Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (12): 3227-3238.doi: 10.3724/SP.J.1006.2023.24285

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Function analysis of different Cas9 promoters on the efficiency of CRISPR/ Cas9 system in soybean

NIU Zhi-Yuan1,2, QIN Chao1, LIU Jun1, WANG Hai-Ze2,*(), LI Hong-Yu1,*()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
  • Received:2022-12-24 Accepted:2023-05-24 Online:2023-12-12 Published:2023-05-30
  • Contact: * E-mail: lihongyu@caas.cn; E-mail: haizewang@163.com
  • Supported by:
    Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(2060302-2-20);Soybean Grain Storage Technology Program(CAAS-ZDRW202003)

Abstract:

The CRISPR/Cas9 system has been widely used in plants and animals as an efficient gene editing system. Several Cas9 promoters, such as RPS5A and YAO, have been reported to improve the efficiency of gene editing in CRISPR/Cas9 system. In soybean, the influence of different Cas9 promoters on the efficiency of the CRISPR/Cas9 gene-editing system has not been elucidated. In this study, six efficient promoters with known functions (p35S, pGmRPS5Ab, pGmRPS5Ac, pAtRPS5A, pGmYAO, and pZmUbiquitin) and one endogenous soybean promoter with unknown function (pGmHE) were selected to construct the CRISPR/Cas9 knockout vectors. The editing efficiency of the Cas9 promoters on the endogenous soybean genes GmSPA1a and GmEID1 was tested by Agrobacterium tumefaciens mediated hair roots system, which indicated that soybean endogenous promoter pGmRPS5Ab had the highest editing efficiency. The editing efficiency of pAtRPS5A, p35S, and pZmUbiquitin were higher than that of pGmYAO and pGmRPS5Ac. Further analysis of the sequencing maps of target sites showed that the high peak maps accounted for 64.0% and 58.6% in the sequencing maps of pGmRPS5Ab and pAtRPS5A promoters, respectively, while in the sequencing maps of p35S-driven hair roots, the low peak accounted for a higher proportion (63.3%). These above results indicated that pGmRP5SAb and pAtRPS5A promoters not only had high editing efficiency, but also had better editing effect, and were more conducive to the isolation of homozygous mutants in the next generation. In conclusion, this study provide the reference for the construction of efficient soybean CRISPR/Cas9 vectors and help to improve the efficiency of soybean gene editing.

Key words: gene editing, CRISPR/Cas9, hair roots system, promoter, soybean

Fig. 1

Schematic diagram of the seven CRISPR/Cas9 vectors The green arrows, red boxes, and yellow boxes represent the seven promoters, the terminators, and the gRNA sequences, respectively."

Table 1

Primer sequences for real-time PCR"

引物名称
Primer name
引物序列
Primer sequence (5'-3')
引物名称
Primer name
引物序列
Primer sequence (5'-3')
Glyma19g29210-F GAAGGAGGAGGAGCATAAG Glyma20g27950-F TACAACATTCAGAAGGAGAG
Glyma19g29210-R TGTTCACCATGATGCTCTC Glyma20g27950-R GGTGAGTGTCTTAACGAAG
Glyma06g42071-F GAGTATGTGCATATTCGTGTA Glyma20g24280-F GAAGAAGATGATAGCGACTC
Glyma06g42071-R GCAACAGAACTCTTTCTTGAC Glyma20g24280-R ACTTGTTGAGAGGGATGAG
Glyma19g39070-F ACAAGTGACCCAGGTTAGAGT Glyma09g24070-F CTGAAAGAGATCCAGAAGGTTCC
Glyma19g39070-R AATCTTCTTGCTTCCCTTTC Glyma09g24070-R GAGCCTGTGCTTGGTGAAG
Glyma10g39780-F ATCTTCGTCAAGACCCTTAC Glyma08g11070-F TTAGCGAATCTCTACCAGGA
Glyma10g39780-R TTCGCCTTCACATTGTCAA Glyma08g11070-R TTGGCAACGATGTTGGAAG
Glyma08g23830-F CGAATCTGGTCAGGAATTG Glyma15g17920-F TACATCAAGAAGGCGATTCA
Glyma08g23830-R TTGGAGAGAGCAAAATGGA Glyma15g17920-R CAACGAGGTAGGAGAAGAT
Glyma08g46860-F GAAAGAACTTCTGAATGGG GmActin-qF CGGTGGTTCTATCTTGGCATC
Glyma08g46860-R TACTTCATCTTCTGCCTGA GmActin-qR GTCTTTCGCTTCAATAACCCTA

Table 2

Promoter amplification primers sequences for CRISPR/Cas9 vectors"

引物名称
Primer name
引物序列
Primer sequence (5'−3')
产物长度
Product length (bp)
GmRPS5Ac-F tcggcacacgtgagatctATTTAGTTGGGTTGCATACTCCT 2767
GmRPS5Ac-R GAGCATGGTGGCAGATCTCATCATCGTCATTTTAGTTTCTT
ZmUbi1-F tcggcacacgtgagatctTGTGCGGAGGCGTGAGCCCGTTTA 2048
ZmUbi1-R GAGCATGGTGGCAGATCTAACAGGGTGACTATCAACAAAA
35S-F tcggcacacgtgagatctTACTCCAAAAATGTCAAAGATAC 727
35S-R GAGCATGGTGGCAGATCTCTCTCCAAATGAAATGAACTTCC
GmRPS5Ab-F tcggcacacgtgagatctTCATACACATGACCGATACAAAT 2582
GmRPS5Ab-R GAGCATGGTGGCAGATCTCGGCTGCACAAGCAATTGAATAG
GmHE-F tcggcacacgtgagatctCCGCATTCCACGCTACCCTAATT 2590
GmHE-R GAGCATGGTGGCAGATCTTATAAAATAAAAACATCTTTTTT
AtRPS5A-F tcggcacacgtgagatctGATCGATCCCTCAACTTTTGATT 1664
AtRPS5A-R GAGCATGGTGGCAGATCTCGGCTGTGGTGAGAGAAACAGA
GmYAO-F tcggcacacgtgagatctAACTTTTAATTACTCAAACTTAT 2522
GmYAO-R GAGCATGGTGGCAGATCTGATTCAGATTCAAACGTTTGCG

Table 3

Primer sequences for positive hair root and target sites"

引物用途
Primer purpose
引物名称
Primer name
引物序列
Primer sequence (5-3')
sgRNA构建引物 U6-Xba I-F GGAAGCTTAGGCCTTCTAGAAAAATAAATGGTAAAATGTC
Primers for sgRNA construction U6-R CAATCCATGTGGTGGCACAT
sgRNA-Xba I-R GCTCGGCAACGCGTTCTAGAAAAAAAAGCACCGACTCGGT
sgRNA-SPA1a-F AATGTGCCACCACATGGATTGTGTTGAAGAGTTGCCTGTT GTTTTAGAGCTAGAAATAGCAA
sgRNA-EID1-F CTAGAGTCGAAGTAGTGATTGCTAAGCGAGCCCAGTGGCG GTTTTAGAGCTAGAAATAGCAA
验证编辑载体的引物序列 Cas9-F TCTGGACATTGGGACGAA
Primer for verifying the editing vectors Cas9-R ACGCGGAGAATATCACTC
U6-F ACATTTAATACGCGATAGAAAAC
U6-R TGCAAGGCGATTAAGTTGGGTAA
突变检测PCR引物 target-SPA1a-F ATTGAAGGGACTTTTGTGA
PCR primers for mutation detection target-SPA1a-R TCTCATCCTCTTGGCTGTT
target-EID1-F AAGAACCTGTTTTCGGAACTAA
target-EID1-R ACATCCACGCCCGCTCTTACGC

Fig. 2

Relative expression level of 11 genes in root, stem, trifoliolate leaf, unifoliolate leaf, and shoot apical in heat map Soybean GmActin-1 gene was used as the internal reference, and the relative expression levels of each genes were calculated using 2-ΔΔCt method. The relative expression in heat map was made by GraphPad Prism 7 software, and the relative expression level was represented by the color scale from blue (high) to white (low)."

Fig. 3

Editing efficiency of different promoters on GmSPA1a gene by hair roots transformation. A: U6 and Cas9 sequences were detected by PCR in hair roots using GmRPS5Ab promoter. M: molecular weight marker; blank control: pure water; Negative control: TL1 genomic DNA; positive control: plasmid with Cas9 and U6 sequences. The positive root numbers are marked in red, the U6 sequence is 950 bp and that of Cas9 sequence is 864 bp. B: the number of the total roots, positive roots, and edited roots. The three column charts in the figure are the results of three repetitions, among which the blue column is the number of detected roots, the red column is the number of PCR positive roots, and the green column is the number of edited roots at the GmSPA1a site (the specific number of sampled roots in Table 4)."

Fig. S1

Electrophoresis map of U6 and Cas9 sequence by PCR detection Using CAMV35S, GmHE, ZmUbi, GmRPS5Ac, AtRPS5A, GmYAO promoter, U6 and Cas9 sequences were detected by PCR in hair roots. M: molecular weight marker; Blank control: pure water; Negative control: TL1 genomic DNA; Positive control: plasmid with Cas9 and U6 sequences. The positive root numbers were marked with red, the U6 sequence was 950 bp and that of Cas9 sequence was 864 bp."

Table 4

Number of total hair roots, positive hair roots, and editing efficiency"

载体名称
Vector name
第1次重复
Repeat for the first time
第2次重复
Repeat for the second time
第3次重复
Repeat for the third time
检测
根数
NTHR
阳性
数量
NPHR
编辑
数量
NPHR
编辑
效率
EE (%)
检测
根数
NTHR
阳性
数量
NPHR
编辑
数量
NPHR
编辑
效率
EE (%)
检测
根数
NTHR
阳性
数量
NPHR
编辑
数量
NPHR
编辑
效率
EE (%)
GmHE-pro:Cas9 42 28 5 18 42 24 5 21 42 28 7 25
GmYAO-pro:Cas9 42 32 10 31 42 22 7 32 42 26 7 27
GmRP5SAb-pro:Cas9 90 58 40 69 90 43 24 56 90 46 28 61
AtRPS5A-pro:Cas9 90 44 28 64 90 38 18 47 90 50 27 54
35S-pro:Cas9 90 52 30 58 42 22 10 46 42 28 12 43
GmRPS5Ac-pro:Cas9 90 74 23 37 90 46 14 30 90 44 16 36
ZmUbi1-pro:Cas9 90 56 26 46 90 56 33 59 90 56 31 55

Fig. 4

Editing efficiency using different Cas9 promoters A: the editing efficiency of seven promoters on GmSPA1a gene. B: the editing efficiency of GmEID1 gene by three promoters. *: P<0.05; **: P < 0.01; ns: not significant difference."

Table 5

Number of total hair roots, positive hair roots, and editing efficiency"

载体名称
Vector name
第1次重复
Repeat the first time
第2次重复
Repeat the second time
第3次重复
Repeat the third time
检测
根数
NTHR
阳性
数量
NPHR
编辑
数量
NPHR
编辑
效率
EE (%)
检测
根数
NTHR
阳性
数量
NPHR
编辑
数量
NPHR
编辑
效率
EE (%)
检测
根数
NTHR
阳性
数量
NPHR
编辑
数量
NPHR
编辑
效率
EE (%)
GmRP5SAb-pro:Cas9 42 18 8 44 42 24 15 63 42 30 16 53
AtRPS5A-pro:Cas9 42 20 8 40 42 20 11 55 42 29 14 48
35S-pro:Cas9 42 22 5 23 42 30 9 30 42 27 7 26

Fig. 5

Sequencing map of GmSPA1a editing sites A: the example of high peak map; B: the example of low peak map; C: the statistical analysis of the high peak maps and low peak maps ratio of 7 promoters at GmSPA1a edited site. Black column represents the high peak maps, and gray represents the low peak maps in sequenced maps."

Fig. S2

The high peak maps and low peak maps ratio of 7 promoters in GmSPA1a editing sites sequencing maps during the first, second and third root transformation Black column represents the high peak maps, and gray represents the low peak maps in sequenced maps."

[1] Manghwar H, Lindsey K, Zhang X, Jin S. CRISPR/Cas system: recent advances and future prospects for genome editing. Trends Plant Sci, 2019, 24: 1102-1125.
doi: S1360-1385(19)30243-2 pmid: 31727474
[2] Christian M, Cermak T, Doyle E L, Schmidt C, Zhang F, Hummel A, Bogdanove A J, Voytas D F. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 2010, 186: 757-761.
doi: 10.1534/genetics.110.120717 pmid: 20660643
[3] Wright D A, Townsend J A, Winfrey R J Jr, Irwin P A, Rajagopal J, Lonosky P M, Hall B D, Jondle M D, Voytas D F. High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J, 2005, 44: 693-705.
doi: 10.1111/j.1365-313X.2005.02551.x pmid: 16262717
[4] Nekrasov V, Staskawicz B, Weigel D, Jones J D, Kamoun S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol, 2013, 31: 691-693.
doi: 10.1038/nbt.2655
[5] Li J F, Norville J E, Aach J, McCormack M, Zhang D, Bush J, Church G M, Sheen J. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol, 2013, 31: 688-691.
doi: 10.1038/nbt.2654
[6] Sorek R, Lawrence C M, Wiedenheft B. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu Rev Biochem, 2013, 82: 237-266.
doi: 10.1146/annurev-biochem-072911-172315 pmid: 23495939
[7] Garneau J E, Dupuis M È, Villion M, Romero D A, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán A H, Moineau S. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 2010, 468: 67-71.
doi: 10.1038/nature09523
[8] Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337: 816-821.
doi: 10.1126/science.1225829 pmid: 22745249
[9] Mohanraju P, Makarova K S, Zetsche B, Zhang F, Koonin E V, van der Oostn J. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science, 2016, 353: aad5147.
doi: 10.1126/science.aad5147
[10] Wright A V, Nuñez J K, Doudna J A. Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell, 2016, 164: 29-44.
doi: 10.1016/j.cell.2015.12.035
[11] Komor A C, Badran A H, Liu D R. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell, 2017, 168: 20-36.
doi: S0092-8674(16)31465-9 pmid: 27866654
[12] Bao A, Burritt D J, Chen H, Zhou X, Cao D, Tran L P. The CRISPR/Cas9 system and its applications in crop genome editing. Crit Rev Biotechnol, 2019, 39: 321-336.
doi: 10.1080/07388551.2018.1554621 pmid: 30646772
[13] Chen K, Wang Y, Zhang R, Zhang H, Gao C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol, 2019, 70: 667-697.
doi: 10.1146/annurev-arplant-050718-100049 pmid: 30835493
[14] Yue J J, Hong C Y, Wei P C, Tsai Y C, Lin C S. How to start your monocot CRISPR/Cas project: plasmid design, efficiency detection, and offspring analysis. Rice, 2020, 13: 9.
doi: 10.1186/s12284-019-0354-2
[15] Zheng X, Deng W, Luo K, Duan H, Chen Y, McAvoy R, Song S, Pei Y, Li Y. The cauliflower mosaic virus (CaMV) 35S promoter sequence alters the level and patterns of activity of adjacent tissue- and organ-specific gene promoters. Plant Cell Rep, 2007, 26: 1195-1203.
pmid: 17340093
[16] Odell J T, Nagy F, Chua N H. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature, 1985, 313: 810-812.
doi: 10.1038/313810a0
[17] Bevan M. Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res, 1984, 12: 8711-8721.
doi: 10.1093/nar/12.22.8711 pmid: 6095209
[18] Cornejo M J, Luth D, Blankenship K M, Anderson O D, Blechl A E. Activity of a maize ubiquitin promoter in transgenic rice. Plant Mol Biol, 1993, 23: 567-581.
doi: 10.1007/BF00019304 pmid: 8219091
[19] Christensen A H, Sharrock R A, Quail P H. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol, 1992, 18: 675-689.
doi: 10.1007/BF00020010 pmid: 1313711
[20] Ma X L, Zhang Q Y, Zhu Q L, Liu W, Chen Y, Qiu R, Wang B, Yang Z F, Li H Y, Lin Y, Xie Y Y, Shen R X, Chen S F, Wang Z, Chen Y L, Guo J X, Chen L T, Zhao X C, Dong Z C, Liu Y G. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant, 2015, 8: 1274-1284.
doi: 10.1016/j.molp.2015.04.007 pmid: 25917172
[21] Feng Z Y, Zhang B T, Ding W, Liu X D, Yang D L, Wei P L, Cao F Q, Zhu S H, Zhang F, Mao Y F, Zhu J K. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res, 2013, 23: 1229-1232.
doi: 10.1038/cr.2013.114 pmid: 23958582
[22] Yan L H, Wei S W, Wu Y R, Hu R L, Li H J, Yang W C, Xie Q. High-efficiency genome editing in Arabidopsis using YAO promoter-driven CRISPR/Cas9 system. Mol Plant, 2015, 8: 1820-1823.
doi: 10.1016/j.molp.2015.10.004
[23] Li H J, Liu N Y, Shi D Q, Liu J, Yang W C. YAO is a nucleolar WD40-repeat protein critical for embryogenesis and gametogenesis in Arabidopsis. BMC Plant Biol, 2010, 10: 169.
doi: 10.1186/1471-2229-10-169
[24] Choi M, Yun J Y, Kim J H, Kim J S, Kim S T. The efficacy of CRISPR-mediated cytosine base editing with the RPS5a promoter in Arabidopsis thaliana. Sci Rep, 2021, 11: 8087.
doi: 10.1038/s41598-021-87669-y
[25] Weijers D, Franke-van Dijk M, Vencken R J, Quint A, Hooykaas P, Offringa R. An Arabidopsis minute-like phenotype caused by a semi-dominant mutation in a RIBOSOMAL PROTEIN S5gene. Development, 2001, 128: 4289-4299.
doi: 10.1242/dev.128.21.4289 pmid: 11684664
[26] Cai Y, Chen L, Liu X, Sun S, Wu C, Jiang B, Han T, Hou W. CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS One, 2015, 10: e0136064.
doi: 10.1371/journal.pone.0136064
[27] Cai Y, Chen L, Sun S, Wu C, Yao W, Jiang B, Han T, Hou W. CRISPR/Cas9-mediated deletion of large genomic fragments in soybean. Int J Mol Sci, 2018, 19: 3835.
doi: 10.3390/ijms19123835
[28] Cai Y, Chen L, Liu X, Guo C, Sun S, Wu C, Jiang B, Han T, Hou W. CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotechnol J, 2018, 16: 176-185.
doi: 10.1111/pbi.12758 pmid: 28509421
[29] Li C, Li Y H, Li Y, Lu H, Hong H, Tian Y, Li H, Zhao T, Zhou X, Liu J, Zhou X, Jackson S A, Liu B, Qiu L J. A domestication-associated gene GmPRR3b regulates the circadian clock and flowering time in soybean. Mol Plant, 2020, 13: 745-759.
doi: S1674-2052(20)30030-7 pmid: 32017998
[30] Carrijo J, Illa-Berenguer E, LaFayette P, Torres N, Aragão F J L, Parrott W, Vianna G R. Two efficient CRISPR/Cas9 systems for gene editing in soybean. Transgenic Res, 2021, 30: 239-249.
doi: 10.1007/s11248-021-00246-x pmid: 33797713
[31] Wang L, Cao C, Ma Q, Zeng Q, Wang H, Cheng Z, Zhu G, Qi J, Ma H, Nian H, Wang Y. RNA-seq analyses of multiple meristems of soybean: novel and alternative transcripts, evolutionary and functional implications. BMC Plant Biol, 2014, 14: 169.
doi: 10.1186/1471-2229-14-169 pmid: 24939556
[32] 秦超. GmPH13GmEID1基因改良大豆纬度适应性的机制研究. 中国农业科学院博士学位论文, 北京, 2022.
Qin C. Mechanism Study of the GmPH13 and GmEID1 Genes in Improving the Latitudinal Adaptability of Soybean. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2022. (in Chinese with English abstract)
[33] 秦超. 大豆中GmSPAs基因的功能分析. 中国农业科学院硕士学位论文, 北京, 2018.
Qin C. Function Analysis of GmSPAs in Soybean. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2018. (in Chinese with English abstract)
[34] Oh Y, Kim S G. RPS5A Promoter-driven Cas9 produces heritable virus-induced genome editing in Icotiana attenuata. Mol Cells, 2021, 44: 911-919.
doi: 10.14348/molcells.2021.0237
[35] Tsutsui H, Higashiyama T. pKAMA-ITACHI vectors for highly efficient CRISPR/Cas9-mediated gene knockout in Arabidopsis thaliana. Plant Cell Physiol, 2017, 58: 46-56.
doi: 10.1093/pcp/pcw191 pmid: 27856772
[36] Ye G N, Stone D, Pang S Z, Creely W, Gonzalez K, Hinchee M. Arabidopsis ovule is the target for Agrobacterium in planta vacuum infiltration transformation. Plant J, 1999, 19: 249-257.
doi: 10.1046/j.1365-313x.1999.00520.x pmid: 10476072
[37] Maruyama D, Hamamura Y, Takeuchi H, Susaki D, Nishimaki M, Kurihara D, Kasahara R D, Higashiyama T. Independent control by each female gamete prevents the attraction of multiple pollen tubes. Dev Cell, 2013, 25: 317-323.
doi: 10.1016/j.devcel.2013.03.013 pmid: 23673333
[38] Wang Z P, Xing H L, Dong L, Zhang H Y, Han C Y, Wang X C, Chen Q J. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol, 2015, 16: 144.
doi: 10.1186/s13059-015-0715-0
[1] SHANG-GUAN Xiao-Xia, YANG Qin-Li, LI Huan-Li. Analysis of mutants developed by CRISPR/Cas9-based GhbHLH71 gene editing in cotton [J]. Acta Agronomica Sinica, 2024, 50(1): 138-148.
[2] YANG Li-Da, REN Jun-Bo, PENG Xin-Yue, YANG Xue-Li, LUO Kai, CHEN Ping, YUAN Xiao-Ting, PU Tian, YONG Tai-Wen, YANG Wen-Yu. Crop growth characteristics and its effects on yield formation through nitrogen application and interspecific distance in soybean/maize strip relay intercropping [J]. Acta Agronomica Sinica, 2024, 50(1): 251-264.
[3] SHI Yu-Xin, LIU Xin-Yue, SUN Jian-Qiang, LI Xiao-Fei, GUO Xiao-Yang, ZHOU Ya, QIU Li-Juan. Knockout of GmBADH1 gene using CRISPR Cas9 technique to reduce salt tolerance in soybean [J]. Acta Agronomica Sinica, 2024, 50(1): 100-109.
[4] YUAN Xiao-Ting, WANG Tian, LUO Kai, LIU Shan-Shan, PENG Xin-Yue, YANG Li-Da, PU Tian, WANG Xiao-Chun, YANG Wen-Yu, YONG Tai-Wen. Effects of bandwidth and plant spacing on biomass accumulation and allocation and yield formation in strip intercropping soybean [J]. Acta Agronomica Sinica, 2024, 50(1): 161-171.
[5] HU Yan-Juan, XUE Dan, GENG Di, ZHU Mo, WANG Tian-Qiong, WANG Xiao-Xue. Mutation effects of OsCDF1 gene and its genomic variations in rice [J]. Acta Agronomica Sinica, 2023, 49(9): 2362-2372.
[6] ZUO Chun-Yang, LI Ya-Wei, LI Yan-Long, JIN Shuang-Xia, ZHU Long-Fu, ZHANG Xian-Long, MIN Ling. Relative expression patterns of laccase gene family members in upland Gossypium hirsutum L. [J]. Acta Agronomica Sinica, 2023, 49(9): 2344-2361.
[7] WEI Xin-Yu, ZENG Yue-Hui, YANG Wang-Xing, XIAO Chang-Chun, HOU Xin-Po, HUANG Jian-Hong, ZOU Wen-Guang, XU Xu-Ming. Development of high-quality fragrant indica CMS line by editing Badh2 gene using CRISPR-Cas9 technology in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(8): 2144-2159.
[8] LI Gang, ZHOU Yan-Chen, XIONG Ya-Jun, CHEN Yi-Jie, GUO Qing-Yuan, GAO Jie, SONG Jian, WANG Jun, LI Ying-Hui, QIU Li-Juan. Haplotype analysis of soybean leaf type regulator gene Ln and its homologous genes [J]. Acta Agronomica Sinica, 2023, 49(8): 2051-2063.
[9] LIU Ting-Xuan, GU Yong-Zhe, ZHANG Zhi-Hao, WANG Jun, SUN Jun-Ming, QIU Li-Juan. Mapping soybean protein QTLs based on high-density genetic map [J]. Acta Agronomica Sinica, 2023, 49(6): 1532-1541.
[10] LI Hui, LU Yi-Ping, WANG Xiao-Kai, WANG Lu-Yao, QIU Ting-Ting, ZHANG Xue-Ting, HUANG Hai-Yan, CUI Xiao-Yu. GmCIPK10, a CBL-interacting protein kinase promotes salt tolerance in soybean [J]. Acta Agronomica Sinica, 2023, 49(5): 1272-1281.
[11] LEI Jian-Feng, LI Yue, DAI Pei-Hong, ZHAO Yi, YOU Yang-Zi, JIA Jian-Guo, ZHAO Shuai, QU Yan-Ying, LIU Xiao-Dong. Study on VIGE system mediated by different plant viruses in cotton [J]. Acta Agronomica Sinica, 2023, 49(4): 978-987.
[12] WU Zong-Sheng, XU Cai-Long, LI Rui-Dong, XU Yi-Fan, SUN Shi, HAN Tian-Fu, SONG Wen-Wen, WU Cun-Xiang. Effects of wheat straw mulching on physical properties of topsoil and yield formation in soybean [J]. Acta Agronomica Sinica, 2023, 49(4): 1052-1064.
[13] SHU Ze-Bing, LUO Wan-Yu, PU Tian, CHEN Guo-Peng, LIANG Bing, YANG Wen-Yu, WANG Xiao-Chun. Optimization of field configuration technology of strip intercropping of fresh corn and fresh soybean based on high yield and high efficiency [J]. Acta Agronomica Sinica, 2023, 49(4): 1140-1150.
[14] LIU Shan-Shan, PANG Ting, YUAN Xiao-Ting, LUO Kai, CHEN Ping, FU Zhi-Dan, WANG Xiao-Chun, YANG Feng, YONG Tai-Wen, YANG Wen-Yu. Effects of row spacing on root nodule growth and nitrogen fixation potential of different nodulation characteristics soybeans in intercropping [J]. Acta Agronomica Sinica, 2023, 49(3): 833-844.
[15] YANG Shuo, WU Yang-Chun, LIU Xin-Lei, TANG Xiao-Fei, XUE Yong-Guo, CAO Dan, WANG Wan, LIU Ting-Xuan, QI Hang, LUAN Xiao-Yan, QIU Li-Juan. Fine mapping of qPRO-20-1 related to high protein content in soybean [J]. Acta Agronomica Sinica, 2023, 49(2): 310-320.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .