Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (2): 506-513.doi: 10.3724/SP.J.1006.2024.31040

• RESEARCH NOTES • Previous Articles     Next Articles

Discovery of auxin pathway genes involving spike type and association analysis between TaARF23-A and spikelet number in wheat

TAN Dan(), CHEN Jia-Ting, GAO Yu, ZHANG Xiao-Jun, LI Xin, YAN Gui-Yun, LI Rui, CHEN Fang, CHANG Li-Fang, ZHANG Shu-Wei, GUO Hui-Juan, CHANG Zhi-Jian, QIAO Lin-Yi*()   

  1. College of Agriculture, Shanxi Agricultural University / Shanxi Key Laboratory of Crop Genetics and Molecular Improvement / Key Laboratory of Sustainable Dryland Agriculture (co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Taiyuan 030031, Shanxi, China
  • Received:2023-06-22 Accepted:2023-09-13 Online:2024-02-12 Published:2023-09-27
  • Contact: *E-mail: linyi.qiao@sxau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(32201749);Shanxi Key Research and Development Program(202102140601001)

Abstract:

Auxin is one of the major endogenous hormones that regulate the spike morphology in crops. In order to explore the auxin pathway genes involving spike type in wheat, the line SY95-71 with spindle spike and line CH7034 with compacted spike were selected to detect the endogenous auxin content in their young spikes. The results showed that the tryptophan content in SY95-71’s young spikes was significantly higher than that in CH7034. RNA-seq results showed that four specific auxin-related GO items were enriched in SY95-71 young spikes within the high confidence interval (P<0.01), and the relative expression levels of Tryptophan Decarboxylase genes (responsible for transforming tryptophan into tryptamine) and Auxin Response Factor genes (ARFs) in SY95-71 were significantly higher than those in CH7034. Further analysis of two highly expressed ARF genes (TraesCS7A02G475600 and TraesCS7A02G475700) in SY95-71 revealed that they were a pair of tandem repeat genes located on the long arm of chromosome 7A and named TaARF23-A1 and TaARF23-A2 based on the IDs of ARF family member in wheat, respectively. The qRT-PCR results confirmed that the relative expression levels of TaARF23-A1 and TaARF23-A2 in SY95-71 young spikes were significantly higher than those in CH7034. The sequencing results showed that the exon of TaARF23-A had two SNPs and one InDel site between SY95-71 and CH7034. A molecular marker was developed based on the InDel site and then used to associated with the spike phenotypes of the recombinant inbred lines population derived by the cross of SY95-71 and CH7034 in six field environments. The results showed that TaARF23-A was significant correlation with spikelet number (P<0.0001), and its CH7034 allele increased by 1.67 spikelets compared with the SY95-71 allele. The results of this study provide the reference for the understanding of the development mechanism of spikelet and molecular marker for the improvement of ideal spike type in wheat.

Key words: wheat, spike type, auxin, TaARF23-A, spikelet, molecular marker

Table 1

Primers related TaARF23"

引物名称
Primer name
正向引物
Forward sequence (5′-3′)
反向引物
Reverse sequence (5′-3′)
退火温度
Tm (℃)
扩增长度
Size (bp)
A1-q CGAAGCTTGGAGGTATGTATC GTGCTAATGCACATGGCTTG 58 177
A2-q GCGAAGCTTGGAGGTCGTT GTGCTAATGCACATGGCTTG 58 169
P1 GCCAATCAAGCAAGGATGTC CTGGTGGACAGCAGTGATC 58 951
P2 CGAGGAAGCTTCAGTTACAC TTCTCTGGACAGGTGATACC 58 927
InDel GCAGGAAGAAATCAATGAAGCAG GTAGTAGGTCACTTGGAATTGC 58 82/70

Fig. 1

Spike morphology of wheat lines SY95-71 and CH7034"

Fig. 2

Comparison of the content of five compounds in the auxin synthesis pathway between young spikes of SY95-71 and CH7034 TRP: Tryptophan; TRA: Tryptamine; IAM: Indole-3-acetamide; IAN: Indole-3-acetonitrile; IAA: Indole-3-acetic acid; **: P < 0.01."

Fig. 3

GO enrichment related to auxin pathway in young spike of SY95-71 and CH7034 BP: biological process; MF: molecular function. The unique item numbers are represented in bold. *: P < 0.05; **: P < 0.01."

Fig. 4

DEGs related to auxin pathway in young spike of SY95-71 DEGs with extremely significant differences (| log2(FPKMSY/ FPKMCH) | > 4) are marked with triangles."

Fig. 5

Analysis of TaARF23-A a: sequence analysis and primer positions of TaARF23-A1 and TaARF23-A2. CS: Chinese Spring. b-c: the relative expression level of TaARF23-A1 and TaARF23-A2 in young spikes of SY95-71 and CH7034; ***: P < 0.001, ****: P < 0.0001. d: sequencing results of PCR products amplified by primers P1 and P2 in CH7034 (CH) and SY95-71 (SY). e: the InDel marker of TaARF23-A; M: DNA ladder marker; arrows indicate polymorphic bands."

Fig. 6

Correlation analysis between genotypes of InDel marker and phenotypes of spike in RILs population under six environments S: SY-type band; C: CH-type band; 14C: Chengdu in 2014; 15C: Chengdu in 2015; 16Y1: plot 1 in Yuncheng in 2016; 16Y2: plot 2 in Yuncheng in 2016; 15L: Linfen in 2015; 16L: Linfen in 2016; BLUP: average data for six environments; *: P < 0.05; **: P < 0.01; ****: P < 0.0001."

Fig. 7

Predictive target genes for TaARF23-A a: TaARF23-A regulates TaIAA positively; b: TaARF23-A nega-tively regulates TaSAUR. Transcriptic data of TaSAUR was screened by | log2 (FPKMSY/FPKMCH) | ≤ 1. The vertical bar in the pro-moter region represents the binding element AuxRE of the ARF protein."

[1] Luo X M, Yang Y M, Lin X L, Xiao J. Deciphering spike architecture formation towards yield improvement in wheat. J Genet Genomics, 2023, 50: 835-845.
doi: 10.1016/j.jgg.2023.02.015
[2] Zhang D, Yuan Z. Molecular control of grass inflorescence development. Annu Rev Plant Biol, 2014, 65: 553-578.
doi: 10.1146/annurev-arplant-050213-040104 pmid: 24471834
[3] Qi P F, Jiang Y F, Guo Z R, Chen Q, Ouellet T, Zong L J, Wei Z Z, Wang Y, Zhang Y Z, Xu B J, Kong L, Deng M, Wang J R, Chen G Y, Jiang Q T, Lan X J, Li W, Wei Y M, Zheng Y L. Transcriptional reference map of hormone responses in wheat spikes. BMC Genomics, 2019, 20: 390.
doi: 10.1186/s12864-019-5726-x
[4] Di D W, Zhang C G, Luo P, An C W, Guo G Q. The biosynthesis of auxin: how many paths truly lead to IAA? Plant Growth Regul, 2016, 78: 275-285.
doi: 10.1007/s10725-015-0103-5
[5] Youssef H M, Eggert K, Koppolu R, Alqudah A M, Poursarebani N, Fazeli A, Sakuma S, Tagiri A, Rutten T, Govind G, Lundqvist U, Graner A, Komatsuda T, Sreenivasulu N, Schnurbusch T. VRS2 regulates hormone-mediated inflorescence patterning in barley. Nat Genet, 2017, 49: 157-161.
doi: 10.1038/ng.3717 pmid: 27841879
[6] Youssef H M, Hansson M. Crosstalk among hormones in barley spike contributes to the yield. Plant Cell Rep, 2019, 38: 1013-1016.
doi: 10.1007/s00299-019-02430-0 pmid: 31139893
[7] Zwirek M, Waugh R, McKim S M. Interaction between row-type genes in barley controls meristem determinacy and reveals novel routes to improved grain. New Phytol, 2019, 221: 1950-1965.
doi: 10.1111/nph.15548 pmid: 30339269
[8] Li Y P, Fu X, Zhao M, Zhang W, Li B, An D, Li J, Zhang A, Liu R, Liu X G. A genome-wide view of transcriptome dynamics during early spike development in bread wheat. Sci Rep, 2018, 8: 15338.
doi: 10.1038/s41598-018-33718-y pmid: 30337587
[9] Zhu Y, Wagner D. Plant inflorescence architecture: the formation, activity, and fate of axillary meristems. Cold Spring Harb Perspect Biol, 2020, 12: a034652.
doi: 10.1101/cshperspect.a034652
[10] Shi X, Cui F, Han X, He Y, Zhao L, Zhang N, Zhang H, Zhu H, Liu Z, Ma B, Zheng S, Zhang W, Liu J, Fan X, Si Y, Tian S, Niu J, Wu H, Liu X, Chen Z, Meng D, Wang X, Song L, Sun L, Han J, Zhao H, Ji J, Wang Z, He X, Li R, Chi X, Liang C, Niu B, Xiao J, Li J, Ling H Q. Comparative genomic and transcriptomic analyses uncover the molecular basis of high nitrogen-use efficiency in the wheat cultivar Kenong 9204. Mol Plant, 2022, 15: 1440-1456.
doi: 10.1016/j.molp.2022.07.008
[11] Zadoks J C, Chang T T, Konzak C F. A decimal code for the growth stages of cereals. Weed Res, 1974, 14: 415-421.
doi: 10.1111/wre.1974.14.issue-6
[12] 杨足君, 舒焕麟, 李光蓉. 利用种子储藏蛋白电泳分析小麦材料SY95-71及其亲本的遗传变异. 四川农业大学学报, 2000, 18(1): 7-10.
Yang Z J, Shu H L, Li G R. Genetic variations of seed storage protein in wheat line SY95-71 and its parents. J Sichuan Agric Univ, 2000, 18(1): 7-10 (in Chinese with English abstract).
[13] 张潇文, 李世姣, 张晓军, 李欣, 杨足君, 张树伟, 陈芳, 常利芳, 郭慧娟, 畅志坚, 乔麟轶. 小麦品系CH7034中耐盐QTL定位. 作物学报, 2022, 48: 2654-2662.
doi: 10.3724/SP.J.1006.2022.11074
Zhang X W, Li S J, Zhang X J, Li X, Yang Z J, Zhang S W, Chen F, Chang L F, Guo H J, Chang Z J, Qiao L Y. QTL mapping for salt tolerance in wheat line CH7034. Acta Agron Sin, 2022, 48: 2654-2662 (in Chinese with English abstract).
[14] Qiao L Y, Zhang W P, Li X Y, Zhang L, Zhang X J, Li X, Guo H J, Ren Y K, Zheng J, Chang Z J. Characterization and expression patterns of auxin response factors in wheat. Front Plant Sci, 2018, 9: 1395.
doi: 10.3389/fpls.2018.01395 pmid: 30283490
[15] Israeli A, Reed J W, Ori N. Genetic dissection of the auxin response network. Nat Plants, 2020, 6: 1082-1090.
doi: 10.1038/s41477-020-0739-7 pmid: 32807951
[16] Bargmann B O, Vanneste S, Krouk G, Nawy T, Efroni I, Shani E, Choe G, Friml J, Bergmann D C, Estelle M, Birnbaum K D. A map of cell type-specific auxin responses. Mol Syst Biol, 2013, 9: 688.
doi: 10.1038/msb.2013.40 pmid: 24022006
[17] Du M, Bou Daher F, Liu Y, Steward A, Tillmann M, Zhang X, Wong J H, Ren H, Cohen J D, Li C, Gray W M. Biphasic control of cell expansion by auxin coordinates etiolated seedling development. Sci Adv, 2022, 8: eabj1570.
doi: 10.1126/sciadv.abj1570
[18] Hayashi K I, Arai K, Aoi Y, Tanaka Y, Hira H, Guo R, Hu Y, Ge C, Zhao Y, Kasahara H, Fukui K. The main oxidative inactivation pathway of the plant hormone auxin. Nat Commun, 2021, 12: 6752.
doi: 10.1038/s41467-021-27020-1
[19] Xiong L, Huang Y, Liu Z, Li C, Yu H, Shahid M Q, Lin Y, Qiao X, Xiao J, Gray J E, Jin J. Small EPIDERMAL PATTERNING FACTOR-LIKE2 peptides regulate awn development in rice. Plant Physiol, 2022, 190: 516-531.
doi: 10.1093/plphys/kiac278 pmid: 35689635
[20] Ochagavia H, Prieto P, Savin R, Griffiths S, Slafer G. Dynamics of leaf and spikelet primordia initiation in wheat as affected by Ppd-1a alleles under field conditions. J Exp Bot, 2018, 69: 2621-2631.
doi: 10.1093/jxb/ery104
[21] Chen Z, Cheng X, Chai L, Wang Z, Du D, Wang Z, Bian R, Zhao A, Xin M, Guo W, Hu Z, Peng H, Yao Y, Sun Q, Ni Z. Pleiotropic QTL influencing spikelet number and heading date in common wheat (Triticum aestivum L.). Theor Appl Genet, 2020, 133: 1825-1838.
doi: 10.1007/s00122-020-03556-6
[22] Dobrovolskaya O, Pont C, Sibout R, Martinek P, Badaeva E, Murat F, Chosson A, Watanabe N, Prat E, Gautier N, Gautier V, Poncet C, Orlov Y L, Krasnikov A A, Bergès H, Salina E, Laikova L, Salse J. FRIZZY PANICLE drives supernumerary spikelets in bread wheat. Plant Physiol, 2015, 167: 189-199
doi: 10.1104/pp.114.250043 pmid: 25398545
[23] 丁浦洋, 周界光, 赵聪豪, 唐华苹, 牟杨, 唐力为, 邓梅, 魏育明, 兰秀锦, 马建. 小麦小穗数调控基因WAPO1的单倍型、遗传效应、地理分布及育种利用分析. 作物学报, 2022, 48: 2196-2209.
doi: 10.3724/SP.J.1006.2022.11078
Ding P Y, Zhou J G, Zhao C H, Tang H P, Mu Y, Tang L W, Deng M, Wei Y M, Lan X J, Ma J. Dissection of haplotypes, geographical distribution and breeding utilization of WAPO1 associated with spike development in wheat. Acta Agron Sin, 2022, 48: 2196-2209 (in Chinese with English abstract).
[24] Chen Z, Ke W, He F, Chai L, Cheng X, Xu H, Wang X, Du D, Zhao Y, Chen X, Xing J, Xin M, Guo W, Hu Z, Su Z, Liu J, Peng H, Yao Y, Sun Q, Ni Z. A single nucleotide deletion in the third exon of FT-D1 increases the spikelet number and delays heading date in wheat (Triticum aestivum L.). Plant Biotechnol J, 2022, 20: 920-933.
doi: 10.1111/pbi.v20.5
[25] Zhang X Y, Jia H Y, Li T, Wu J Z, Nagarajan R, Lei L, Powers C, Kan C C, Hua W, Liu Z Y, Chen C, Carver B F, Yan L L. TaCol-B5 modifies spike architecture and enhances grain yield in wheat. Science, 2022, 376: 180-183.
doi: 10.1126/science.abm0717
[26] 张宏娟, 李玉莹, 苗丽丽, 王景一, 李超男, 杨德龙, 毛新国, 景蕊莲. 小麦转录因子基因TaNAC67参与调控穗长和每穗小穗数. 作物学报, 2019, 45: 1615-1627.
doi: 10.3724/SP.J.1006.2019.91009
Zhang H J, Li Y Y, Miao L L, Wang J Y, Li C N, Yang D L, Mao X G, Jing R L. Transcription factor gene TaNAC67 involved in regulation spike length and spikelet number per spike in common wheat. Acta Agron Sin, 2019, 45: 1615-1627 (in Chinese with English abstract).
[27] Li Y, Xiao J, Wu J, Duan J, Liu Y, Ye X, Zhang X, Guo X, Gu Y, Zhang L, Jia J, Kong X. A tandem segmental duplication (TSD) in green revolution gene Rht-D1b region underlies plant height variation. New Phytol, 2012, 196: 282-291.
doi: 10.1111/nph.2012.196.issue-1
[28] Wang M, Yuan J, Qin L, Shi W, Xia G, Liu S. TaCYP81D5, one member in a wheat cytochrome P450 gene cluster, confers salinity tolerance via reactive oxygen species scavenging. Plant Biotechnol J, 2020, 18: 791-804.
doi: 10.1111/pbi.v18.3
[29] Jia M, Li Y, Wang Z, Tao S, Sun G, Kong X, Wang K, Ye X, Liu S, Geng S, Mao L, Li A. TaIAA21 represses TaARF25-mediated expression of TaERFs required for grain size and weight development in wheat. Plant J, 2021, 108: 1754-1767.
doi: 10.1111/tpj.v108.6
[30] Yin H, Li M, Lyu M, Hepworth S R, Li D, Ma C, Li J, Wang S M. SAUR15 promotes lateral and adventitious root development via activating H+-ATPases and auxin biosynthesis. Plant Physiol, 2020, 184: 837-851.
doi: 10.1104/pp.19.01250 pmid: 33890042
[31] Guilfoyle T J, Hagen G. Auxin response factors. Curr Opin Plant Biol, 2007, 10: 453-460.
doi: 10.1016/j.pbi.2007.08.014 pmid: 17900969
[32] Hu J, Li X, Sun T P. Four class A AUXIN RESPONSE FACTORs promote tomato fruit growth despite suppressing fruit set. Nat Plants, 2023, 9: 706-719.
doi: 10.1038/s41477-023-01396-y pmid: 37037878
[1] HAO Qian-Lin, YANG Ting-Zhi, LYU Xin-Ru, QIN Hui-Min, WANG Ya-Lin, JIA Chen-Fei, XIA Xian-Chun, MA Wu-Jun, XU Deng-An. QTL mapping and GWAS analysis of coleoptile length in bread wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 590-602.
[2] JU Ji-Hao, MA Chao, WANG Tian-Ning, WU Yi, DONG Zhong, FANG Mei-E, CHEN Yu-Shu, ZHANG Jun, FU Guo-Zhan. Genome wide identification and expression analysis of TaPOD family in wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 779-792.
[3] ZHAO Rong-Rong, CONG Nan, ZHAO Chuang. Optimal phase selection for extracting distribution of winter wheat and summer maize over central subregion of Henan Province based on Landsat 8 imagery [J]. Acta Agronomica Sinica, 2024, 50(3): 721-733.
[4] ZHANG Bao-Hua, LIU Jia-Jing, TIAN Xiao, TIAN Xu-Zhao, DONG Kuo, WU Yu-Jie, XIAO Kai, LI Xiao-Juan. Cloning, expression and functional analysis of wheat (Triticum aestivum L.) TaSPX1 gene in low nitrogen stress tolerance [J]. Acta Agronomica Sinica, 2024, 50(3): 576-589.
[5] FAN Zi-Pei, LI Long, SHI Yu-Gang, SUN Dai-Zhen, LI Chao-Nan, JING Rui-Lian. Cloning of TabHLH112-2B gene and development of its functional marker associated with the number of spikelet per spike in wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 403-413.
[6] KE Hui-Feng, SU Hong-Mei, SUN Zheng-Wen, GU Qi-Shen, YANG Jun, WANG Guo-Ning, XU Dong-Yong, WANG Hong-Zhe, WU Li-Qiang, ZHANG Yan, ZHANG Gui-Yin, MA Zhi-Ying, WANG Xing-Fen. Identification for yield and fiber quality traits and evaluation of molecular markers in modern cotton varieties [J]. Acta Agronomica Sinica, 2024, 50(2): 280-293.
[7] CHEN Tian, LI Yu-Ying, RONG Er-Hua, WU Yu-Xiang. Character identification and floral organ transcriptome analysis on artificial allotetraploids of Gossypium hirsutum L. [J]. Acta Agronomica Sinica, 2024, 50(2): 325-339.
[8] ZHANG Kang, NIE Zhi-Gang, WANG Jun, LI Guang. Sensitivity analysis and optimization of spring wheat grain growth parameters under APSIM model with the increase of temperature [J]. Acta Agronomica Sinica, 2024, 50(2): 464-477.
[9] LI Yan, FANG Yu-Hui, WANG Yong-Xia, PENG Chao-Jun, HUA Xia, QI Xue-Li, HU Lin, XU Wei-Gang. Transcriptomics profile of transgenic OsPHR2 wheat under different phosphorus stress [J]. Acta Agronomica Sinica, 2024, 50(2): 340-353.
[10] XIE Wei, HE Peng, MA Hong-Liang, LEI Fang, HUANG Xiu-Lan, FAN Gao-Qiong, YANG Hong-Kun. Effects of straw mulching from autumn fallow and phosphorus application on nitrogen uptake and utilization of winter wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 440-450.
[11] LI Yu-Jia, XU Hao, YU Shi-Nan, TANG Jian-Wei, LI Qiao-Yun, GAO Yan, ZHENG Ji-Zhou, DONG Chun-Hao, YUAN Yu-Hao, ZHENG Tian-Cun, YIN Gui-Hong. Genetic analysis of elite stripe rust resistance genes of founder parent Zhou 8425B in its derived varieties [J]. Acta Agronomica Sinica, 2024, 50(1): 16-31.
[12] ZHANG Li-Hua, ZHANG Jing-Ting, DONG Zhi-Qiang, HOU Wan-Bin, ZHAI Li-Chao, YAO Yan-Rong, LYU Li-Hua, ZHAO Yi-An, JIA Xiu-Ling. Effect of water management on yield and its components of winter wheat in different precipitation years [J]. Acta Agronomica Sinica, 2023, 49(9): 2539-2551.
[13] ZHANG Diao-Liang, YANG Zhao, HU Fa-Long, YIN Wen, CHAI Qiang, FAN Zhi-Long. Effects of multiple cropping green manure on grain quality and yield of wheat with different irrigation levels [J]. Acta Agronomica Sinica, 2023, 49(9): 2572-2581.
[14] SU Zai-Xing, HUANG Zhong-Qin, GAO Run-Fei, ZHU Xue-Cheng, WANG Bo, CHANG Yong, LI Xiao-Shan, DING Zhen-Qian, YI Yuan. Identification of wheat dwarf mutant Xu1801 and analysis of its dwarfing effect [J]. Acta Agronomica Sinica, 2023, 49(8): 2133-2143.
[15] YANG Xiao-Hui, WANG Bi-Sheng, SUN Xiao-Lu, HOU Jin-Jin, XU Meng-Jie, WANG Zhi-Jun, FANG Quan-Xiao. Modeling the response of winter wheat to deficit drip irrigation for optimizing irrigation schedule [J]. Acta Agronomica Sinica, 2023, 49(8): 2196-2209.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .