Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (3): 709-720.doi: 10.3724/SP.J.1006.2024.34088

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of low temperature on the expression of insecticidal protein in Bt cotton fibers and its physiological mechanism

DAI Yu-Yang(), YUE Ye, LIU Zhen-Yu, HE Run, LIU Yu-Ting, ZHANG Xiang, CHEN De-Hua, CHEN Yuan()   

  1. Yangzhou University / Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou 225009, Jiangsu, China
  • Received:2023-05-22 Accepted:2023-10-23 Online:2024-03-12 Published:2023-11-10
  • Contact: *E-mail: cheny@yzu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31906462);Natural Science Research Project of Jiangsu Higher Education Institutions(18KJB210013)

Abstract:

The study in pot experiments using conventional cultivar Sikang 1 (SK1) and hybrid cultivar Sikang 3 (SK3) as the experimental materials conducted the changes of Bt insecticidal protein content and nitrogen metabolism related physiological characteristics in Bt cotton fibers at peak boll stage under different low temperature and processing duration. The content of insecticidal protein in fibers decreased with the decrease of temperature, and the duration of low temperature treatment significantly affects the content of insecticidal protein compared with the control, the greater decrease of insecticidal protein content was observed with the extension of low temperature stress time. The soluble protein content, GOT activity, and GPT activity had a downward trend, while the free amino acid content, peptidase activity, and protease activity had an upward trend. After low temperature treatment for 48 hours, there was a significant correlation between those nitrogen metabolism related parameters with insecticidal protein content. Therefore, low temperature stress also decreased protein synthesis, enhanced protein decomposition, resulting in a decrease in soluble protein content, an increase in free amino acid content, and thus a reduced Bt insecticidal protein content, which significantly affected by the duration of low temperature stress.

Key words: Bt cotton, low temperature, insecticidal protein, nitrogen metabolism

Table 1

Lowest and highest temperatures of each treatment within 48 hours in the artificial climate chamber (℃)"

处理
Treatment
2020 2021
最低温度
Minimum temperature
最高温度
Maximum temperature
最低温度
Minimum temperature
最高温度
Maximum temperature
27℃ 26.8 27.3 26.8 27.2
20℃ 19.7 20.2
19℃ 18.9 19.2 18.8 19.3
18℃ 17.8 18.2 17.7 18.1
17℃ 16.8 17.2 16.8 17.3
16℃ 15.8 16.2 15.8 16.3

Fig. 1

Effect of low temperature stress on insecticidal protein content in fibers SK1: Sikang 1; SK3: Sikang 3. Different lowercase letters represent the same variety at the different treatment at the 0.05 probability level."

Fig. 2

Effect of low temperature stress on soluble protein content of fibers SK1: Sikang 1; SK3: Sikang 3. Different lowercase letters represent the same variety at the different treatment at the 0.05 probability level."

Fig. 3

Effect of low temperature stress on free amino acid content in fibers SK1: Sikang 1; SK3: Sikang 3. Different lowercase letters represent the same variety at the different treatment at the 0.05 probability level."

Fig. 4

Effect of low temperature stress on GOT activity in fibers SK1: Sikang 1; SK3: Sikang 3. GOT: Glutamic Oxaloacetate Transaminase. Different lowercase letters represent the same variety at the different treatment at the 0.05 probability level."

Fig. 5

Effect of low temperature stress on GPT activity in fibers SK1: Sikang 1; SK3: Sikang 3. GPT: Glutamic Pyruvate Transaminase. Different lowercase letters represent the same variety at the different treatment at the 0.05 probability level."

Fig. 6

Effect of low temperature stress on protease activity in fibers SK1: Sikang 1; SK3: Sikang 3. Different lowercase letters represent the same variety at the different treatment at the 0.05 probability level."

Fig. 7

Effect of low temperature stress on peptidase activity in fibers SK1: Sikang 1; SK3: Sikang 3. Different lowercase letters represent the same variety at the different treatment at the 0.05 probability level."

Table 2

Correlation analysis of insecticidal protein content with the content of key substances in nitrogen metabolism and the activity of key enzymes"

年份
Year
品种
Cultivar
处理
Treatment
可溶性蛋白
Soluble protein
游离氨基酸
Free amino acid
谷草转氨酶
GOT
谷丙转氨酶
GPT
蛋白酶
Protease
肽酶
Peptidase
2020 SK1 12 h 0.7773 -0.7284 0.8497* 0.9266** -0.9293** -0.9238**
24 h 0.9740** -0.9858** 0.9853** 0.9959** -0.9516** -0.9961**
48 h 0.9787** -0.9946** 0.9935** 0.9832** -0.9922** -0.9887**
SK3 12 h 0.9197** -0.9704** 0.8672* 0.9717** -0.8935* -0.9409**
24 h 0.8816* -0.9841** 0.9961** 0.9926** -0.9747** -0.9796**
48 h 0.9268** -0.9657** 0.9727** 0.9738** -0.9610** -0.9459**
2021 SK1 12 h 0.9098* -0.8287 0.8903* 0.7419 -0.8823* -0.7512
24 h 0.9414* -0.9820** 0.9849** 0.9952** -0.9957** -0.9665**
48 h 0.9798** -0.9579* 0.9899** 0.9464* -0.9907** -0.9175*
SK3 12 h 0.6864 -0.9926** 0.9451* 0.9509* -0.9403* -0.9724**
24 h 0.9664** -0.9573* 0.9791** 0.9661** -0.9824** -0.9990**
48 h 0.9867** -0.9941** 0.9626** 0.9865** -0.9542* -0.9937**

Table 3

Results of stepwise regression analysis"

因变量
Dependent variable
显著水平
Significant level
自变量进入方程顺序
The order of stepwise
回归方程
Regression equation
杀虫蛋白含量
Bt insecticidal protein content
0.05 X3, X6 Y = 3.865-0.175X3-0.232X6
[1] Qiao F, Huang J, Wang X. Fifteen years of Bt cotton in China: results from household surveys. World Dev, 2017, 98: 351-359.
doi: 10.1016/j.worlddev.2017.05.006
[2] Deguine J P, Ferron P, Russell D. Sustainable pest management for cotton production: a review. Agron Sustain Dev, 2008, 28: 113-137.
doi: 10.1051/agro:2007042
[3] Huang J, Rozelle S, Pray C, Wang Q. Plant biotechnology in China. Science, 2002, 295: 674-676.
pmid: 11809972
[4] Xia J, Hao X Z, Wang T A, Li H Q, Shi X J, Liu Y C, Luo H H. Seed priming with gibberellin regulates the germination of cotton seeds under low temperature conditions. J Plant Growth Regul, 2023, 42: 319-334.
doi: 10.1007/s00344-021-10549-2
[5] 李一腾. 新疆棉花花铃期障碍型低温冷害空间变化特征及危险性评价. 现代农业科技, 2022, (9): 17-19.
Li Y T. Spatial variation characteristics and risk assessment of barrier type cold damage at cotton boll stage in Xinjiang. Modern Agric Technol, 2022, (9): 17-19 (in Chinese with English abstract).
[6] 李红英, 朱蓉慧, 田苗, 马建军, 季芬, 严彩虹. 北疆棉花出苗的低温胁迫影响及适宜播种期研究. 中国农学通报, 2019, 35(25): 27-31.
doi: 10.11924/j.issn.1000-6850.casb18090126
Li H Y, Zhu R H, Tian M, Ma J J, Ji F, Yan C H. Study on the effect of low temperature stress on cotton emergence and suitable sowing time in northern Xinjiang. Chin Agric Sci Bull, 2019, 35(25): 27-31 (in Chinese with English abstract).
[7] 马启峰. 棉花纤维发育起始期蛋白质组和转录组学分析. 西北农林科技大学硕士学位论文, 陕西杨凌, 2016.
Ma Q F. Proteomic and Transcriptomic Analysis of Cotton Fiber Development Initiation. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2016 (in Chinese with English abstract).
[8] 陈松, 周冬生, 吴振廷, 王学林, 周宝良. 转Bt基因棉32B不同生育期抗虫性的变化及其机理. 江苏农业学报, 2002, 18(2): 80-84.
Chen S, Zhou D S, Wu Z T, Wang X L, Zhou B L. Changes of insect resistance of Bt transgenic cotton 32B at different growth stages and its physiological mechanisms. Jiangsu J Agric Sci, 2002, 18(2): 80-84 (in Chinese with English abstract).
[9] 李汝忠, 沈法富, 王宗文, 王景会, 刘承运, 申贵芳. 转Bt基因抗虫棉Bt基因表达的时空动态. 山东农业科学, 2002, (2): 7-9.
Li R Z, Shen F F, Wang Z W, Wang J H, Liu C Y, Shen G F. Temporal and spatial dynamics of Bt gene expression in transgenic Bt cotton. Shandong Agric Sci, 2002, (2): 7-9 (in Chinese with English abstract).
[10] 刘耀武, 刘洪春, 付桂月, 李宏华, 孙福燕. 近年抗虫棉抗虫性下降原因分析及对策. 中国植保导刊, 2008, 28(1): 30-31.
Liu Y W, Liu H C, Fu G Y, Li H H, Sun F Y. Analysis and countermeasures of the decline of insect-resistant cotton in recent years. Chin Plant Prot, 2008, 28(1): 30-31 (in Chinese with English abstract).
[11] Zhang X, Wang J, Peng S, Li Y, Tian X F, Wang G C, Zhang Z N, Dong Z D, Chen Y, Chen D H. Effects of soil water deficit on insecticidal protein expression in boll shells of transgenic Bt cotton and the mechanism. Front Plant Sci, 2017, 8: 2107.
doi: 10.3389/fpls.2017.02107 pmid: 29321788
[12] 夏兰芹, 郭三堆. 高温对转基因抗虫棉中Bt杀虫基因表达的影响. 中国农业科学, 2004, 37: 1733-1737.
Xia L Q, Guo S D. The expression of Bt toxin gene under different thermal treatments. Sci Agric Sin, 2004, 37: 1733-1737 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.041127
[13] 周冬生, 吴振廷, 王学林, 郑厚今, 夏静. 土壤胁迫与温度对转Bt基因棉抗虫性的影响. 棉花学报, 2001, 13(5): 290-292.
Zhou D S, Wu Z T, Wang X L, Zheng H J, Xia J. Effects of soil stress and temperature on insect resistance of transgenic BT cotton. Cotton Sci, 2001, 13(5): 290-292 (in Chinese with English abstract).
[14] 钟信念, 梁其干, 徐建伟, 徐蒙可, 唐铠秀, 李志博. 蕾期低温胁迫对棉花生长发育的影响. 新疆农业科学, 2022, 59: 551-557.
doi: 10.6048/j.issn.1001-4330.2022.03.004
Zhong X N, Liang Q G, Xu J W, Xu M K, Tang K X, Li Z B. Effect of low temperature stress at Bud Stage on growth and development of cotton. Xinjiang Agric Sci, 2022, 59: 551-557 (in Chinese with English abstract).
[15] 周青. 铃期温度影响棉花纤维发育的生理机制研究. 南京农业大学博士学位论文, 江苏南京, 2013.
Zhou Q. Physiological Mechanism of Cotton Fiber Development Affected by Boll Stage Temperature. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2013 (in Chinese with English abstract).
[16] Fitt G P, Mares C L. Field evaluation and protectional ecological impact of transgenic cotton (Gosspium hirstum) in Australian. Biocontrol Sci Technol, 1997, 4: 535-548.
doi: 10.1080/09583159409355367
[17] Chen Y, Wen Y J, Chen Y, Cothren J T, Zhang X, Wang Y H, Payne W A, Chen D H. Effects of extreme air temperature and humidity on the insecticidal expression level of Bt cotton. J Integr Agric, 2012, 11: 1836-1844.
[18] 陈松, 吴敬音, 何小兰, 黄骏麒, 周宝良, 张荣铣. 转基因抗虫棉组织中Bt毒蛋白表达量的ELISA测定. 江苏农业学报, 1997, 13(3): 27-29.
Chen S, Wu J Y, He X L, Huang J Q, Zhou B L, Zhang R X. ELISA determination of BT toxin protein expression in transgenic cotton tissues. Jiangsu J Agric Sci, 1997, 13(3): 27-29 (in Chinese with English abstract).
[19] 扬州大学农学院. 作物栽培生理研究法实验讲义. 扬州: 扬州大学出版社, 2007. pp 3-6.
Agriculture College, Yangzhou University. Experimental Handout on Research Methods of Crop Cultivation Physiology. Yangzhou: Yangzhou University Press, 2007. pp 3-6 (in Chinese).
[20] 邵金良, 黎其万, 董宝生, 刘宏程, 束继红. 茚三酮比色法测定茶叶中游离氨基酸总量. 中国食品添加剂, 2008, (2): 162-165.
Shao J L, Li Q W, Dong B S, Liu H C, Shu J H. Determination of total free amino acids in tea by ninhydrin colorimetry. China Food Add, 2008, (2): 162-165 (in Chinese with English abstract).
[21] 吴良欢, 蒋式洪, 陶勤南. 植物转氨酶(GOT和GPT)活度比色测定方法及其应用. 土壤通报, 1998, 29(3): 41-43.
Wu L H, Jiang S H, Tao Q N. Colorimetric determination of plant transaminases (GOT and GPT) activity and its application. Chin J Soil Sci, 1998, 29(3): 41-43 (in Chinese with English abstract).
[22] 董志强, 何钟佩, 翟学军. 转Bt基因棉新棉33-B叶片氮素代谢特征及其化学调控潜力. 棉花学报, 2000, 12(3): 113-117.
Dong Z Q, He Z P, Zhai X J. Characteristics of nitrogen metabolism and its potential of chemical regulation in 33-B leaves of transgenic Bt cotton. Cotton Sci, 2000, 12(3): 113-117 (in Chinese with English abstract).
[23] Kargiotidou A, Deli D, Galanopoulou D, Tsaftaris A, Farmaki T. Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton (Gossypium hirsutum). J Exp Bot, 2008, 59: 2043-2056.
doi: 10.1093/jxb/ern065 pmid: 18453533
[24] Mahon R, Finnegan J, Olsen K, Entomology C. Environmental stress and the efficacy of Bt cotton. Aust Cotton Grower, 2002, 2: 18.
[25] 周冬生, 吴振廷, 王学林, 倪春耕, 郑厚今, 夏静. 施肥量和环境温度对转Bt基因棉抗虫性的影响. 安徽农业大学学报, 2000, 27: 352-357.
Zhou D S, Wu Z T, Wang X L, Ni C G, Zheng H J, Xia J. Effects of fertilization and environmental temperature on insect resistance of transgenic Bt cotton. J Anhui Agric Univ, 2000, 27: 352-357 (in Chinese with English abstract).
[26] 张明伟, 缪军, 顾超, 吕春花, 陈德华, 张祥. 低温高湿对转Bt基因抗虫棉杀虫蛋白表达及其氮代谢的影响. 中国农学通报, 2012, 28(9): 218-221.
Zhang M W, Miao J, Gu C, Lyu C H, Chen D H, Zhang X. Effects of low temperature and high humidity on expression of insecticidal protein and nitrogen metabolism in transgenic BT cotton. Chin Agric Sci Bull, 2012, 28(9): 218-221 (in Chinese with English abstract).
[27] Chen Y, Liu Z Y, Dai Y Y, Yue Y, Liu Y T, Li H J, He R, Zhang X, Chem D H. Low temperature decreased insecticidal protein contents of cotton and its physiological mechanism. Front Plant Sci, 2022, 13: 1082926.
doi: 10.3389/fpls.2022.1082926
[28] 董志强. Bt棉抗虫性表达的化学调控. 中国农业科学院博士学位论文, 北京, 2002.
Dong Z Q. Chemical Regulation of Insect Resistance Expression in Bt Cotton. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2002 (in Chinese with English abstract).
[29] 刘志, 郭旺珍, 朱协飞, 朱桢, 张天真. 转Bt + GNA双价基因抗虫棉花中抗虫基因及其抗虫性的遗传稳定性. 作物学报, 2004, 30: 6-10.
Liu Z, Guo W Z, Zhu X F, Zhu Z, Zhang T Z. Insect-resistant genes in transgenic BT + GNA transgenic cotton and their genetic stability. Acta Agron Sin, 2004, 30: 6-10 (in Chinese with English abstract).
[30] 董双林, 文绍贵, 王月恒. 转Bt基因棉对棉铃虫存活、生长及为害的影响. 棉花学报, 1997, (4): 9-15.
Dong S L, Wen S G, Wang Y H. Effects of transgenic Bt cotton on survival, growth and damage of Helicoverpa armigera. Cotton Sci, 1997, (4): 9-15 (in Chinese with English abstract).
[31] Chen D H, Ye G Y, Yang C Q, Chen Y. The effect of high temperature on the insecticidal properties of Bt cotton. Environ Exp Bot, 2005, 53: 333-342.
doi: 10.1016/j.envexpbot.2004.04.004
[32] 王桂霞. 高温胁迫与终止后Bt棉生殖器官杀虫蛋白表达量变化及相关生理机制研究. 扬州大学硕士学位论文, 江苏扬州, 2014.
Wang G X. Studies on the Expression of Insecticidal Proteins in Reproductive Organs of Bt Cotton under High Temperature Stress and Termination and the Related Physiological Mechanism. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2014 (in Chinese with English abstract).
[1] SUN Shang-Wen, SHU Hong-Mei, YANG Chang-Qin, ZHANG Guo-Wei, WANG Xiao-Jing, MENG Ya-Li, WANG You-Hua, LIU Rui-Xian. Mechanism of cyclanilide enhanced the defoliation efficiency of thidiazuron in cotton by regulating endogenous hormones under low temperature stress [J]. Acta Agronomica Sinica, 2024, 50(1): 187-198.
[2] LI Yi-Yang, LI Yuan, ZHAO Zi-Xu, ZHANG Ding-Shun, DU Jia-Ning, WU Shu-Juan, SUN Si-Qi, CHEN Yuan, ZHANG Xiang, CHEN De-Hua, LIU Zhen-Yu. Effects of increased nitrogen on Bt protein expression and nitrogen metabolism in the leaf subtending to cotton boll [J]. Acta Agronomica Sinica, 2023, 49(9): 2505-2516.
[3] LI Ling-Yu, ZHOU Qi-Rui, LI Yang, ZHANG An-Min, WANG Bei-Bei, MA Shang-Yu, FAN Yong-Hui, HUANG Zheng-Lai, ZHANG Wen-Jing. Transcriptome analysis of exogenous 6-BA in regulating young spike development of wheat after low temperature at booting stage [J]. Acta Agronomica Sinica, 2023, 49(7): 1808-1817.
[4] WANG Rui, LI Xiang-Ling, GUO Dong, WANG Xin-Bing, MA Wei, LI Cong-Feng, ZHAO Ming, ZHOU Bao-Yuan. Effects of application nitrogen on carbon and nitrogen metabolism of summer maize grain under post-silking heat stress [J]. Acta Agronomica Sinica, 2023, 49(12): 3342-3351.
[5] CHEN Xin-Yi, ZHU Ying, MA Zhong-Tao, ZHANG Ming-Yue, WEI Hai-Yan, ZHANG Hong-Cheng, LIU Guo-Dong, HU Qun, LI Guang-Yan, XU Fang-Fu. Effects of light intensity and nitrogen fertilizer interaction on carbon and nitrogen metabolism at grain-filling stage and its relationship with yield and quality of southern soft japonica rice [J]. Acta Agronomica Sinica, 2023, 49(11): 3042-3062.
[6] ZHU Chun-Quan, WEI Qian-Qian, XIANG Xing-Jia, HU Wen-Jun, XU Qing-Shan, CAO Xiao-Chuang, ZHU Lian-Feng, KONG Ya-Li, LIU Jia, JIN Qian-Yu, ZHANG Jun-Hua. Regulation effects of seedling raising by melatonin and methyl jasmonate substrate on low temperature stress tolerance in rice [J]. Acta Agronomica Sinica, 2022, 48(8): 2016-2027.
[7] PEI Li-Zhen, CHEN Yuan-Xue, ZHANG Wen-Wen, XIAO Hua, ZHANG Sen, ZHOU Yuan, XU Kai-Wei. Effects of organic material returned on photosynthetic performance and nitrogen metabolism of ear leaf in summer maize [J]. Acta Agronomica Sinica, 2022, 48(8): 2115-2124.
[8] WANG Juan, LIU Yi, YAO Dan-Yu, ZOU Jing-Wei, XIAO Shi-He, SUN Guo-Zhong. Identification on sensitivity of wheat to low temperature at reproductive stages [J]. Acta Agronomica Sinica, 2022, 48(7): 1721-1729.
[9] FENG Ya, ZHU Xi, LUO Hong-Yu, LI Shi-Gui, ZHANG Ning, SI Huai-Jun. Functional analysis of StMAPK4 in response to low temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(4): 896-907.
[10] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[11] LI Han-Jia, LI Yuan, LIU Zhen-Yu, ZHANG Chen-Xia, XU Ze, WU Tian-Fan, CHEN Yuan, ZHANG Xiang, CHEN Yuan, CHEN De-Hua. Effects of increased nitrogen fertilizer on square Bt protein expression and nitrogen metabolism in cotton [J]. Acta Agronomica Sinica, 2022, 48(10): 2567-2574.
[12] CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue, ZHANG Yu-Xian. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin [J]. Acta Agronomica Sinica, 2021, 47(9): 1779-1790.
[13] LUO Kai, XIE Chen, WANG Jin, WANG Tian, HE Shun, YONG Tai-Wen, YANG Wen-Yu. Effect of exogenous plant growth regulators on carbon-nitrogen metabolism and flower-pod abscission of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2021, 47(4): 752-760.
[14] XIE Pan, LIU Wei, KANG Yu, HUA Wei, QIAN Lun-Wen, GUAN Chun-Yun, HE Xin. Identification and relative expression analysis of CBF gene family in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2394-2406.
[15] LYU Teng-Fei, SHEN Jie, DAI Zou, MA Peng, YANG Zhi-Yuan, ZHENG Chuan-Gang, MA Jun. Effects of combined application of slow release nitrogen fertilizer and urea on carbon and nitrogen accumulation in mechanical transplanted hybrid rice [J]. Acta Agronomica Sinica, 2021, 47(10): 1966-1977.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .