Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (11): 2902-2912.doi: 10.3724/SP.J.1006.2023.24287

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification of chromosome deletion in synthesized Brassica auto-allohexaploids and its application in mapping genes of pigment synthesis

QIU Jie, WANG Tai, CAI Bo-Wei(), DUAN Sheng-Xing, XU Lin-Shan, CHEN Xiao-Di, WANG Jing, GE Xian-Hong(), LI Zai-Yun   

  1. College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2022-12-30 Accepted:2023-04-17 Online:2023-11-12 Published:2023-05-16
  • Supported by:
    National Key Research and Development Program of China(2021YFD1600505)

Abstract:

Polyploidy leads to the complexity of individual genomes and an increase of gene copies, which brings challenges to the genomic and genetic analysis. The deletion of a chromosome or chromosome fragment often leads to corresponding phenotypic changes, and the genes controlling these traits are located within the deleted fragments. According to this principle, chromosome deletion was usually used to map genes in a specific chromosome or chromosome fragment. In this study, a Brassica auto-allohexaploid (BcBcCcCcCoCo) was synthesized by the hybridization between B. carinata (2n = 34, BcBcCcCc) and B. oleracea (CoCo, 2n = 18). Two young hexaploid plants were differentiated from the callus of the same immature embryo during embryo rescue on MS medium with colchicine and hormone. However, while one plant showed purple leaves and stems and light-yellow flowers as its maternal parent B. carinata, the other plant had green leaves and stems and white flowers like the paternal parent B. oleracea. Cytological observation, fluorescence in situ hybridization (FISH), and genome re-sequencing analysis showed that a large fragment of chromosome B04 was absent in green plant. Transcriptome analysis showed DFR gene in the deletion region and MYB90 on the reference genome B03 chromosome may be the key genes controlling the purple color formation on leaves and stems, while Z-ISO and CRTISO2 were two genes within deletion region determining the formation of yellow flowers in hexaploids.

Key words: Brassica, hexaploids, chromosome deletion, anthocyanin, carotenoids

Fig. 1

Synthesis of the auto-allohexaploid (CcCcCoCoBcBc) BcBcCcCc, CoCo, and CcCoBc represent B. carinata, B. oleracea, and triploid hybrid, respectively. CcCcCoCoBcBc represents hexaploids, purple and green represent the color of leaves and stems of the plants."

Table S1

Chromosome-specific primers for B genome"

引物名称Primer
name
连锁群Linkage
group
距离
Distance from top
正向引物序列
Forward sequence (5°-3°)
反向引物序列
Reverse sequence (5°-3°)
片段大小
Expected
product size (bp)
sJ4933 J11 27.8 TGCAATCAGATCCGACTCAG CTTGCAAATATTCAGGCCGT 335-341
sJ3891 J11 61.4 TAAACTTGTTGCAGGGGGTT GTTTGATTGCGTGGCAGTAA 100-110
sJ3302RI J12 10.0 AAATAACCTGCGACGGTGAC GGGGCAAAAGGAACTTGAG 392-409
sB4817R J12 65.8 AGCTTTTCGGTGGGTAAAGA GCCAGTTAGCGAGTCTTTGG 250-364
sB1822 J13 17.5 TCGTTTATCCCGCGTTTATC GCACGTTTCTTGCAGACTGA 250-267
sB1752 J13 61.5 AATGGACTCGTCCGTTATGC TGCGTCTACCACAGACGAAG 406-422
sB2131 J14 0 GTTGCGGTCTCAAGAAGAGG CCGCTTTAAAAATGCAGCTC 311-321
sA0306 J14 16.8 TGGGGTGGGTCTTAAATGAA CCGTTTTAAGCCATGGAAGA 362-396
sB0372 J14 20.1 CACACTGCCATCTCTCTCCA ACGCCGGTTGATATTAGCAC 233-245
sB2141AI J14 26.8 CCCAAATCCGTGGCTACTTA TATGATTGGTGGATGGCAAA 381-389
sB1935A J14 40.4 CCTGCATGAAGGAACGTTTT AATTCATGGAAACGGCTGTC 257-260
sJ8033 J14 47.7 TTTACGGTTTGGTTTGGCTC GCTTGACGGCTGAAGAAAAT 150-225
sJ3874I J15 9.9 ACAACATTTTCCATTCCCCA ATGAGGTTTCATCCCGACAG 164-185
sB3872 J15 60.9 ACAGAAGCATTAGGCGAGGA TCCATATAATCACCGCACGA 176-183
sJ7104 J16 35.5 TCCGCTGTCACGATTATGAA GCTGCAGGGAAACTTGAGAC 322-337
sJ3640I J16 82.9 CCACTCTCAATCTTCGAGCC TGGTTGGTTTCAAGACAAAAGA 327-346
sJ13133 J17 25.8 AACCAAACCAAACCAAGTCG GGCATCGATCAAGTGACCTT 294-300
sJ4633 J17 64.4 CCCGGAAAATAAATGAAAACAA AACCTGAACGCCATTTTCAC 307-312
sJ34121 J18 24.8 TGCTTAAGTCCATCAATGCG ACTGATCGAAATGGACTCGG 320-340
sB5162 J18 62.9 CACGGCTCTCAACTCTTTTG CTGATGAGCTCGAAACCGAT 274-316

Fig. 2

Morphological comparison of two type plants of hexaploid A-B, C-D, E, F, and G are young plants, flowers buds, siliques, flowers, and mature plants of two hexaploids, respectively. A, C, E (upper), F (left), and G (left) are from purple plants; B, D, E (lower), F (right), and G (right) are from green plants. Bars represent 2 cm in A-F and 10 cm in G."

Fig. 3

Cytologyical observation and FISH analysis of two hexaploids A, D: two somatic cells at mitotic metaphase. B, C, E, F: FISH of pollen mother cells at diakinesis (B, E) and telophase I (C, F). A, B, and C are cells of purple plant. D, E, and F are cells of green plant. The blue signal represents the negative staining of DAPI in B and E, indicating those chromosomes are from C genome. The red signals are from the C genome specific probes in E and F, and the green signals are from B genome specific centromere probes in B, C, E, and F. The red arrows in the C diagram indicate the B genome chromosomes (Bar: 10 μm)."

Fig. 4

Chromosome specific markers in B genome HR-P and HR-G represent purple and green hexaploids (CcCcCoCoBcBc), respectively. BBCC, CC, and CCB represent B. carinata, B. oleracea, and triploid hybrid, respectively. M: marker."

Fig. 5

Comparative analysis of mapping depth of resequencing reads on chromosome B04 of two hexaploids"

Fig. 6

Comparison of gene expression level of chromosome B genome"

Table 1

Relative expression level of genes in anthocyanin biosynthesis in leaf of two hexaploids"

基因号
Gene ID
基因名称
Gene name
基因位置Location 基因表达量Gene expression value (FPKM) P-adj值
P-adj value
绿1
Green 1
绿2
Green 2
绿3
Green 3
紫1
Purple 1
紫2
Purple 2
紫3
Purple 3
BjuB042150 PAL1 B01 59 43 65 8 9 9 7.13E-20
Bol025522 PAL1 C04 309 235 402 686 885 1275 3.83E-24
Bol037689 PAL1 C04 389 288 495 970 1161 1770 6.05E-27
BjuB041653 PAL1 B06 149 104 199 246 324 521 6.47E-11
Bol005411 PAL2 C06 106 113 116 397 498 626 2.32E-53
Bol004610 C4H C03 180 141 234 327 339 520 2.47E-13
Bol033347 C4H C04 72 119 83 3 2 21 3.43E-07
BjuB026422 C4H B01 4 2 2 181 202 218 8.87E-08
Bol026623 4CL5 C03 120 110 160 187 253 276 4.19E-12
Bol012584 4CL3 C06 294 259 302 451 507 601 3.29E-16
BjuB043976 4CL3 B03 28 9 16 96 113 156 1.62E-16
Bol043396 CHS C09 789 301 1009 1448 1855 1824 3.57E-07
Bol034259 CHS C03 217 70 295 2867 3304 4032 1.32E-36
BjuB012368 CHS B05 645 410 790 1597 1797 1863 1.76E-19
BjuB012366 CHS B05 55 28 70 122 197 157 2.22E-10
BjuB014803 CHS B08 65 16 90 202 260 362 5.99E-10
Bol044343 CHI C08 50 19 57 123 144 287 7.54E-11
BjuB044274 F3'H B02 2 2 0 20 18 40 2.55E-07
Bol043829 F3'H C09 9 14 25 614 701 1177 9.51E-88
BjuB001305 DFR B04* 0 0 0 682 887 827 1.60E-25
Bol042059 ANS(LDOX) C07 89 96 90 420 474 492 4.66E-45
BjuB044852 ANS (LDOX) B02 78 66 96 184 225 348 9.32E-33
BjuB014115 ANS (LDOX) B05 4 10 6 474 405 424 5.45E-55
Bol014986 ANS (LDOX) C01 10 15 11 2981 3408 3924 3.28E-210
Bol027055 UGT75C1 C08 10 17 7 2500 3037 3696 2.17E-192
Bol038805 UGT79B1 C09 0 0 2 236 245 294 7.62E-18
BjuB035464 TT19 B02 36 25 26 76 62 102 8.82E-08
BjuB013191 TT19 B05 452 383 574 1012 1158 1550 2.87E-34
Bol021325 TT19 C02 15 11 17 655 750 1075 6.61E-113
Bol019821 TT19 C09 4 4 3 533 696 884 1.44E-65
BjuB046545 MYB12 B06 8 17 12 38 46 76 1.15E-08
Bol016164 MYBL2 C06 45 39 68 445 532 343 2.83E-32
BjuB043935 MYB90 (PAP2) B03 0 0 0 4052 4792 4563 4.12E-36
BjuB007698 MYB111 B07 15 16 14 39 47 92 1.79E-08
BjuB004115 TT8 B08 7 9 11 43 52 65 1.26E-12
Bol012528 MYB90 (PAP2) C06 6 9 12 111 89 99 1.01E-20

Table 2

Relative expression level of genes in carotenoid biosynthesis in petals of two hexaploids"

基因号
Gene ID
基因名称
Gene name
基因位置Location 基因表达量(FPKM) Gene expression value (FPKM) P-adj值
P-adj value
绿1
Green 1
绿2
Green 2
绿3
Green 3
紫1
Purple 1
紫2
Purple 2
紫3
Purple 3
BjuB042707 Z-ISO B04* 1 2 1 70 51 51 1.87E-13
BjuB029531 NCED5 B04 0 0 0 28 38 22 1.20E-09
BjuB028062 CRTISO2 B04* 0 0 0 543 646 552 2.79E-24
BjuB013608 CCD4 B05 75 61 100 16 23 8 9.48E-05
BjuB045962 LUT2 B08 299 769 779 203 204 153 8.35E-05
Bol008194 LCYb C01 204 628 458 105 123 65 9.32E-06
Bol042254 BCH1 C07 3136 2823 3381 5046 5954 4881 7.38E-09
[1] Van De Peer Y, Mizrachi E, Marchal K. The evolutionary significance of polyploidy. Nat Rev Genet, 2017, 18: 411-424.
doi: 10.1038/nrg.2017.26 pmid: 28502977
[2] Madlung A. Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity, 2013, 110: 99-104.
doi: 10.1038/hdy.2012.79 pmid: 23149459
[3] Gonzalez A, Zhao M, Leavitt J M, Lloyd A M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J, 2008, 53: 814-827.
doi: 10.1111/tpj.2008.53.issue-5
[4] Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J, 2008, 54: 733-749.
doi: 10.1111/j.1365-313X.2008.03447.x
[5] Zhang Y, Butelli E, Martin C. Engineering anthocyanin biosynthesis in plants. Curr Opin Plant Biol, 2014, 19: 81-90.
doi: 10.1016/j.pbi.2014.05.011 pmid: 24907528
[6] 宋建辉, 郭长奎, 石敏. 植物花青素生物合成及调控. 分子植物育种, 2021, 19: 3612-3620.
Song J H, Guo C K, Shi M. Anthocyanin biosynthesis and regulation in plants. Mol Plant Breed, 2021, 19: 3612-3620 (in Chinese with English abstract).
[7] Albert N W, Griffiths A G, Cousins G R, Verry I M, Williams W M. Anthocyanin leaf markings are regulated by a family of R2R3-MYB genes in the genus Trifolium. New Phytol, 2015, 205: 882-893.
doi: 10.1111/nph.13100 pmid: 25329638
[8] Albert N W, Lewis D H, Zhang H, Schwinn K E, Jameson P E, Davies K M. Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning. Plant J, 2011, 65: 771-784.
doi: 10.1111/tpj.2011.65.issue-5
[9] Zhao L, Gao L, Wang H, Chen X, Wang Y, Yang H, Wei C, Wan X, Xia T. The R2R3-MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis. Funct Integr Genomics, 2013, 13: 75-98.
doi: 10.1007/s10142-012-0301-4
[10] 王紫璇, 李佳佳, 于旭东, 蔡泽坪, 罗佳佳, 徐芷蕙. 高等植物类胡萝卜素生物合成研究进展. 分子植物育种, 2021, 19: 2627-2637.
Wang Z X, Li J J, Yu X D, Cai Z P, Luo J J, Xu Z H. Research progress in carotenoid biosynthesis in higher plants. Mol Plant Breed, 2021, 19: 2627-2637 (in Chinese with English abstract).
[11] 樊宝莲, 王晓云. 转录因子调控植物类胡萝卜素合成途径的研究进展. 分子植物育种, 2021, 19: 4401-4408.
Fan B L, Wang X Y. Research progress in regulation of carotenoid biosynthesis by transcriptional factors in plants. Mol Plant Breed, 2021, 19: 4401-4408 (in Chinese with English abstract).
[12] Ruiz-Sola M A, Rodriguez-Concepcion M. Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arabidopsis Book, 2012, 10: e0158.
doi: 10.1199/tab.0158
[13] Zhang B, Liu C, Wang Y, Yao X, Wang F, Wu J, King G J, Liu K. Disruption of a CAROTENOID CLEAVAGE DIOXYGENASE 4gene converts flower colour from white to yellow in Brassica species. New Phytol, 2015, 206: 1513-1526.
doi: 10.1111/nph.13335 pmid: 25690717
[14] Ohmiya A, Kishimoto S, Aida R, Yoshioka S, Sumitomo K. Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiol, 2006, 142: 1193-1201.
pmid: 16980560
[15] Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J H, Bancroft I, Cheng F, Huang S, Li X, Hua W, Wang J, Wang X, Freeling M, Pires J C, Paterson A H, Chalhoub B, Wang B, Hayward A, Sharpe A G, Park B S, Weisshaar B, Liu B, Li B, Liu B, Tong C, Song C, Duran C, Peng C, Geng C, Koh C, Lin C, Edwards D, Mu D, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King GJ, Bonnema G, Tang H, Wang H, Belcram H, Zhou H, Hirakawa H, Abe H, Guo H, Wang H, Jin H, Parkin I A, Batley J, Kim J S, Just J, Li J, Xu J, Deng J, Kim J A, Li J, Yu J, Meng J, Wang J, Min J, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links M G, Zhao M, Jin M, Ramchiary N, Drou N, Berkman P J, Cai Q, Huang Q, Li R, Tabata S, Cheng S, Zhang S, Zhang S, Huang S, Sato S, Sun S, Kwon S J, Choi S R, Lee T H, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y, Du Y, Liao Y, Lim Y, Narusaka Y, Wang Y, Wang Z, Li Z, Wang Z, Xiong Z, Zhang Z. Brassica rapa genome sequencing project C. The genome of the mesopolyploid crop species Brassica rapa. Nat Genet, 2011, 43: 1035-1039.
doi: 10.1038/ng.919
[16] Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin I A, Zhao M, Ma J, Yu J, Huang S, Wang X, Wang J, Lu K, Fang Z, Bancroft I, Yang T J, Hu Q, Wang X, Yue Z, Li H, Yang L, Wu J, Zhou Q, Wang W, King G J, Pires J C, Lu C, Wu Z, Sampath P, Wang Z, Guo H, Pan S, Yang L, Min J, Zhang D, Jin D, Li W, Belcram H, Tu J, Guan M, Qi C, Du D, Li J, Jiang L, Batley J, Sharpe A G, Park B S, Ruperao P, Cheng F, Waminal N E, Huang Y, Dong C, Wang L, Li J, Hu Z, Zhuang M, Huang Y, Huang J, Shi J, Mei D, Liu J, Lee T H, Wang J, Jin H, Li Z, Li X, Zhang J, Xiao L, Zhou Y, Liu Z, Liu X, Qin R, Tang X, Liu W, Wang Y, Zhang Y, Lee J, Kim H H, Denoeud F, Xu X, Liang X, Hua W, Wang X, Wang J, Chalhoub B, Paterson A H. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun, 2014, 5: 3930.
doi: 10.1038/ncomms4930
[17] Perumal S, Koh C S, Jin L, Buchwaldt M, Higgins E E, Zheng C, Sankoff D, Robinson S J, Kagale S, Navabi Z K, Tang L, Horner K N, He Z, Bancroft I, Chalhoub B, Sharpe A G, Parkin I A P. A high-contiguity Brassica nigra genome localizes active centromeres and defines the ancestral Brassica genome. Nat Plants, 2020, 6: 929-941.
doi: 10.1038/s41477-020-0735-y
[18] Parkin I A, Koh C, Tang H, Robinson S J, Kagale S, Clarke W E, Town C D, Nixon J, Krishnakumar V, Bidwell S L, Denoeud F, Belcram H, Links M G, Just J, Clarke C, Bender T, Huebert T, Mason A S, Pires J C, Barker G, Moore J, Walley P G, Manoli S, Batley J, Edwards D, Nelson M N, Wang X, Paterson A H, King G, Bancroft I, Chalhoub B, Sharpe A G. Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol, 2014, 15: R77.
doi: 10.1186/gb-2014-15-6-r77
[19] Guo N, Cheng F, Wu J, Liu B, Zheng S, Liang J, Wang X. Anthocyanin biosynthetic genes in Brassica rapa. BMC Genomics, 2014, 15: 426.
doi: 10.1186/1471-2164-15-426
[20] Mushtaq M A, Pan Q, Chen D, Zhang Q, Ge X, Li Z. Comparative leaves transcriptome analysis emphasizing on accumulation of anthocyanins in Brassica: molecular regulation and potential interaction with photosynthesis. Front Plant Sci, 2016, 7: 311.
[21] Chen D, Liu Y, Yin S, Qiu J, Jin Q, King G J, Wang J, Ge X, Li Z. Alternatively spliced BnaPAP2.A7 isoforms play opposing roles in anthocyanin biosynthesis of Brassica napus L. Front Plant Sci, 2020, 11: 983.
doi: 10.3389/fpls.2020.00983
[22] Heng S, Cheng Q, Zhang T, Liu X, Huang H, Yao P, Liu Z, Wan Z, Fu T. Fine-mapping of the BjPur gene for purple leaf color in Brassica juncea. Theor Appl Genet, 2020, 133: 2989-3000.
doi: 10.1007/s00122-020-03634-9
[23] He Q, Wu J Q, Xue Y H, Zhao W B, Li R, Zhang L G. The novel gene BrMYB2, located on chromosome A07, with a short intron 1 controls the purple-head trait of Chinese cabbage (Brassica rapa L.). Hortic Res, 2020, 7: 97.
doi: 10.1038/s41438-020-0319-z
[24] Yan C H, An G H, Zhu T, Zhang W Y, Zhang L, Peng L Y, Chen J J, Kuang H H. Independent activation of the BoMYB2 gene leading to purple traits in Brassica oleracea. Theor Appl Genets, 2019, 132: 895-906.
[25] 谭晨. 甘蓝型油菜中基因表达的剂量效应及甘蓝-黑芥附加系的创建. 华中农业大学博士学位论文, 湖北武汉, 2017.
Tan C. The Dose-effect of Gene Expression in Brassica napus and the Establishment of Brassica napus-B. nigra Addition Lines. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2017 (in Chinese with English abstract).
[26] Schelfhout C J, Snowdon R, Cowling W A, Wroth J M. A PCR based B-genome-specific marker in Brassica species. Theor Appl Genets, 2004, 109: 917-921.
[27] Alix K, Joets J, Ryder C D, Moore J, Barker G C, Bailey J P, King G J, Heslop-Harrison J S. The CACTA transposon Bot1 played a major role in Brassica genome divergence and gene proliferation. Plant J, 2008, 56: 1030-1044.
doi: 10.1111/tpj.2008.56.issue-6
[28] Xiong Z, Pires J C. Karyotype and identification of all homoeologous chromosomes of allopolyploid Brassica napus and its diploid progenitors. Genetics, 2011, 187: 37-49.
doi: 10.1534/genetics.110.122473
[29] Martin M. Cutadapt removes adapter sequences from high- throughput sequencing reads. EMBnet J, 2011, 17: 10-12.
[30] Bolger A M, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30: 2114-2120.
doi: 10.1093/bioinformatics/btu170 pmid: 24695404
[31] Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg S L. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol, 2013, 14: R36.
doi: 10.1186/gb-2013-14-4-r36
[32] Anders S, Pyl P T, Huber W. HTSeq: a Python framework to work with high-throughput sequencing data. Bioinformatics, 2015, 31: 166-169
doi: 10.1093/bioinformatics/btu638 pmid: 25260700
[33] Pertea M, Kim D, Pertea G M, Leek J T, Salzberg S L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc, 2016, 11: 1650-1667.
doi: 10.1038/nprot.2016.095 pmid: 27560171
[34] Yoo M J, Liu X, Pires J C, Soltis P S, Soltis D E. Nonadditive gene expression in polyploids. Annu Rev Genet, 2014, 48: 485-517.
doi: 10.1146/genet.2014.48.issue-1
[35] Song Q, Chen Z J. Epigenetic and developmental regulation in plant polyploids. Curr Opin Plant Biol, 2015, 24: 101-109.
doi: 10.1016/j.pbi.2015.02.007 pmid: 25765928
[36] Birchler J A. Aneuploidy in plants and flies: the origin of studies of genomic imbalance. Semin Cell Dev Biol, 2013, 24: 315-319.
doi: 10.1016/j.semcdb.2013.02.004 pmid: 23422884
[37] Birchler J A, Veitia R A. The gene balance hypothesis: from classical genetics to modern genomics. Plant Cell, 2007, 19: 395-402.
doi: 10.1105/tpc.106.049338 pmid: 17293565
[38] 李群睿. 玉米类胡萝卜素异构酶和番茄红素ε-环化酶基因的克隆与鉴定. 东北师范大学博士学位论文,吉林长春, 2010.
Li Q R. Cloning and Identification of Genes Coding Carotenoid Isomerase and Lycopene ε-cyclase in Corn. PhD Dissertation of Northeast Normal University Library, Changchun, Jilin, China, 2010 (in Chinese with English abstract).
[1] LI Hong-Yan, LI Jie-Ya, LI Xiang, YE Guang-Ji, ZHOU Yun, WANG Jian. Effects of overexpression of LrAN2 gene on contents of anthocyanins and glycoalkaloids in potato [J]. Acta Agronomica Sinica, 2023, 49(4): 988-995.
[2] ZHU Jin-Yong, LIU Zhen, ZENG Yu-Ting, LI Zhi-Tao, CHEN Li-Min, LI Hong-Yang, SHI Tian-Bin, ZHANG Jun-Lian, BAI Jiang-Ping, LIU Yu-Hui. Genome-wide identification of potato (Solanum tuberosum L.) PAL gene family and its expression analysis in abiotic stress and tuber anthocyanin synthesis [J]. Acta Agronomica Sinica, 2023, 49(11): 2978-2990.
[3] HUANG Ting-Miao, ZHAN Xin, LU Nai-Kun, QIAO Yue-Jing, CHEN Jie, YANG Zhen-Ping, GAO Zhi-Qiang. Impact of foliar organic selenium application on selenium uptake and grain anthocyanins, iron, manganese, copper, and zinc concentrations of black waxy corn [J]. Acta Agronomica Sinica, 2023, 49(10): 2845-2853.
[4] LI Jie-Ya, LI Hong-Yan, YE Guang-Ji, SU Wang, SUN Hai-Hong, WANG Jian. Changes of anthocyanins and expression analysis of synthesis-related genes in potato during storage period [J]. Acta Agronomica Sinica, 2022, 48(7): 1669-1682.
[5] MA Wen-Jing, LIU Zhen, LI Zhi-Tao, ZHU Jin-Yong, LI Hong-Yang, CHEN Li-Min, SHI Tian-Bin, ZHANG Jun-Lian, LIU Yu-Hui. Genome-wide identification and expression analysis of BBX gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2022, 48(11): 2797-2812.
[6] MA Chao, FENG Ya-Lan, WU Shan-Wei, ZHANG Jun, GUO Bin-Bin, XIONG Ying, LI Chun-Xia, LI You-Jun. Effects of shading at grain filling stages on anthocyanin accumulation and related gene expression characteristics in seed coat of black mung bean [J]. Acta Agronomica Sinica, 2022, 48(11): 2826-2839.
[7] NIU Na, LIU Zhen, HUANG Peng-Xiang, ZHU Jin-Yong, LI Zhi-Tao, MA Wen-Jing, ZHANG Jun-Lian, BAI Jiang-Ping, LIU Yu-Hui. Genome-wide identification and expression analysis of potato GAUT gene family [J]. Acta Agronomica Sinica, 2021, 47(12): 2348-2361.
[8] YANG Xiao-Meng, LI Xia, PU Xiao-Ying, DU Juan, Muhammad Kazim Ali, YANG Jia-Zhen, ZENG Ya-Wen, YANG Tao. QTL mapping for total grain anthocyanin content and 1000-kernel weight in barley recombinant inbred lines population [J]. Acta Agronomica Sinica, 2020, 46(01): 52-61.
[9] Huan TAN,Yu-Hui LIU,Li-Xia LI,Li WANG,Yuan-Ming LI,Jun-Lian ZHANG. Cloning and Functional Analysis of R2R3 MYB Genes Involved in Anthocyanin Biosynthesis in Potato Tuber [J]. Acta Agronomica Sinica, 2018, 44(7): 1021-1031.
[10] XU Yu-Chao,HOU Xi-Lin,XU Wei-Wei,SHEN Lu-Lu,ZHANG Shi-Lin,LIU Shi-Tuo,HU Chun-Mei. Cloning and Expression Analysis of Anthocyanidin Synthase Gene BrcANS from Purple Non-heading Chinese Cabbage [J]. Acta Agron Sin, 2016, 42(06): 850-859.
[11] ZHOU Tian-Shan,WANG Xin-Chao,YU You-Ben,XIAO Yao,QIAN Wen-Jun,XIAO Bin,YANG Ya-Jun. Correlation Analysis between Total Catechins (or Anthocyanins) and Expression Levels of Genes Involved in Flavonoids Biosynthesis in Tea Plant with Purple Leaf [J]. Acta Agron Sin, 2016, 42(04): 525-531 .
[12] LIU Min-Xuan,LU Ping. Distribution of Vitamin E Content and Its Correlation with Agronomic Traits and Carotenoids Content in Foxtail Millet Varieties in China [J]. Acta Agron Sin, 2013, 39(03): 398-408.
[13] ZHANG Qiong-Yu, LI Jun, ZHAO Ai-Chun, WANG Xi-Ling, JIN Xiao-Yun, Li Zhen-Gang,YU Mao-De. Molecular Cloning and Information Analysis of ANS Genes Encoding Anthocyanin Synthases from Mulberry (Morus alba) [J]. Acta Agron Sin, 2012, 38(07): 1253-1263.
[14] QIN Hong-Ni, YAN Meng, WANG Zhao-Hui, GUO Ying, WANG Hui, SUN Hai-Yan, LIU Zhi-Zhai, CAI Yi-Lin. QTL Mapping for Anthocyanin and Melanin Contents in Maize Kernel [J]. Acta Agron Sin, 2012, 38(02): 275-284.
[15] WANG Hai-Wei, WANG Zhen-Lin, WANG Ping, WANG Shu-Gang, HUANG Wei, WU Yu-Guo, SUN Lan-Zhen, YIN Yan-Ping. Effect of Shading Post Anthesis on Anthocyanin Accumulation and Activities of Related Enzymes in Colored-Grain Wheat [J]. Acta Agron Sin, 2011, 37(06): 1093-1100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[5] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[6] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[7] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[8] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[9] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[10] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .