Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (3): 695-708.doi: 10.3724/SP.J.1006.2024.34097


Effects of biochar application on dry matter accumulation, transport, and distribution of foxtail millet and soil physicochemical properties

LI Bo-Yang1(), YE Yin2, CHU Rui-Wen1, JING Miao3, ZHANG Sui-Qi4, YAN Jia-Kun1,*()   

  1. 1College of Life Sciences, Yulin University, Yulin 719000, Shaanxi, China
    2Jiujiang Academy of Agricultural Sciences, Jiujiang 332000, Jiangxi, China
    3Yulin Academy of Agricultural Sciences, Yulin 719000, Shaanxi, China
    4State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, Shaanxi, China
  • Received:2023-06-09 Accepted:2023-09-13 Online:2024-03-12 Published:2023-09-27
  • Contact: *E-mail: himingse@163.com
  • Supported by:
    National Natural Science Foundation of China(31960223);Key Research and Development Program of Shaanxi Province(2021NY-101);Shaanxi Youth Science and Technology New Star Project(2023KJXX-072);Young Talent Support Program of Shaanxi University, the China Agriculture Research System of MOF and MARA(CARS-06-14.5-B27);Graduate Innovation Fund Project of Yulin University(2023YLYCX08)


Foxtail millet is an important minor crop in North China. Biochar could increase the yield production of foxtail millet, but the effects of biochar on the dry matter accumulation and transport of foxtail millet and the soil physical and chemical properties have not been studied detailly. To explore the effects of biochar adding on dry matter accumulation, transport, and distribution in foxtail millet and soil, a new reclamation land in Mu Us desert was selected to conduct a field experiment in 2021 and 2022 with ‘Yugukang 1’ as the experimental material. In this experiment, there were one control group (CK, biochar addition 0 t hm-2) and 3 test groups with 3.0 t hm-2 (C1), 4.5 t hm-2 (C2), and 6.0 t hm-2 (C3), respectively. The results showed that, compared with CK, the grain yield and the total dry material quality were significantly increased by 12.22%-53.70% and 9.62%-40.62%, respectively. Biochar application significantly increased the dry weight of foxtail millet leaves from the top one leaf (flag leaf) to the top thirteen leaves at 0 (flowering stage), 7, 14, 21, 28, and 45 days after flowering. Biochar increased the net photosynthetic rate at flowering stage, the amount of assimilates accumulated after flowering, the contribution rate of assimilates accumulated after flowering to grain yield, and the dry matter distribution ratio of ears at harvest, but the latter three indexes showed a slight downward trend with the increase application amount of biochar. The total dry matter distribution ratio of stems and leaves at harvest stage decreased and 1000-grain weight and harvest index increased first and then decreased with the increase application amount of biochar. Correlation analysis revealed that there was a significant positive correlation between foxtail millet yield and stem weight at harvest stage (R2 = 0.68), the total above-ground weight at harvest stage (R2 = 0.71), and the total plant weight at harvest stage (R2 = 0.70). Biochar application could also effectively improve the activities of soil catalase, urease, and sucrase, and significantly increase the content of soil available nitrogen and phosphorus, among which C2 (4.5 t hm-2) treatment had a greater improvement. In conclusion, biochar could improve soil quality, increase net photosynthetic rate of foxtail millet at flowering stage, increase the accumulation of photosynthetic products in vegetative organs after flowering, and increase the proportion of dry matter distribution in ears, so as to increase yield of foxtail millet finally.

Key words: biochar, foxtail millet, dry matter, yield, soil physiochemical properties

Table 1

Properties of biochar, loessal soil, and sandy soil"

Soil type
Sand (%)
Silt (%)
Clay (%)
(g cm-3)
TN (%)
TP (%)
OM (%)
沙土 Sand soil 94.5 4.4 1.1 1.72 0.07 0.23 0.15
黄土 Loessal soil 8.8 69.1 22.1 1.62 0.12 0.32 0.25
生物炭 Biochar 0.35 1.40 0.46 50.60

Fig. 1

Effects of biochar application on flag leaf photosynthetic parameters of foxtail millet CK: biochar addition 0 t hm-2; C1: biochar addition 3.0 t hm-2; C2: biochar addition 4.5 t hm-2; C3: biochar addition 6.0 t hm-2. Different lowercase letters in the same phase indicate significant differences at P < 0.05. * and ** represent significant differences at the 0.05 and 0.01 probability levels, respectively. Y represents the year, T represents the different treatment, and Y×T represents the cross-action of the year and the treatment."

Fig. 2

Effect of biochar application on dry matter accumulation of millet A-M represent millet inverted one leaf (flag leaf), inverted two leaves, inverted three leaves, inverted four leaves, inverted five leaves, inverted six leaves, inverted seven leaves, inverted eight leaves, inverted nine leaves, inverted ten leaves, inverted eleven leaves, inverted twelve leaves, and inverted thirteen leaves, respectively. N, O, and P represent the changes in leaf weight, stem weight, and panicle weight of a single plant during millet harvest period. Treatments are the same as those given in Fig. 1."

Table 2

Effects of biochar application on leaf weight, stem weight, and gross aboveground weight of millet at flowering stage"

Stem weight
(g plant-1)
Leaf weight
(g plant-1)
Gross aboveground weight
(g plant-1)
2021 CK 10.64±3.04 a 5.05±1.32 a 19.95±5.67 a
C1 10.70±3.21 a 5.21±1.54 a 19.27±5.67 a
C2 8.33±0.70 a 4.16±0.12 a 15.09±1.15 a
C3 9.03±0.40 a 4.71±0.58 a 16.10±1.51 a
2022 CK 12.59±0.76 a 5.58±0.28 a 21.70±1.34 a
C1 12.91±1.54 a 6.09±0.65 a 23.06±2.63 a
C2 12.96±0.06 a 6.19±0.63 a 23.28±0.93 a
C3 13.37±0.40 a 6.39±0.13 a 23.92±0.64 a
年份Year 0.003 0.010 0.006
生物炭施加量Amount of biochar applied (BCA) NS NS NS
年份×生物炭施加量Year×BCA NS NS NS

Table 3

Effects of biochar application on leaf weight, stem weight, and gross above-ground weight of millet harvest"

Stem weight
(g plant-1)
Leaf weight
(g plant-1)
Gross aboveground weight
(g plant-1)
2021 CK 7.23±1.59 b 3.28±1.23 a 28.01±7.39 a
C1 10.87±1.40 ab 3.79±0.82 a 37.29±7.70 a
C2 13.17±0.62 a 4.16±0.35 a 39.39±0.57 a
C3 11.53±1.85 ab 3.65±0.66 a 32.70±7.79 a
2022 CK 11.91±2.10 a 4.04±0.78 a 29.55±6.05 a
C1 11.97±2.65 a 4.24±1.12 a 32.40±9.21 a
C2 12.06±2.23 a 4.40±0.72 a 33.32±3.85 a
C3 14.94±2.19 a 4.46±0.94 a 39.04±6.53 a
年份Year NS NS NS
生物炭施加量Amount of biochar applied (BCA) NS NS NS
年份×生物炭施加量 Year×BCA NS NS NS

Fig. 3

Effect of biochar application on dry matter transport of millet Different lowercase letters in the same phase indicate significant differences at P < 0.05. Treatments are the same as those given in Fig. 1."

Fig. 4

Effects of biochar application on the proportion of dry matter distribution in various vegetative organs at flowering and harvest stages of millet Different lowercase letters in the same phase indicate significant differences at P < 0.05. Treatments are the same as those given in Fig. 1."

Table 4

Effects of biochar application on millet yield, 1000-seed weight, and harvest index"

Yield (kg hm-2)
1000-seed weight (g)
Harvest index (%)
2021 CK 3409.83±246.27 b 2.46±0.02 a 0.26±0.09 a
C1 3826.67±149.93 ab 2.44±0.06 a 0.21±0.05 a
C2 4093.50±457.87 a 2.30±0.03 b 0.20±0.02 a
C3 4249.83±109.28 a 2.40±0.03 a 0.26±0.06 a
2022 CK 3092.67±175.23 c 2.71±0.01 b 0.21±0.04 a
C1 3931.67±289.44 b 2.72±0.00 b 0.25±0.06 a
C2 4246.50±606.44 ab 2.76±0.01 a 0.25±0.02 a
C3 4753.50±433.89 a 2.68±0.01 c 0.23±0.04 a
年份Year NS NS NS
生物炭施加量Amount of biochar applied (BCA) 0 0 NS
年份×生物炭施加量 Year×BCA NS 0.007 NS

Table 5

Correlation of yield, biomass, and photosynthetic parameters"

FPPn 0.44 0.40 0.61 0.68* 0.61 0.60 0.03 0.80** 0.68* 0.37 0.28 0.80** 0.53 0.93** 0.83** 0.84** 0.76*
FPTr 0.97** −0.35 0.90** −0.35 0.54 −0.71* 0.44 0.17 −0.43 −0.52 0.86** 0.48 0.70* 0.84** 0.78* 0.84**
FPGs −0.40 0.91** −0.40 0.53 −0.71* 0.40 0.02 −0.49 −0.57 0.85** 0.49 0.70* 0.82** 0.77* 0.82**
HPGY −0.08 1.00** 0.32 0.52 0.53 0.68* 0.71* 0.70* 0.03 −0.01 0.31 0.09 0.13 0.00
HPTSW −0.08 0.51 −0.62 0.49 0.19 -0.35 −0.43 0.95** 0.49 0.89** 0.92** 0.88** 0.88**
HPSY 0.32 0.52 0.53 0.68* 0.71* 0.70* 0.03 −0.01 0.31 0.09 0.13 0.00
HPFLH −0.10 0.92** 0.69* 0.28 0.21 0.58 0.20 0.60 0.62 0.56 0.54
HPSPW 0.14 0.32 0.89** 0.92** −0.41 −0.16 −0.27 −0.36 −0.31 −0.39
HPLW 0.84** 0.53 0.45 0.64* 0.34 0.71* 0.70* 0.66* 0.62
HPSW 0.71* 0.65* 0.35 0.10 0.45 0.42 0.38 0.34
HPGAW 0.99** −0.11 −0.05 0.04 −0.04 −0.03 −0.10
HPPW −0.21 −0.13 −0.05 −0.14 −0.13 −0.21
FPFLW 0.66* 0.95** 0.99** 0.97** 0.97**
FPSPW 0.63* 0.69* 0.79** 0.81**
FPLW 0.96** 0.96** 0.91**
FPSTW 0.99** 0.98**
FPGAW 0.99**

Fig. 5

Effects of amounts of biochar on soil physicochemical properties Different lowercase letters in the same phase indicate significant differences at P < 0.05. ** and ** represent significant differences at the 0.05 and 0.01 probability levels, respectively. Y represents the year, T represents the different treatment, and Y×T represents the cross-action of the year and the treatment. Treatments are the same as those given in Fig. 1."

Fig. 6

Effects of biochar application amounts on soil enzyme activity Different lowercase letters in the same phase indicate significant differences at P < 0.05. * and ** represent significant differences at the 0.05 and 0.01 probability levels, respectively. Y represents the year, T represents the different treatment, and Y×T represents the cross-action of the year and the treatment. Treatments are the same as those given in Fig. 1."

[1] 吕厚远. 中国史前农业起源演化研究新方法与新进展. 中国科学: 地球科学, 2018, 48(2): 181-199.
Lyu H Y. New methods and progress in research on the origins and evolution of prehistoric agriculture in China. Sci China Earth Sci, 2018, 48(2): 181-199 (in Chinese with English abstract).
[2] 严加坤, 张宁宁, 张岁岐. 谷子对干旱胁迫的生理生态响应. 生态学报, 2021, 41: 8612-8622.
Yan J K, Zhang N N, Zhang S Q. Physiological and ecological responses of foxtail millet to drought stress. Acta Ecol Sin, 2021, 41: 8612-8622 (in Chinese with English abstract).
[3] 王海岗, 温琪汾, 穆志新, 乔治军. 山西谷子核心资源群体结构及主要农艺性状关联分析. 中国农业科学, 2019, 52: 4088-4099.
doi: 10.3864/j.issn.0578-1752.2019.22.013
Wang H G, Wen Q F, Mu Z X, Qiao Z J. Population structure and association analysis of main agronomic traits of Shanxi core collection in foxtail millet. Sci Agric Sin, 2019, 52: 4088-4099 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2019.22.013
[4] 李涌泉, 金赟, 李佳月, 孙学良, 陈树俊. 晋北谷子农艺和营养品质性状的相关性分析. 中国农学通报, 2022, 38(29): 22-30.
doi: 10.11924/j.issn.1000-6850.casb2021-1037
Li Y Q, Jin Y, Li J Y, Sun X L, Chen S J. Correlation analysis of agronomic and nutrient quality characters of millet in northern Shanxi. Chin Agric Sci Bull, 2022, 38(29): 22-30 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb2021-1037
[5] 陈温福, 张伟明, 孟军. 农用生物炭研究进展与前景. 中国农业科学, 2013, 46: 3324-3333.
doi: 10.3864/j.issn.0578-1752.2013.16.003
Chen W F, Zhang W M, Meng J. Advances and prospects in research of biochar utilization in agriculture. Sci Agric Sin, 2013, 46: 3324-3333 (in Chinese with English abstract).
[6] 张伟明, 管学超, 黄玉威, 孙大荃, 孟军, 陈温福. 生物炭与化学肥料互作的大豆生物学效应. 作物学报, 2015, 41: 109-122.
doi: 10.3724/SP.J.1006.2015.00109
Zhang W M, Guan X C, Huang Y W, Sun D Q, Meng J, Chen W F. Biological effects of biochar and fertilizer interaction in soybean plant. Acta Agron Sin, 2015, 41: 109-122 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2015.00109
[7] Michael E, Innecent Y D L, Daniel E D, Deogratius L. Agro- industrial waste biochar abated nitrogen leaching from tropical sandy soils and boosted dry matter accumulation in maize. C J Carbon Res, 2023, 9: 34.
doi: 10.3390/c9010034
[8] 李玉, 汤家喜, 梁伟静, 于小玉, 向彪, 谭婷. 生物炭和膨润土改良风沙土理化性质及对玉米农艺性状的影响. 干旱区资源与环境, 2023, 37(6): 164-174.
Li Y, Tang J X, Liang W J, Yu X Y, Xiang B, Tan T. Improvement of physicochemical properties of aeolian sandy soil by biochar and bentonite and its effect on maize agronomical traits. J Arid Environ, 2023, 37(6): 164-174 (in Chinese with English abstract).
[9] Nguyen B T, Van N. Biochar addition balanced methane emissions and rice growth by enhancing the quality of paddy soil. J Soil Sci Plant Nutr, 2023, https://doi.org/10.1007/s42729-023-01249-9 (Online)
[10] Prakriti B, Rajan G, Stephen M, Larry P. Biochar effects on soil properties and wheat biomass vary with fertility management. Agron J, 2019, 9: 623-633.
[11] 张方娟, 宋雪英, 张玉兰, 魏建兵. 生物炭在土壤中的生态效应研究进展. 生态科学, 2023, 42(3): 241-248.
Zhang F J, Song X Y, Zhang Y L, Wei J B. Research advances in the ecological effect of biochar in soil. Ecol Sci, 2023, 42(3): 241-248 (in Chinese with English abstract).
[12] Zheng X M, Xu W H, Dong J, Yang T, Shang Guan Z C, Qu J, Li X, Tan X F. The effects of biochar and its applications in the microbial remediation of contaminated soil: a review. J Hazard Mater, 2022, 438: 129557.
doi: 10.1016/j.jhazmat.2022.129557
[13] 李文杰, 左翔之, 王建, 秦超, 高彦征. 生物炭施用土壤的固碳减排效应及机制. 中国环境科学, 2023, DOI:10.19674/j.cnki.issn1000-6923.20230529.017.
Li W J, Zuo X Z, Wang J, Qin C, Gao Y Z. Effect and mechanism of biochar application on soil carbon sequestration and mitigation. China Environ Sci, 2023, DOI:10.19674/j.cnki.issn1000-6923.20230529.017(Online, in Chinese with English abstract).
[14] 李彩斌, 王琛, 康俊, 郭丰磊, 何轶, 罗贞宝, 王兴, 李贵桐. 穴施生物炭对烤烟根区土壤生物学性质的影响. 土壤通报, 2023, 54(1): 107-116.
Li C B, Wang C, Kang J, Guo F L, He Y, Luo B Z, Wang X, Li G T. Effects of biochar application at root zone on soil biological properties in flue-cured tobacco field. Chin J Soil Sci, 2023, 54(1): 107-116 (in Chinese with English abstract).
[15] Ali E N, Naveed A, Ahmed M, Nabeel K N, Balal Y, Anket S, Binoy S, Cai Y J, Chang S X. Nickel in soil and water: Sources, biogeochemistry, and remediation using biochar. J Hazard Mater, 2021, 419: 126421.
doi: 10.1016/j.jhazmat.2021.126421
[16] 张皓钰, 刘竞, 易军, 刘秀芸, 陈露, 刘目兴, 张海林. 生物质炭短期添加对不同类型土壤水力性质的影响. 土壤, 2022, 54: 396-405.
Zhang H Y, Liu J, Yi J, Liu X Y, Chen L, Liu M X, Zhang H L. Effects of short-termed biochar application on hydraulic properties of different types of soils. Soils, 2022, 54: 396-405 (in Chinese with English abstract).
[17] Yu H W, Zou W X, Chen J J, Chen H, Yu Z B, Huang J, Tang H R, Wei X Y, Gao B. Biochar amendment improves crop production in problem soils: a review. J Environ Manag, 2019, 232: 8-21.
doi: 10.1016/j.jenvman.2018.10.117
[18] 宋世龙, 杨卫君, 陈雨欣, 贾永红, 李大平, 惠超, 郭颂, 杨梅. 氮肥减量配施生物炭对北疆灌区春小麦光合和干物质转运特性及产量的影响. 麦类作物学报, 2023, 43: 311-320.
Song S L, Yang W J, Chen Y X, Jia Y H, Li D P, Hui C, Guo S, Yang M. Effects of reduced nitrogen fertilizer combined with biochar on photosynthetic characteristics, dry matter accumulation and distribution, and yield of spring wheat in irrigated area of northern Xinjiang. J Triticeae Crops, 2023, 43: 311-320 (in Chinese with English abstract).
[19] 隋鹏祥, 有德宝, 安俊朋, 张文可, 田平, 梅楠, 王美佳, 王沣, 苏思慧, 齐华. 秸秆还田方式与施氮量对春玉米产量及干物质和氮素积累、转运的影响. 植物营养与肥料学报, 2018, 24: 316-324.
Sui P X, You D B, An J P, Zhang W K, Tian P, Mei N, Wang M J, Wang F, Su S H, Qi H. Effects of straw management and nitrogen application on spring maize yield, dry matter and nitrogen accumulation and transfer. J Plant Nutr Fert, 2018, 24: 316-324 (in Chinese with English abstract).
[20] 吴志庄, 杜旭华, 熊德礼, 王树东, 邹跃国, 周妍. 不同类型竹种光合特性的比较研究. 生态环境学报, 2013, 22: 1523-1527.
Wu Z Z, Du X H, Xiong D L, Wang S D, Zou Y G, Zhou Y. A comparative study on photosynthetic characteristics of different types of bamboos. Ecol Environ Sci, 2013, 22: 1523-1527 (in Chinese with English abstract).
[21] 张向前, 赵秀玲, 王钰乔, 濮超, 保尔江·马合木提, 陈阜, 张海林. 耕作方式对冬小麦灌浆期光合性能日变化和籽粒产量的影响. 应用生态学报, 2017, 28: 885-893.
doi: 10.13287/j.1001-9332.201703.020
Zhang X Q, Zhao X L, Wang YQ, Pu C, Baoer J M, Chen F, Zhang H L. Effects of tillage practices on photosynthetic performance diurnal variation during filling stage and grain yield of winter wheat. Chin J Appl Ecol, 2017, 28: 885-893 (in Chinese with English abstract).
[22] Huang L Y, Yang D S, Li X X, Peng S B, Wang F. Coordination of high grain yield and high nitrogen use efficiency through large sink size and high post-heading source capacity in rice. Field Crops Res, 2019, 233: 49-58.
doi: 10.1016/j.fcr.2019.01.005
[23] 汤永禄, 李朝苏, 吴晓丽, 吴春, 杨武云, 黄钢, 马孝玲. 人工合成小麦衍生品种的物质积累、冠层结构及群体光合特性. 中国农业科学, 2014, 47: 844-855.
doi: 10.3864/j.issn.0578-1752.2014.05.002
Tang Y L, Li C S, Wu X l, Wu C, Yang W Y, Huang G, Ma X L. Accumulation of dry matter, canopy structure and photosynthesis of synthetic hexaploid wheat-derived high-yielding varieties grown in sichuan basin, China. Sci Agric Sin, 2014, 47: 844-855 (in Chinese with English abstract).
[24] 徐田军, 吕天放, 赵久然, 王荣焕, 陈传永, 刘月娥, 刘秀芝, 王元东, 刘春阁. 玉米生产上3个主推品种光合特性、干物质积累转运及灌浆特性. 作物学报, 2018, 44: 414-422.
doi: 10.3724/SP.J.1006.2018.00414
Xu T J, Lyu T F, Zhao J R, Wang R H, Chen C Y, Liu Y E, Liu X Z, Wang Y D, Liu C G. Photosynthetic characteristics, dry matter accumulation and translocation, grain filling parameter of three main maize varieties in production. Acta Agron Sin, 2018, 44: 414-422 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.00414
[25] 吕军, 王伯伦, 孟维韧, 赵凤艳. 不同穗型粳稻的光合作用与物质生产特性. 中国农业科学, 2007, 40: 902-908.
Lyu J, Wang B L, Meng W R, Zhao F Y. The characteristics of photosynthesis and dry matter production in japonica rice cultivars with different type panicles. Sci Agric Sin, 2007, 40: 902-908 (in Chinese with English abstract).
[26] Long S P. Photosynthesis engineered to increase rice yield. Nat Food, 2020, 1: 105.
doi: 10.1038/s43016-020-0038-5 pmid: 37127996
[27] Liu X N, Zhang J, Wang Q, Chang T T, Shaghaleh H, Hamoud Y A. Improvement of photosynthesis by biochar and vermicompost to enhance tomato (Solanum lycopersicum L.) yield under greenhouse conditions. Plants, 2022, 11: 3214.
doi: 10.3390/plants11233214
[28] 赵辉, 庞桂斌, 丛鑫, 薛建文, 张立志, 宋立庆, 董文旭, 徐征和. 不同灌溉定额下施加生物炭对夏玉米光合特性及产量的影响. 节水灌溉, 2022, (8): 16-23.
Zhao H, Pang G B, Cong X, Xue J W, Zhang L Z, Song L Q, Dong W X, Xu Z H. Effects of biochar application on photosynthetic characteristics and yield of summer maize under different irrigation rates. Water Save Irrig, 2022, (8): 16-23 (in Chinese with English abstract).
[29] 刘慧敏, 张圣也, 郭怀刚, 林俊俊, 李佐同, 闫凤超, 朱广石, 徐晶宇, 赵长江. 生物炭对谷子幼苗生长及光合特性的影响. 干旱地区农业研究, 2020, 38(1): 86-91.
Liu H M, Zhang S Y, Guo H G, Lin J J, Li Z T, Yan F C, Zhu G S, Xu J Y, Zhao C J. Effects of biochar supplement in soil on growth and photosynthetic characteristics of millet seedlings. Agric Res Arid Areas, 2020, 38(1): 86-91 (in Chinese with English abstract).
[30] 吴迪, 袁鹤翀, 顾闻琦, 冯志波, 孙媛媛, 修立群, 张伟明, 陈温福. 生物炭介导的连作大豆光合生理代谢及产量响应. 农业环境科学学报, 2023, 42(1): 37-45.
Wu D, Yuan H C, Gu W Q, Feng Z B, Sun Y Y, Xiu L Q, Zhang W M, Chen W F. Photosynthetic physiological metabolism and yield response of continuous soybean cropping mediated by long- term application of biochar. J Agro-Environ Sci, 2023, 42(1): 37-45 (in Chinese with English abstract).
[31] Ren T, Wang H, Yuan Y, Feng H L, Wang B, Kuang G, Wei Y W, Gao W K, Shi H Z, Liu G S. Biochar increases tobacco yield by promoting root growth based on a three-year field application. Sci Rep, 2021, 11: 21991.
doi: 10.1038/s41598-021-01426-9 pmid: 34754009
[32] 刘妍, 刘兆新, 何美娟, 刘婷如, 杨坚群, 甄晓宇, 栗鑫鑫, 李向东, 杨东清. 冬闲期耕作方式对连作花生叶片衰老和产量的影响. 作物学报, 2019, 45: 131-143.
doi: 10.3724/SP.J.1006.2019.84024
Liu Y, Liu Z X, He M J, Liu T R, Yang J Q, Zhen X Y, Li X X, Li X D, Yang D Q. Effects of tillage modes in winter fallow period on leaf senescence and pod yield in continuous cropping peanut. Acta Agron Sin, 2019, 45: 131-143 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2019.84024
[33] 宋慧, 王涛, 闫宏山, 邢璐, 解慧芳, 李龙, 王淑君, 宋中强, 何庆, 刘金荣, 冯佰利. 不同类型谷子品种(系)光合性能、干物质积累转运和籽粒灌浆特性对产量的影响. 中国农业大学学报, 2022, 27(7): 58-72.
Song H, Wang T, Yan H S, Xing L, Xie H F, Li L, Wang S J, Song Z Q, He Q, Liu J R, Feng B L. Study on the relationship between the photosynthetic characteristics, dry matter accumulation, grain filling parameter and yield of different genotypes foxtail millet cultivars/lines. J China Agric Univ, 2022, 27(7): 58-72 (in Chinese with English abstract).
[34] 程凯乐, 王悦, 高山, 王有武, 罗新宁, 苏青华, 徐项宇. 炭基肥配施化肥与化学调控对棉花生长、干物质积累和产量的影响. 山东农业科学, 2022, 54(11): 86-92.
Cheng K L, Wang Y, Gao S, Wang Y W, Luo X Y, Su Q H, Xu X Y. Effects of carbon based fertilizer combined with chemical fertilizer and chemical regulation on cotton growth, dry matter accumulation and yield. Shandong Agric Sci, 2022, 54(11): 86-92 (in Chinese with English abstract).
[35] 柳瑞, 高阳, 李恩琳, 田纪辉, 蔡昆争. 减氮配施生物炭对水稻生长发育、干物质积累及产量的影响. 生态环境学报, 2020, 29: 926-932.
doi: 10.16258/j.cnki.1674-5906.2020.05.008
Liu R, Gao Y, Li E L, Tian J H, Cai K Z. Effects of reduced nitrogen and biochar application on plant growth, dry matter accumulation and rice yield. Ecol Environ Sci, 2020, 29: 926-932 (in Chinese with English abstract).
[36] 宋明丹, 李正鹏, 詹舒婷, 李飞. 覆膜和生物炭对马铃薯干物质量积累与分配动态的影响. 西北农业学报, 2022, 31: 448-456.
Song M D, Li Z P, Zhan S T, Li F. Effects of film mulching and biochar application on potato dry matter accumulation and distribution dynamics. Acta Agric Boreali-Occident Sin, 2022, 31: 448-456 (in Chinese with English abstract).
[37] 王小林, 纪晓玲, 张盼盼, 张雄, 张静. 黄土高原旱地谷子品种地上器官干物质分配与产量形成相关性分析. 作物杂志, 2018, (5): 150-155.
Wang X L, Ji X L, Zhang P P, Zhang X, Zhang J. Correlation analysis between aboveground biomass allocation and grain yield in different varieties of foxtail millet in the dry land of loess plateau. Corps, 2018, (5): 150-155 (in Chinese with English abstract).
[38] 张明聪, 战英策, 何松榆, 金喜军, 王孟雪, 任春元, 张玉先. 氮密交互对红小豆干物质积累规律及产量的影响. 作物杂志, 2018, (1): 141-146.
Zhang M C, Zhan Y C, He S Y, Jin X J, Wang M X, Ren C Y, Zhang Y X. Effects of different nitrogen fertilizer and density level on dry matter accumulation and yield of adzuki bean. Crops, 2018, (1): 141-146 (in Chinese with English abstract).
[39] 武春成, 王彩云, 曹霞, 张慎好, 罗晓飞, 姜涛. 不同用量生物炭对连作土壤改良及黄瓜生长的影响. 北方园艺, 2017, (19): 150-154.
Wu C C, Wang C Y, Cao X, Zhang S H, Luo X F, Jiang T. Effects of different biochar application rate on improvement of continuous cropping soil and cucumber growth. Northern Hortic, 2017, (19): 150-154 (in Chinese with English abstract).
[40] 崔文芳, 陈静, 鲁富宽, 秦丽, 秦德志, 王利平, 高聚林. 生物炭与氮肥减量调控对土壤养分和肥力的影响. 西南农业学报, 2021, 34: 2429-2436.
Cui W F, Chen J, Lu F K, Qin L, Qin D Z, Wang L P, Gao J L. Effects of biochar and nitrogen reduction on soil nutrient and fertility. Southwest China J Agric Sci, 2021, 34: 2429-2436 (in Chinese with English abstract).
[41] Zwieten V L, Kimber S, Morris S, Chan K Y, Dowine A, Rust J, Joseph S D, Cowie A L. Effects of biochar from slow pyrolysis of paper mill waste on agronomic performance and soil fertility. Plant Soil, 2010, 327: 235-246.
doi: 10.1007/s11104-009-0050-x
[42] 姚奇, 俞若涵, 张洪宇, 秦凯, 张培, 彭正萍, 王洋, 王殿武. 生物炭施用对冬小麦农田土壤养分及作物产量的影响. 中国土壤与肥料, 2022, (3): 68-74.
Yao Q, Yu R H, Zhang H Y, Qin K, Zhang P, Peng Z P, Wang Y, Wang D W. Effects of biochar application on soil nutrients and crop yield in winter wheat farmland. China Soils Fert, 2022, (3): 68-74 (in Chinese with English abstract).
[43] 张芙蓉, 赵丽娜, 张瑞, 黄丹枫, 江洪, 陈云飞, 张屹东. 生物炭对盐渍化土壤改良及甜瓜生长的影响. 上海农业学报, 2015, 31(1): 54-58.
Zhang F R, Zhao L N, Zhang R, Huang D F, Jiang H, Chen F Y, Zhang Y D. Effects of biochar on saline soil improvement and melon growth. Acta Agric Shanghai, 2015, 31(1): 54-58 (in Chinese with English abstract).
[44] 魏永霞, 石国新, 冯超, 吴昱, 刘慧. 黑土区施加生物炭对土壤综合肥力与大豆生长的影响. 农业机械学报, 2020, 51(5): 285-294.
Wei Y X, Shi G X, Feng C, Hao Y, Liu H. Effects of applying biochar on soil comprehensive fertility and soybean growth in blacksoil area. Trans CSAM, 2020, 51(5): 285-294 (in Chinese with English abstract).
[45] 武雪萍, 刘增俊, 赵跃华, 刘国顺, 杨超, 郭伟玲, 荆冬梅. 施用芝麻饼肥对植烟根际土壤酶活性和微生物碳、氮的影响. 植物营养与肥料学报, 2005, 11: 541-546.
Wu X P, Liu Z J, Zhao Y H, Liu G S, Yang C, Guo W L, Jing D M. Effects of sesame cake fertilizer on soil enzyme activities and microbial C and N at rhizosphere of tobacco. J Plant Nutr Fert, 2005, 11: 541-546 (in Chinese with English abstract).
[46] 张美存, 程田, 多立安, 赵树兰. 微生物菌剂对草坪植物高羊茅生长与土壤酶活性的影响. 生态学报, 2017, 37: 4763-4769.
Zhang M C, Cheng T, Duo L A, Zhao S L. Effects of microbial agents on the growth of turfgrass Festuca arundinacea and soil enzyme activity. Acta Ecol Sin, 2017, 37: 4763-4769 (in Chinese with English abstract).
[47] 王智慧, 殷大伟, 王洪义, 赵长江, 李佐同. 生物炭对土壤养分、酶活性及玉米产量的影响. 东北农业科学, 2019, 44(3): 14-19.
Wang Z H, Yin D W, Wang H Y, Zhao C J, Li Z T. Effects of different amounts of biochar applied on soil nutrient soil enzyme activity and maize yield. J Northeast Agric Sci, 2019, 44(3): 14-19 (in Chinese with English abstract).
[48] 郭书亚, 尚赏, 张艳, 汤其宁, 卢广远. 生物炭施用五年后对土壤生物化学特性及夏玉米产量的影响. 土壤与作物, 2022, 11(3): 290-297.
Guo S Y, Shang S, Zhang Y, Tang Q N, Lu G Y. Effects of biochar application after five years on soil biochemical properties and summer maize yield. Soils Crops, 2022, 11(3): 290-297 (in Chinese with English abstract).
[49] Zhu X M, Chen B L, Zhu L Z, Xing B S. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation:a review. Environ Pollut, 2017, 227: 98-115.
doi: 10.1016/j.envpol.2017.04.032
[50] 刘朝霞, 牛文娟, 楚合营, 牛智有. 秸秆热解工艺优化与生物炭理化特性分析. 农业工程学报, 2018, 34(5): 196-203.
Liu Z X, Niu W J, Chu H Y, Niu Z Y. Process optimization for straws pyrolysis and analysis of biochar physiochemical properties. Trans CSAE, 2018, 34(5): 196-203 (in Chinese with English abstract).
[51] 张进红, 吴波, 王国良, 贾春林. 生物炭对盐渍土理化性质和紫花苜蓿生长的影响. 农业机械学报, 2020, 51(8): 285-294.
Zhang J H, Wu B, Wang G L, Jia C L. Effects and evaluation of biochar on physical chemical properties of coastal saline soil and alfalfa growth. Trans CSAM, 2020, 51(8): 285-294 (in Chinese with English abstract).
[52] 陈欢, 曹承富, 孔令聪, 张存岭, 李玮, 乔玉强, 杜世州, 赵竹. 长期施肥下淮北砂姜黑土区小麦产量稳定性研究. 中国农业科学, 2014, 47: 2580-2590.
doi: 10.3864/j.issn.0578-1752.2014.13.010
Chen H, Cao C F, Kong L C, Zhang C L, Li W, Qiao Y Q, Du S Z, Zhao Z. Study on wheat yield stability in huaibei lime concretion black soil area based on long-term fertilization experiment. Sci Agric Sin, 2014, 47: 2580-2590 (in Chinese with English abstract).
[53] 姜慧敏, 郭俊娒, 刘晓, 乔少卿, 张雪凌, 郭康莉, 张建峰, 杨俊诚. 不同来源氮素配合施用提高东北春玉米氮素利用与改善土壤肥力的可持续性研究. 植物营养与肥料学报, 2017, 23: 933-941.
Jiang H M, Guo J M, Liu X, Qiao S Q, Zhang X L, Guo K L, Zhang J F, Yang J C. Effects of combined application of nitrogen from different source on nitrogen utilization of spring maize and sustainability of soil fertility in northeast China. J Plant Nutr Fert, 2017, 23: 933-941 (in Chinese with English abstract).
[54] 王志丹, 代晓华, 刘吉利, 于祥, 吴娜. 生物炭对宁夏干旱地区玉米生长及产量的影响. 甘肃农业大学学报, 2022, 57(1): 74-82.
Wang Z D, Dai X H, Liu J L, Yu X, Wu N. Effect of biochar on growth and yield maize in arid area of Ningxia. J Gansu Agric Univ, 2022, 57(1): 74-82 (in Chinese with English abstract).
[55] Adebajo S O, Oluwatobi F, Akintokun P O, Akintokun P O, Ojo A E, Akintokun A K, Gbodope I S. Impacts of rice-husk biochar on soil microbial biomass and agronomic performances of tomato (Solanum lycopersicum L.). Sci Rep, 2022, 12: 1787.
doi: 10.1038/s41598-022-05757-z
[56] Yudiastari N M, Suwitari N K E, Suariani L, Situmeang Y P. The application of biochar in improving the nutrition quality and production of sorghum plant. Earth Environ Sci, 2019, 347: 012057.
[57] Curaqueo G, Meier S, Khan N, Cea M, Navia R. Use of biochar on two volcanic soils: effects on soil properties and barley yield. J Soil Sci Plant Nutr, 2014, 14: 911-924.
[58] 张伟明, 孟军, 王嘉宇, 范淑秀, 陈温福. 生物炭对水稻根系形态与生理特性及产量的影响. 作物学报, 2013, 39: 1445-1451.
doi: 10.3724/SP.J.1006.2013.01445
Zhang W M, Meng J, Wang J Y, Fan S X, Chen W F. Effect of biochar on root morphological and physiological characteristics and yield in rice. Acta Agron Sin, 2013, 39: 1445-1451 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2013.01445
[1] LOU Fei, ZUO Yi-Ping, LI Meng, DAI Xin-Meng, WANG Jian, HAN Jin-Ling, WU Shu, LI Xiang-Ling, DUAN Hui-Jun. Effects of organic fertilizer substituting chemical fertilizer nitrogen on yield, quality, and nitrogen efficiency of waxy maize [J]. Acta Agronomica Sinica, 2024, 50(4): 1053-1064.
[2] ZHANG Zhen, ZHAO Jun-Ye, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen. Effects of different sowing space on photosynthetic characteristics after anthesis and grain yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(4): 981-990.
[3] YUE Hai-Wang, WEI Jian-Wei, LIU Peng-Cheng, CHEN Shu-Ping, BU Jun-Zhou. Comprehensive evaluation of maize hybrids in the mega-environments of Huanghuaihai plain based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2024, 50(4): 836-856.
[4] LIU Cheng-Min, MEN Ya-Qi, QIN Du-Lin, YAN Xiao-Yu, ZHANG Le, MENG Hao, SU Xun-Ya, SUN Xue-Zhen, SONG Xian-Liang, MAO Li-Li. Effects of nitrogen application rate on cotton yield and nitrogen utilization under long-term straw return to the field [J]. Acta Agronomica Sinica, 2024, 50(4): 1043-1052.
[5] ZOU Jia-Qi, WANG Zhong-Lin, TAN Xian-Ming, CHEN Liao-Yuan, YANG Wen-Yu, YANG Feng. Estimation of maize grain yield under drought stress based on continuous wavelet transform [J]. Acta Agronomica Sinica, 2024, 50(4): 1030-1042.
[6] WU Xia-Yu, LI Pan, WEI Jin-Gui, FAN Hong, HE Wei, FAN Zhi-Long, HU Fa-Long, CHAI Qiang, YIN Wen. Effect of reduced irrigation and combined application of organic and chemical fertilizers on photosynthetic physiology, grain yield and quality of maize in northwestern irrigation areas [J]. Acta Agronomica Sinica, 2024, 50(4): 1065-1079.
[7] WEI Huan-He, ZHANG Xiang, ZHU Wang, GENG Xiao-Yu, MA Wei-Yi, ZUO Bo-Yuan, MENG Tian-Yao, GAO Ping-Lei, CHEN Ying-Long, XU Ke, DAI Qi-Gen. Effects of salinity stress on grain-filling characteristics and yield of rice [J]. Acta Agronomica Sinica, 2024, 50(3): 734-746.
[8] HE Jia-Qi, BAI Yi-Xiong, YAO Xiao-Hua, YAO You-Hua, AN Li-Kun, WANG Yu-Qin, WANG Xiao-Ping, LI Xin, CUI Yong-Mei, WU Kun-Lun. Effects of cutting on the recovery characteristics, grain and straw yield, and quality traits of Qingke [J]. Acta Agronomica Sinica, 2024, 50(3): 747-755.
[9] SHANG Yong-Pan, YU Ai-Zhong, WANG Yu-Long, WANG Peng-Fei, LI Yue, CHAI Jian, LYU Han-Qiang, YANG Xue-Hui, WANG Feng. Effects of green manure application methods on dry matter accumulation, distribution, and yield of maize in oasis irrigation area [J]. Acta Agronomica Sinica, 2024, 50(3): 686-694.
[10] WANG Lyu, WU Yu-Hong, QIN Yu-Hang, DAN Ya-Bin, CHEN Hao, HAO Xing-Shun, TIAN Xiao-Hong. Effects of rice straw mulching combined with green manure retention and nitrogen reduction applications on dry matter quality accumulation, nitrogen transport and grain yield of rice [J]. Acta Agronomica Sinica, 2024, 50(3): 756-770.
[11] NIE Xiao-Yu, LI Zhen, WANG Tian-Yao, ZHOU Yuan-Wei, XU Zheng-Hua, WANG Jing, WANG Bo, KUAI Jie, ZHOU Guang-Sheng. Effect of planting density and weak light stress at pod-filling stage on seed oil accumulation in rapeseed [J]. Acta Agronomica Sinica, 2024, 50(2): 493-505.
[12] XIE Wei, HE Peng, MA Hong-Liang, LEI Fang, HUANG Xiu-Lan, FAN Gao-Qiong, YANG Hong-Kun. Effects of straw mulching from autumn fallow and phosphorus application on nitrogen uptake and utilization of winter wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 440-450.
[13] WU Hao, ZHANG Ying, WANG Chen, GU Han-Zhu, ZHOU Tian-Yang, ZHANG Wei-Yang, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang, ZHANG Hao. Effects of cultivation optimization on root characteristics and starch properties of rice at grain filling stage in the lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2024, 50(2): 478-492.
[14] DIAO Xian-Min, WANG Li-Wei, ZHI Hui, ZHANG Jun, LI Shun-Guo, CHENG Ru-Hong. Development, genetic deciphering, and breeding utilization of dwarf lines in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(2): 265-279.
[15] KE Hui-Feng, SU Hong-Mei, SUN Zheng-Wen, GU Qi-Shen, YANG Jun, WANG Guo-Ning, XU Dong-Yong, WANG Hong-Zhe, WU Li-Qiang, ZHANG Yan, ZHANG Gui-Yin, MA Zhi-Ying, WANG Xing-Fen. Identification for yield and fiber quality traits and evaluation of molecular markers in modern cotton varieties [J]. Acta Agronomica Sinica, 2024, 50(2): 280-293.
Full text



[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .