Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (12): 3250-3260.doi: 10.3724/SP.J.1006.2023.34002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Transcriptomic profile of key stages of sex differentiation in cassava flowers and discovery of candidate genes related to female flower differentiation

CHEN Hui-Xian(), LIANG Zhen-Hua, HUANG Zhen-Ling, WEI Wan-Ling, ZHANG Xiu-Fen, YANG Hai-Xia, LI Heng-Rui*(), HE Wen*(), LI Tian-Yuan, LAN Xiu, RUAN Li-Xia, CAI Zhao-Qin, NONG Jun-Xin   

  1. Guangxi Institute of Sub-tropical Agricultural Sciences, Longzhou 532415, Guangxi, China
  • Received:2023-01-05 Accepted:2023-05-24 Online:2023-12-12 Published:2023-06-06
  • Contact: * E-mail: lihengrui88@163.com; E-mail: 675559090@qq.com
  • Supported by:
    National Key Research and Development Program of China(2020YFD1000603-10);Guangxi Youth Science Foundation Project(2023GXNSFBA026150);Guangxi Academy of Agricultural Sciences Development Fund Project(Guinongke 2022JM96);Science and Technology Plan Project of Special Project for Basic Scientific Research of Chongzuo(Chongkegong 2021ZC18);Guangxi Academy of Agricultural Sciences(Guinongke 2023YM44)

Abstract:

To solve the breeding problem of the serious shortage of female cassava flowers, cassava variety ‘Xinxianxuan 048’ was used as the experimental material. Transcriptional sequencing technology was used to analyze the biological information of differentially expressed genes in female and male flowers during the critical period of cassava flower sex differentiation, explore the functions of differentially expressed genes and possible regulatory pathways involved, excavate candidate genes related to female differentiation, and verify the sequencing results by qRT-PCR method. The results showed that: There were 545 differentially expressed genes between male and female cassava flowers at the critical stage of gender differentiation. Among them, 48.63% of the differential genes were enriched in GO pathway of floral organ morphogenesis and development, and the genes enriched in plant phenylpropanol biosynthesis and plant hormone signal transduction were the most. AGL11, YABBY4, CRC, SUP, and other flower sex differentiation genes were significantly up-regulated in female flowers. Four genes of the cytokinin signaling pathway, including HK4, HPt4, ARR8, and ARR12, were significantly up-regulated in female flowers, while IAA14, GH3, SAUR22, and SAURR20, the early auxin response genes, were significantly down-regulated in female flowers. Therefore, the sexual differentiation of cassava flowers mainly involved the biological pathways of pollen, gametophyte, floral organ morphogenesis and development, and two metabolic pathways of plant phenylpropanoid biosynthesis and plant hormone signal transduction. Cytokinin and auxin might be the main hormones in cassava female flower differentiation. AGL11, YABBY4, CRC, SUP, HK4, HPt4, ARR8, and ARR12 may be positive regulators of cassava female flower differentiation.

Key words: cassava, key stages of sex differentiation, transcriptome, female flowers, gene

Table 1

Primer sequences of real-time fluorescence quantitative PCR"

基因名称
Gene name
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
基因登录号
Gene ID
AGL11 TATGAATTGTCAGTCCTTTGTG TCTAACAGGCATCTAATGGGT LOC110616214
CRC CACAGTTCTTGCGGTTGG TTGGCCTTGAAAAGGAGGT LOC110615357
YABBY4 CAGATTTGCTACGTCCAATGTG AATGGCACGGTTCACTGGG LOC110627391
MADS9 CACCTGAAAGGGGAGGAT TGACGAACACTGGCAAGG LOC110607164
TM6 TTAGCCCTACCATAACGA ATAATGCGTGCTCCACAG LOC110630551
ARR12 TGCCGAGGTTGAGAAATC TGCTCCTGCCGTTTGATC LOC110631158
HPt4 GCAGGGCAGGAAATGGAG CTTGGGGCGACATGCAGT LOC110627048
HK4 GCGGAGTAGCCTATGCAC TTCCCGGTAGCTCTAGCC LOC110603154
TGA9 CTTCACCAACTTCGCCGGATAC AGGACGGGATGCCCAGAGG LOC110626841
TGA10 GCTTATGACTTGGGAGAA CATGGACGGCTGATTTGA LOC110620640

Table 2

Statistical table of base information"

样本
Sample
干净序列读数(个)
Read number
碱基数
Base number (G)
Q20 (%) Q30 (%)
A1-1 50,981,844 7.25 95.680 87.990
A1-2 35,421,366 4.83 97.975 93.795
A1-3 39,490,380 5.40 97.780 93.375
A2-1 33,138,892 4.48 97.765 93.350
A2-2 31,980,834 4.38 96.455 89.915
A2-3 42,204,558 5.79 98.130 94.145

Fig. 1

Statistical graph of differential expressed genes (female flower)"

Fig. 2

Venn diagram of differential expressed genes"

Fig. 3

Volcano plot of male flowers vs female Red areas represent up-regulated genes in male flowers, and blue areas represent down-regulated genes in male flowers."

Fig. 4

The first 30 GO items enriched significantly"

Fig. 5

GO items of differential expressed genes significantly"

Fig. 6

The first 20 KEEG pathways enriched significantly"

Fig. 7

Heat map of candidate genes related to flower sex differentiation The color represents the FPKM value of the response. The larger the value, the redder the color. From left to right, the samples are female flower-1 (A1-1), female flower-2 (A1-2), female flower-3 (A1-3), male flower-1 (A2-1), male flower-2 (A2-2), and male flower-3 (A2-3)."

Fig. 8

Model of gene expression patterns of cytokinin signaling pathway The color represents the FPKM value of the response, and the sample labels from left to right refer to those given in Fig. 7."

Fig. 9

Relative expression patterns of auxin responsive genes The color represents the FPKM value of the response, and the sample labels from left to right refer to those given in Fig. 7."

Fig. 10

Relative expression level of differentially expressed genes verified by qRT-PCR Different lowercase letters on the histogram indicate that there are significantly different in the relative expression levels of 10 candidate genes between female and male flowers at P < 0.05."

[1] Zhang J, Boualem A, Bendahmane A, Ming R. Genomics of sex determination. Curr Opin Plant Biol, 2014, 18: 110-116.
doi: 10.1016/j.pbi.2014.02.012 pmid: 24682067
[2] Adnane B, Christelle T, Céline C, Afef L, Halima M, Marie A S, Rina F Z, Irina K, Catherine D, Rafael P T, Abdelhafid B. A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges. Science, 2015, 350: 688-691.
doi: 10.1126/science.aac8370 pmid: 26542573
[3] Boualem A, Troadec C, Camps C, Lemhemdi A, Morin H, Sari M, Fraenkel Z R, Kovalski I, Dogimont C, Perl T R, Bendahmane A. A Ho H, Low J Z, Gudimella R, Tammi M T, Harikrishna J A. Expression patterns of inflorescence and sex-specific transcripts in male and female inflorescences of African oil palm (Elaeis guineensis). Ann Appl Biol, 2016, 168: 274-289.
doi: 10.1111/aab.2016.168.issue-2
[4] Akagi T, Henry I M, Tao R, Comai L. A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons. Science, 2014, 346: 646-650.
doi: 10.1126/science.1257225
[5] Theissen G. Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol, 2001, 4: 75-85.
doi: 10.1016/s1369-5266(00)00139-4 pmid: 11163172
[6] 王宗宜. 木薯塊根生长和开花结实习性的初步观察. 广西农业科学, 1964, (6): 18-20.
Wang Z Y. Preliminary observation on growth, flowering and fruiting habit of cassava root. Guangxi Agric Sci, 1964, (6): 18-20. (in Chinese with English abstract)
[7] Deborah O, Olayemisi E, Peter T H, Peter K, Tim L S. Flower development in cassava is feminized by cytokinin, while proliferation is stimulated by anti-ethylene and pruning: transcriptome responses. Front Plant Sci, 2021, 28: 543-548.
[8] Ceballos H, Iglesias C A, Perez J C, Dixon A G. Cassava breeding: opportunities and challenges. Plant Mol Biol, 2004, 56: 503-516.
doi: 10.1007/s11103-004-5010-5 pmid: 15630615
[9] Ceballos H, Perez J C, Joaqui-barandica O, Lenis J I, Morante N, Calle F, Pino L, Hershey C H. Cassava breeding I: the value of breeding value. Front Plant Sci, 2016, 29: 1227-1229.
[10] Hyde P T, Guan X, Abreu V, Settert L. The anti-ethylene growth regulator silver thiosulfate (STS) increases flower production and longevity in cassava (Manihot esculenta Crantz). Plant Growth Regul, 2020, 90, 441-453.
[11] 韦本辉, 甘秀芹, 陆柳英, 何虎翼, 唐秀桦, 胡泊, 吴延勇, 宁秀呈, 韦广泼. 广西木薯诱导开花结实及发芽试验研究初报. 广西农业科学, 2009, 40: 982-986.
Wei B H, Gan X Q, Lu L Y, He H Y, Tang X H, Hu P, Wu Y Y, Ning X C, Wei G P. Experiment on induction of seed germination, flowering and seed setting in cassava. Guangxi Agric Sci, 2009, 90: 441-453. (in Chinese with English abstract)
[12] 韦丽君, 俞奔驰, 卢赛清, 雷开文, 郑华, 文峰, 付海天, 罗燕春. 一种促进木薯雄花转性的调节剂及其制备方法. 中国专利: CN106614593A, 2017.
Wei L J, Yu B C, Lu S Q, Lei K W, Zheng H, Wen F, Fu H T, Luo Y C. The Regulator and preparation method of promoting cassava male flower rotation. Chinese patent: CN106614593A, 2017. (in Chinese)
[13] 陆柳英, 曹升, 严华兵, 谢向誉, 曾文丹, 尚小红, 肖亮. 一种诱导木薯开花的方法. 中国专利: CN108464144A, 2018.
Lu L Y, Cao S, Yan H B, Xie X Y, Zeng W D, Shang X H, Xiao L. The method to induce cassava flowering. Chinese patent: CN106614593A, 2018. (in Chinese)
[14] Froschle M, Horn H, Spring O. Effects of the cytokinins 6-benzyladenine and forchlorfenuron on fruit-, seed-and yield parameters according to developmental stages of flowers of the biofuel plant Jatropha curcas L. (Euphorbiaceae). Plant Growth Regul, 2017, 81: 293-303.
doi: 10.1007/s10725-016-0206-7
[15] Luo Y, Pan B Z, Li L, Yang C X, Xu Z F. Developmental basis for flower sex determination and effects of cytokinin on sex determination in Plukenetia volubilis (Euphorbiaceae). Plant Reprod, 2020, 33: 21-34.
doi: 10.1007/s00497-019-00382-9 pmid: 31907610
[16] 丛汉卿, 龙娅丽, 王荣香, 孙化鹏, 乔飞. 木薯中开花相关miRNA对phasiRNA的调控. 分子植物育种, 2019, 17: 1438-1445.
Cong H Q, Long Y L, Wang R X, Sun H P, Qiao F. Regulation of phasiRNA by flowering related miRNA in Manihot esculenta Crantz. Mol Plant Breed, 2019, 17: 1438-1445. (in Chinese with English abstract)
[17] 韦丽君, 俞奔驰, 宋恩亮, 郑华, 卢赛清, 付海天. 基于转录组测序的木薯性别决定相关基因挖掘. 南方农业学报, 2020, 51: 1785-1796.
Wei L J, Yu B C, Song E L, Zheng H, Lu S Q, Fu H T. Gene mining for sex determination in cassava (Manihot esculenta Crantz) based on transcriptome sequencing. J Southern Agric, 2020, 51: 1785-1796. (in Chinese with English abstract)
[18] 李恒锐, 张秀芬, 陈会鲜, 杨海霞, 梁振华, 兰秀, 黄珍玲, 莫周美, 何文, 郭素云. 木薯雌雄花分化形态结构观察及生理调控研究. 植物遗传资源学报, 2022, 23: 255-262.
doi: 10.13430/j.cnki.jpgr.20210516001
Li H R, Zhang X F, Chen H X, Yang H X, Liang Z H, Lan X, Huang Z L, Mo Z M, He W, Guo S Y. Study on morphological structure and physiological regulation of female and male flowers differentiation in cassava. J Plant Genet Res, 2022, 23: 255-262. (in Chinese with English abstract)
[19] Tanurdzic M, Banks J A. Sex-determining mechanisms in land plants. Plant Cell, 2004, 16: S61-S71.
doi: 10.1105/tpc.016667
[20] 杜改改. 柿花性别分化调控的关键基因筛选及表达模式分析. 中国林业科学研究院硕士学位论文, 北京, 2017.
Du G G. Selection and Expression Pattern Analysis of Relative Genes Regulating Flower Sex Differentiation in Persimmon (Diospyros kaki Thunb). MS Thesis of Chinese Academy of Forestry, Beijing, China, 2017. (in Chinese with English abstract)
[21] 平阿敏. 普通白菜花器官发育相关基因筛选及BrcSOC1和BrcSPL8克隆与表达分析. 山西农业大学硕士学位论文, 山西太原, 2017.
Ping A M. Identification of Genes Related to Floral Organ Development by Expression Profile and Cloning and Expression Analysis of BrcSOCl and BrcSPL8 in Pak Choi. MS Thesis of Shanxi Agricultural University, Taiyuan, Shanxi, China, 2017. (in Chinese with English abstract)
[22] Sablowski R W, Moyano E, Culianez-maci F A, Schuch W, Martin C, Bevan M. A flower-specific Myb protein activates transcription of phenylpropanoid biosynthetic genes. EMBO J, 1994, 13: 128-137.
doi: 10.1002/j.1460-2075.1994.tb06242.x pmid: 8306956
[23] Airoldi C A. Determination of sexual organ development. Sex Plant Reprod, 2010, 23: 53-62.
doi: 10.1007/s00497-009-0126-z pmid: 20033226
[24] Ma H. The unfolding drama of flower development: recent results from genetic and molecular analyses. Genes Dev, 1994, 8: 745-756.
doi: 10.1101/gad.8.7.745
[25] Yanofsky M F, Ma H, Bowman J L, Drewa G N, Feldmann K A, Meyerowitz E M. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature, 1990, 346: 35-39.
doi: 10.1038/346035a0
[26] Busi M V, Bustamante C D, Angelo C, Hidalgo C M, Boggio S B, Valle E M, Zabalete E. MADS-box genes expressed during tomato seed and fruit development. Plant Mol Biol, 2003, 52: 801-815.
doi: 10.1023/a:1025001402838 pmid: 13677468
[27] Atikur R M, Subramani P B, Sheikh M B. Molecular characterization and phylogenetic analysis of MADS-Box gene VroAGL11 associated with stenospermocarpic seedlessness in muscadine grapes. Genes (Basel), 2021, 12: 232.
doi: 10.3390/genes12020232
[28] Nallatt O, Nilo M. Suppression of the D-class MADS-box AGL11 gene triggers seedlessness in fleshy fruits. Plant Cell Rep, 2016, 35: 239-254.
doi: 10.1007/s00299-015-1882-x pmid: 26563346
[29] Dreni L, Osnato M, Kater M M. The ins and outs of the rice AGAMOUS subfamily. Mol Plant, 2013, 6: 650-664.
doi: 10.1093/mp/sst019 pmid: 23371932
[30] 陈利娜, 张杰, 牛娟, 李好先, 薛辉, 刘贝贝, 夏小丛, 张富红, 赵弟广, 曹尚银. 石榴花发育相关基因PgAGL11的克隆及功能验证. 园艺学报, 2017, 44: 2089-2098.
doi: 10.16420/j.issn.0513-353x.2017-0151
Chen L N, Zhang J, Niu J, Li H X, Xue H, Liu B B, Xia X C, Zhang F H, Zhao D G, Cao S Y. Cloning and functional verification of gene PgAGL11associated with the development of flower organs in pomegranate plant. Acta Hortic Sin, 2017, 44: 2089-2098. (in Chinese with English abstract)
[31] Yang Z E, Gong Q, Wang L L, Jin Y Y, Xi J P, Li Z, Qin W Q, Yang Z R, Lu L L, Chen Q J, Li F G. Genome-wide study of YABBY genes in upland cotton and their expression patterns under different stresses. Front Genet, 2018, 9: 33.
doi: 10.3389/fgene.2018.00033 pmid: 29467795
[32] Zhang S L, Wang L, Sun X M, Li Y D, Yao J, Nocker V S, Wang X P. Genome-wide analysis of the YABBY gene family in grapevine and functional characterization of VvYABBY4. Front Plant Sci, 2019, 10: 1207.
doi: 10.3389/fpls.2019.01207 pmid: 31649691
[33] Bowman J L, Smyth D R. CRABS CLAW, A gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development, 1999, 126: 2387-2396.
doi: 10.1242/dev.126.11.2387 pmid: 10225998
[34] Thoma G, Suvi B, Annette B. CRABS CLAW acts as a bifunctional transcription factor in flower development. Front Plant Sci, 2018, 20: 835.
[35] 刁志娟. 水稻三个花器官发育关键基因和一个SUPERMAN- Like基因的功能和表达分析. 福建农林大学博士学位论文, 福建福州, 2011.
Diao Z J. Functional and Expressional Analysis of Three Pivotal Genes for Floral Organ Development and a SUPERMAN-like Gene in Rice (Oryza sativa L.). PhD Dissertation of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2011. (in Chinese with English abstract)
[36] 胡若琳, 袁超, 牛义, 汤青林, 魏大勇, 王志敏. 植物MYB转录因子在花药发育中的调控作用. 生物工程学报, 2020, 36: 2277-2286.
Hu R L, Yuan C, Niu Y, Tang Q L, Wei D Y, Wang Z M. Regulation of plant MYB transcription factors in anther development. Chin J Biotechnol, 2020, 36: 2277-2286. (in Chinese with English abstract)
[37] 田义, 张彩霞, 康国栋, 李武兴, 张利益, 丛佩华. 植物 TGA 转录因子研究进展. 中国农业科学, 2016, 49: 632-642.
doi: 10.3864/j.issn.0578-1752.2016.04.003
Tian Y, Zhang C X, Kang G D, Li W X, Zhang L Y, Cong P H. Progress on TGA transcription factors in plant. Sci Agric Sin, 2016, 49: 632-642. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2016.04.003
[38] Murmu J, Bush M J, Delong C, Li S, Xu M, Khan M, Malcomson C, Fobert P R, Zachgo S, Hepworth S R. Arabidopsis basic leucinezipper transcription factors TGA9 and TGA10 interact with floral glutaredoxins ROXY1 and ROXY2 and are redundantly required for anther development. Plant Physiol, 2010, 154: 1492-1504.
doi: 10.1104/pp.110.159111
[39] Zhu J, Lou Y, Xu X F, Yang Z N. A genetic pathway for tapetum development and function in Arabidopsis. J Integr Plant Biol, 2011, 53: 892-900.
doi: 10.1111/jipb.2011.53.issue-11
[40] Li D D, Xue J S, Zhu J, Yang Z N. Gene regulatory network for tapetum development in Arabidopsis thaliana. Front Plant Sci, 2017, 8: 1559.
doi: 10.3389/fpls.2017.01559
[41] Zhu E G, You C J, Wang S S, Cui J, Niu B X, Wang Y X, Qi J, Ma H, Chang F. The DYT 1 interacting proteins bHLH010, bHLH089 and bHLH091 are redundantly required for Arabidopsis anther development and transcriptome. Plant J, 2015, 83: 976-990.
doi: 10.1111/tpj.2015.83.issue-6
[42] 张计育, 莫正海, 李永荣, 王刚, 宣继萍, 贾晓东, 郭忠仁. 薄壳山核桃MADS-box基因CiMADS9的克隆与功能分析. 园艺学报, 2015, 42: 1049-1056.
doi: 10.16420/j.issn.0513-353x.2014-1094
Zhang J Y, Mo Z H, Li Y R, Wang G, Xuan J P, Jia X D, Guo Z Y. Cloning and functional analysis of MADS-box CiMADS9 gene from Carya illinoinensis. Acta Hortic Sin, 2015, 42: 1049-1056. (in Chinese with English abstract)
[43] Xiong S X, Lu J Y, Lou Y, Xiao D T, Jing N G, Cheng Z, Qiang S S, Zhong N Y, Yang J Z. The transcription factor MS188 and AMS form a complex to activate the expression of CYP703A2 for sporopollenin biosynthesis in Arabidopsis thaliana. Plant J, 2016, 88: 936-946.
doi: 10.1111/tpj.2016.88.issue-6
[44] Ma H H, Wu Y L, Lv R L, Chi H B, Zhao Y L, Li Y L, Liu H B, Ma Y Z, Zhu L F, Guo X P, Kong J, Wu J Y, Xing C Z, Zhang X L, Min L. Cytochrome P450 mono-oxygenase CYP703A2 plays a central role in sporopollenin formation and ms5ms6 fertility in cotton. J Integr Plant Biol, 2022, 64: 2009-2025.
doi: 10.1111/jipb.v64.10
[45] 陈磊, 翟笑雨, 徐启江. B类MADS-Box基因的系统发育与功能演化. 植物生理学报, 2015, 51: 1359-1372.
Chen L, Zhai X Y, Xu Q J. The phylogeny and functional evolution of B-Class MADS-box genes. Plant Physiol J, 2015, 51: 1359-1372. (in Chinese with English abstract)
[46] Zhang S Y, Wang J, Chen G H, Ye X Y, Zhang L, Zhu S D, Yuan L Y, Hou J F, Wang C G. Functional analysis of a MYB transcription factor BrTDF1 in the tapetum development of Wucai (Brassica rapa ssp.). Sci Hortic, 2019, 257: 108728.
doi: 10.1016/j.scienta.2019.108728
[1] ZHI Chen-Yang, XUE Xiao-Meng, WU Jie, LI Xiong-Cai, WANG Jin, YAN Li-Ying, WANG Xin, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, HONG Yan-Bin, JIANG Hui-Fang, LEI Yong, LIAO Bo-Shou. Analysis of genetic model of sucrose content in peanut [J]. Acta Agronomica Sinica, 2024, 50(1): 32-41.
[2] YANG Chuang, WANG Ling, QUAN Cheng-Tao, YU Liang-Qian, DAI Cheng, GUO Liang, FU Ting-Dong, MA Chao-Zhi. Relative expression profiles of genes response to salt stress and constructions of gene co-expression networks in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(1): 237-250.
[3] WANG Heng-Bo, FENG Chun-Yan, ZHANG Yi-Xing, XIE Wan-Jie, DU Cui-Cui, WU Ming-Xing, ZHANG Ji-Sen. Genome-wide identification of NAP transcription factors subfamily in Saccharum spontaneum and functional analysis of SsNAP2a involvement in leaf senescence  [J]. Acta Agronomica Sinica, 2024, 50(1): 110-125.
[4] SONG Song-Quan, TANG Cui-Fang, LEI Hua-Ping, JIANG Xiao-Cheng, WANG Wei-Qing, CHENG Hong-Yan. Research progress of seed dormancy and germination regulation [J]. Acta Agronomica Sinica, 2024, 50(1): 1-15.
[5] SHANG-GUAN Xiao-Xia, YANG Qin-Li, LI Huan-Li. Analysis of mutants developed by CRISPR/Cas9-based GhbHLH71 gene editing in cotton [J]. Acta Agronomica Sinica, 2024, 50(1): 138-148.
[6] LIU Ying-Chao, FANG Dun-Huang, XU Hai-Ming, TONG Zhi-Jun, XIAO Bing-Guang. QTL mapping of alkaloids in tobacco [J]. Acta Agronomica Sinica, 2024, 50(1): 42-54.
[7] LI Yu-Jia, XU Hao, YU Shi-Nan, TANG Jian-Wei, LI Qiao-Yun, GAO Yan, ZHENG Ji-Zhou, DONG Chun-Hao, YUAN Yu-Hao, ZHENG Tian-Cun, YIN Gui-Hong. Genetic analysis of elite stripe rust resistance genes of founder parent Zhou8425B in its derived varieties [J]. Acta Agronomica Sinica, 2024, 50(1): 16-31.
[8] SUN Shang-Wen, SHU Hong-Mei, YANG Chang-Qin, ZHANG Guo-Wei, WANG Xiao-Jing, MENG Ya-Li, WANG You-Hua, LIU Rui-Xian. Mechanism of cyclanilide enhanced the defoliation efficiency of thidiazuron in cotton by regulating endogenous hormones under low temperature stress#br# [J]. Acta Agronomica Sinica, 2024, 50(1): 187-198.
[9] YU Xue-Ting, LI Ke, LI Meng-Tao, BAO Ru-Xue, CHEN Xin, WANG Wen-Quan. Interaction identification between protein kinase MeSnRK2.12 and transcription factor MebHLH1 and its relative expression level in cassava [J]. Acta Agronomica Sinica, 2023, 49(9): 2594-2600.
[10] HUANG Yu-Jie, ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei, DING Shuang-Cheng. Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(9): 2331-2343.
[11] DU Cui-Cui, WU Ming-Xing, ZHANG Ya-Ting, XIE Wan-Jie, ZHANG Ji-Sen, WANG Heng-Bo. Cloning and functional analysis of sucrose transporter protein SsSWEET11 gene in sugarcane (Saccharum spontaneum L.) [J]. Acta Agronomica Sinica, 2023, 49(9): 2385-2397.
[12] WANG Fei-Fei, ZHANG Sheng-Zhong, HU Xiao-Hui, CHU Ye, CUI Feng-Gao, ZHONG Wen, ZHAO Li-Bo, ZHANG Tian-Yu, GUO Jin-Tao, YU Hao-Liang, MIAO Hua-Rong, CHEN Jing. Comparative transcriptome profiling of dormancy regulatory network in peanut [J]. Acta Agronomica Sinica, 2023, 49(9): 2446-2461.
[13] MO Guang-Ling, YU Chen-Jing, LIANG Yan-Lan, ZHOU Ding-Gang, LUO Jun, WANG Mo, QUE You-Xiong, HUANG Ning, LING Hui. RT-PCR cloning and functional analysis of ScbHLH13 in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(9): 2485-2497.
[14] HU Xin, LUO Zheng-Ying, LI Chun-Jia, WU Zhuan-Di, LI Xu-Juan, LIU Xin-Long. Comparative transcriptome analysis of elite ‘ROC’ sugarcane parents for exploring genes involved in Sporisorium scitamineum infection by using Illumina- and SMRT-based RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(9): 2412-2432.
[15] LIU Kai, CHEN Ji-Jin, LIU Shuai, CHEN Xu, ZHAO Xin-Ru, SUN Shang, XUE Chao, GONG Zhi-Yun. Dynamic change profile of histone H3K18cr on rice whole genome under cold stress [J]. Acta Agronomica Sinica, 2023, 49(9): 2398-2411.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .