10.1371/journal.pone.0162410
[52] Yang Y X, Wang J J, Ma Z H, Sun G S, Zhang C W. De novo sequencing and comparative transcriptome analysis of white petals and red labella in Phalaenopsis for discovery of genes related to flower color and floral differentation. Acta Soc Bot Polon, 2014, 83: 191-199.
doi: 10.5586/asbp.2014.023
[53] Ohmiya A, Kishimoto S, Aida R, Yoshioka S. Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiol, 2006, 142: 1193-1201.
pmid: 16980560
[54] Stanley L, Yuan Y W. Transcriptional regulation of carotenoid biosynthesis in plants: so many regulators, so little consensus. Front Plant Sci, 2019, 10: 1017.
doi: 10.3389/fpls.2019.01017 pmid: 31447877
[55] Sagawa J M, Stanley L E, LaFountain A M, Frank H A, Liu C, Yuan Y W. An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers. New Phytol, 2015, 209: 1049-1057.
doi: 10.1111/nph.2016.209.issue-3
[56] Liu G Y, Thornburg R W. Knockdown of MYB305 disrupts nectary starch metabolism and floral nectar production. Plant J, 2012, 72: 377-388.
[57] Rodriguez-Concepcion M, Lee K P, Johansson H, Toledo-Ortiz G, Steel G, Stewart K, Halliday K, Bou-Torren J. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. PLoS Genet, 2014, 10: e1004416.
doi: 10.1371/journal.pgen.1004416
[58] 王霞, 李恩广, 玄曼霖, 燕宝会, 王晶珊, 隋炯明. 基于转录组测序的紫色甘薯突变体中花青素合成相关基因的分析. 青岛农业大学学报(自然科学版), 2018, 35(1): 27-31.
Wang X, Li E G, Xuan M L, Yan B H, Wang J S, Sui J M. Gene analysis of anthocyanin biosynthesis in purple sweet potato mutant based otranscriptome sequencing. J Qingdao Agric Univ (Nat Sci Edn), 2018, 35(1): 27-31. (in Chinese with English abstract)
[1] YANG Chuang, WANG Ling, QUAN Cheng-Tao, YU Liang-Qian, DAI Cheng, GUO Liang, FU Ting-Dong, MA Chao-Zhi. Relative expression profiles of genes response to salt stress and constructions of gene co-expression networks in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(1): 237-250.
[2] HU Xin, LUO Zheng-Ying, LI Chun-Jia, WU Zhuan-Di, LI Xu-Juan, LIU Xin-Long. Comparative transcriptome analysis of elite ‘ROC’ sugarcane parents for exploring genes involved in Sporisorium scitamineum infection by using Illumina- and SMRT-based RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(9): 2412-2432.
[3] SU Yi-Jun, ZHAO Lu-Kuan, TANG Fen, DAI Xi-Bin, SUN Ya-Wei, ZHOU Zhi-Lin, LIU Ya-Ju, CAO Qing-He. Genetic diversity and population structure analysis of 378 introduced sweetpotato germplasm collections [J]. Acta Agronomica Sinica, 2023, 49(9): 2582-2593.
[4] JIA Rui-Xue, CHEN Yi-Hang, ZHANG Rong, TANG Chao-Chen, WANG Zhang-Ying. Simultaneous determination of 13 carotenoids in sweetpotato by Ultra- Performance Liquid Chromatography [J]. Acta Agronomica Sinica, 2023, 49(8): 2259-2274.
[5] WANG Yan-Nan, CHEN Jin-Jin, BIAN Qian-Qian, HU Lin-Lin, ZHANG Li, YIN Yu-Meng, QIAO Shou-Chen, CAO Guo-Zheng, KANG Zhi-He, ZHAO Guo-Rui, YANG Guo-Hong, YANG Yu-Feng. Integrated analysis of transcriptome and metabolome reveals the metabolic response pathways of sweetpotato under shade stress [J]. Acta Agronomica Sinica, 2023, 49(7): 1785-1798.
[6] CHEN Yi-Hang, TANG Chao-Chen, ZHANG Xiong-Jian, YAO Zhu-Fang, JIANG Bing-Zhi, WANG Zhang-Ying. Construction of core collection of sweetpotato based on phenotypic traits and SSR markers [J]. Acta Agronomica Sinica, 2023, 49(5): 1249-1261.
[7] LIU Ming, FAN Wen-Jing, ZHAO Peng, JIN Rong, ZHANG Qiang-Qiang, ZHU Xiao-Ya, WANG Jing, LI Qiang. Genotypes screening and comprehensive evaluation of sweetpotato tolerant to low potassium stress at seedling stage [J]. Acta Agronomica Sinica, 2023, 49(4): 926-937.
[8] WU Shi-Yu, CHEN Kuang-Ji, LYU Zun-Fu, XU Xi-Ming, PANG Lin-Jiang, LU Guo-Quan. Effects of nitrogen fertilizer application rate on starch contents and properties during storage root expansion in sweetpotato [J]. Acta Agronomica Sinica, 2023, 49(4): 1090-1101.
[9] WANG Zhen, ZHANG Xiao-Li, LIU Miao, YAO Meng-Nan, MENG Xiao-Jing, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Transcriptional differential expression analysis between BnMAPK1-overexpression and Zhongyou 821 rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 856-868.
[10] QIU Jie, WANG Tai, CAI Bo-Wei, DUAN Sheng-Xing, XU Lin-Shan, CHEN Xiao-Di, WANG Jing, GE Xian-Hong, LI Zai-Yun. Identification of chromosome deletion in synthesized Brassica auto-allohexaploids and its application in mapping genes of pigment synthesis [J]. Acta Agronomica Sinica, 2023, 49(11): 2902-2912.
[11] ZHU Ji-Jie, WANG Shi-Jie, ZHAO Hong-Xia, JIA Xiao-Yun, LI Miao, WANG Guo-Yin. Transcriptome analysis of different cotton varieties' leaves in response to chemical defoliant agent thidiazuron under field conditions [J]. Acta Agronomica Sinica, 2023, 49(10): 2705-2716.
[12] WANG Hui, WU Zhi-Yi, ZHANG Yu-E, YU De-Yue. Transcriptional expression profiling of soybean genes under sulfur-starved conditions by RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(1): 105-118.
[13] YAO Zhu-Fang, ZHANG Xiong-Jian, YANG Yi-Ling, HUANG Li-Fei, CHEN Xin-Liang, YAO Xiao-Jian, LUO Zhong-Xia, CHEN Jing-Yi, WANG Zhang-Ying, FANG Bo-Ping. Genetic diversity of phenotypic traits in 177 sweetpotato landrace [J]. Acta Agronomica Sinica, 2022, 48(9): 2228-2241.
[14] CHEN Lu, ZHOU Shu-Qian, LI Yong-Xin, CHEN Gang, LU Guo-Quan, YANG Hu-Qing. Identification and expression analysis of uncoupling protein gene family in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(7): 1683-1696.
[15] GUO Nan-Nan, LIU Tian-Ce, SHI Shuo, HU Xin-Ting, NIU Ya-Dan, LI Liang. Regulation of long non-coding RNA (LncRNA) in barley roots in response to Piriformospora indica colonization [J]. Acta Agronomica Sinica, 2022, 48(7): 1625-1634.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .