Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (2): 265-279.doi: 10.3724/SP.J.1006.2024.34131

• REVIEW •     Next Articles

Development, genetic deciphering, and breeding utilization of dwarf lines in foxtail millet

DIAO Xian-Min1,*(), WANG Li-Wei1, ZHI Hui1, ZHANG Jun1, LI Shun-Guo2, CHENG Ru-Hong2   

  1. 1State Key Laboratory of Crop Gene Resources and Breeding / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2Institute of Millet Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050035, Hebei, China
  • Received:2023-07-20 Accepted:2023-09-28 Online:2024-02-12 Published:2023-10-11
  • Contact: *E-mail: diaoxianmin@caas.cn
  • Supported by:
    National Natural Science Foundation of China(32241042);National Natural Science Foundation of China(31771807);National Key Research and Development Program of China(2021YFF1000103);China Agricultural Research System of MOF and MARA(CARS-06-04);Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences

Abstract:

Foxtail millet (Setaria italica) is an important cereal crop in northern China’s arid and semiarid dry land agriculture, which has recently been proposed as a novel model for functional genomics. Breeding dwarf varieties is the development trend of foxtail millet industry. To date, more than 70 foxtail millet dwarf lines have been developed and reported worldwide. According to morphological characteristics, foxtail millet dwarf lines can be divided into two types: compact type with erect leaves and conventional type with droopy leaves. Gibberellins (GA) sensitivity assay indicated that four materials were not sensitive to GA and the others were sensitive. Genetic analyses detected that most of the dwarf phenotype lines were controlled by recessive genes, but the height phenotype of Ai 88 was controlled by multi-dwarf-gene. So far, 79 QTL related with plant height regulation were detected by natural population GWAS or linkage analysis. Among seven genes or QTL fine mapped in foxtail millet, the semi-dominant dwarfism gene SiD1 in 84113 was the only one cloned and functionally characterized. In the history of breeding dwarf foxtail millet variety, Ai 88 was a backbone line, which had been utilized to develop 139 cultivars with reducing plant height to meet the requirement of logging resistance and mechanized harvest. In this study, we reviewed systematically the research progress of dwarfing gene in foxtail millet, sorted out the dwarfing genes that had been located and cloned, discussed the problems in the research of dwarfing genetics and breeding, and prospected the future development in foxtail.

Key words: foxtail millet, plant height, dwarf, GA sensitivity, Ai 88

Table 1

Dominant or recessive of dwarf foxtail millet"

编号
No.
材料名称
Material name
显隐性
Gene action
编号
No.
材料名称
Material name
显隐性
Gene action
编号
No.
材料名称
Material name
显隐性
Gene action
1 安矮15号 隐性 22 矮秆27-21 隐性 43 小野谷子 待定
An’ai 15 Recessive Aigan 27-21 Recessive Xiaoyeguzi Undetermined
2 红谷-1 隐性 23 志试897 隐性 44 创119-11 隐性
Honggu 1 Recessive Zhishi 8971 Recessive Chuang 119-11 Recessive
3 红谷-2 待定 24 矮秆2号 隐性 45 05-461 隐性
Honggu 2 Undetermined Aigan 2 Recessive Recessive
4 呼早谷-1 隐性 25 张矮10号 待定 46 延矮2号 隐性
Huzaogu 1 Recessive Zhang’ai 10 Undetermined Yan’ai 2 Recessive
5 赤矮9号 隐性 26 豫谷8号 待定 47 1066A 隐性
Chi’ai 9 Recessive Yugu 8 Undetermined Recessive
6 宽九 隐性 27 安矮13 隐性 48 麦谷1号 待定
Kuanjiu Recessive An’ai 13 Recessive Maigu 1 Undetermined
7 矮协1号 隐性 28 安矮3号 隐性 49 延096 隐性
Aixie 1 Recessive An’ai 3 Recessive Yan 096 Recessive
8 济矮5号 隐性 29 75原406 待定 50 郑矮2号 隐性
Ji’ai 5 Recessive 75 yuan 406 Undetermined Zheng’ai 2 Recessive
9 济矮6号 隐性 30 矮88号 隐性 51 7516 隐性
Ji’ai 6 Recessive Ai 88 Recessive Recessive
10 济矮9号 隐性 31 耧里莠 待定 52 84133 显性
Ji’ai 9 Recessive Loulixiu Undetermined Dominant
11 济矮10号 隐性 32 安矮8号 隐性 53 T22 隐性
Ji’ai 10 Recessive An’ai 8 Recessive Recessive
12 济矮11 隐性 33 安矮9号 待定 54 T25 隐性
Ji’ai 11 Recessive An’ai 9 Undetermined Recessive
13 济矮12 隐性 34 安矮17 隐性 55 T539 隐性
Ji’ai 12 Recessive An’ai 17 Recessive Recessive
14 晋汾矮4号 隐性 35 矮宁黄 待定 56 Co2 待定
Jinfen’ai 4 Recessive Aininghuang Undetermined Undetermined
15 晋汾矮5号 隐性 36 矮丰1号 隐性 57 sic24 显性
Jinfen’ai 5 Recessive Aifeng 1 Recessive Dominant
16 晋汾矮6号 隐性 37 毛毛斗芝麻良 隐性 58 sic25 显性
Jinfen’ai 6 Recessive Maomaodouzhimaliang Recessive Dominant
17 矮秆竹叶青4n 隐性 38 鲁热朗代斯 隐性 59 sic26 显性
Aiganzhuyeqing 4n Recessive Lurelangdaisi Recessive Dominant
18 延4直 隐性 39 延矮1号 隐性 60 吨谷 待定
Yan4zhi Recessive Yan’ai 1 Recessive Dungu Undetermined
19 延023 待定 40 大青秸 隐性 61 623C 待定
Yan 023 Undetermined Daqingju Recessive Undetermined
20 延029 待定 41 C193 待定 62 d93090 待定
Yan 029 Undetermined Undetermined Undetermined
21 延035 隐性 42 白米谷子 待定
Yan 035 Recessive Baimiguzi Undetermined

Fig. 1

Map-based cloning of foxtail millet semi-dwarf gene DWARF1 (Zhao et al. [31]) A: the morphology of Yugu 1 (left), F1 individual derived from cross between Yugu 1 and 84133 (center), and 84133 mutant (right). B: the morphology of wild-type Yugu 1 (left) and transgenic expressing Ubi: D1-TT (right) in foxtail millet. C: the longitudinal sections of last stems of mature homozygous normal (left) and homozygous dwarf (right) in a Residual Heterozygous Line (RHL) population derived from a cross between Zhangai 10 and 84133."

Table 2

Stable QTL for foxtail millet plant height across multi-environments"

QTL 染色体
Chr.
区间
Interval
环境数目
Number of environments
参考文献
Reference
qPH1-1 1 1402842-4203850 2 Feldman et al.[34]
qPH1-2 1 8565051-37364207 28 Feldman et al. [34]; Mauro-Herrera and Doust [35]; Zhang et al. [36]; He et al. [39]
qPH1-3 1 38288357-41090626 2 Feldman et al. [34]; He et al. [39]
qPH2-1 2 169785-8284383 23 Feldman et al. [34]
qPH2-2 2 26040234-32043521 2 Mauro-Herrera and Doust [35]; He et al. [39]
qPH2-3 2 32717606-47811870 87 Feldman et al. [34]; Mauro-Herrera and Doust [35]
qPH3-1 3 1634-4766697 14 Feldman et al. [34]; Mauro-Herrera and Doust [35]; He et al. [39]
qPH3-2 3 4766697-12575474 11 Feldman et al. [34]; He et al. [39]
qPH3-3 3 12821696-21388568 5 Feldman et al. [34]; He et al. [39]
qPH4-1 4 4242694-5211174 2 He et al. [39]
qPH4-2 4 6963002-30351975 5 Feldman et al. [34]
qPH4-3 4 31349528-34519109 2 Zhang et al. [36]; He et al. [39]
qPH4-4 4 36731228-37718913 3 Feldman et al. [34]
qPH5-1 5 5107998-30425775 15 Feldman et al. [34]; Mauro-Herrera and Doust [35]
qPH5-2 5 36050389-44465736 113 Feldman et al. [34]; Mauro-Herrera and Doust [35]; Zhang et al. [36]; He et al. [39]
qPH6-1 6 1449746-4132666 3 Feldman et al. [34]; He et al. [39]
qPH6-2 6 7309479-30048845 2 He et al. [39]
qPH6-3 6 32307267-35817005 4 Zhang et al. [36]; He et al. [39]
qPH7 7 12773905-33438039 42 Feldman et al. [34]; Mauro-Herrera and Doust [35]; Zhang et al. [36]; He et al. [39]
qPH8-1 8 596198-10222496 4 Feldman et al. [34]
qPH8-2 8 1742176-31662547 24 Fan et al. [14]; Feldman et al. [34]; He et al. [39]
qPH9-1 9 90984-10589367 3 Feldman et al. [34]
qPH9-2 9 3452335-11604590 63 Feldman et al. [34]; Mauro-Herrera and Doust [35]
qPH9-3 9 35624887-55796987 24 Feldman et al. [34]; Mauro-Herrera and Doust [35]; He et al. [39]

Fig. 2

QTL analysis for foxtail millet plant height using a RIL population derived from Ai 88 and Liaogu 1 (He et al. [39]) A: the morphology of Ai 88. B: QTL map showing location of QTLs for plant height at 13 environments, 26 QTLs for plant height were obtained, qPH1.3 was detected in nine environments on chromosome 1, qPH9.2 and qPH9.5 were detected in seven environments on chromosome 9."

Table 3

Plant height and regional trial information of first-grade high quality foxtail millet variety developed by Ai 88"

品种
Variety
品质
Quality
株高
Plant height (cm)
区试
Regional trial
产量较对照±%
Yeild compared with CK
位次
Rank
适宜区域
Farming area
冀谷19
Jigu 19
一级
First grade
113.70 2002-2003国家华北区试
2002-2003 National North China regional trial
13.24 1 华北夏谷区
North China Summer Sowing region
冀谷40
Jigu 40
一级
First grade
119.90 2014-2015国家华北区试
2014-2015 National North China regional trial
12.8 1 华北夏谷区
North China Summer Sowing region
2016-2017国家西北区试
2016-2017 National Northwest China regional trial
7.7 6 西北春谷区
Northwest China Spring Sowing region
2017-2018吉林省谷子区试
2017-2018 Jilin regional trial
2.28 4 东北春谷区
Northeast China Spring Sowing region
中谷1号
Zhonggu 1
一级
First grade
121.18 2011-2012国家华北区试
2011-2012 National North China regional trial
10.43 1 华北夏谷区
North China Summer Sowing region
中谷2号
Zhonggu 2
一级
First grade
120.77 2014-2015国家华北区试
2014-2015 National North China regional trial
13.99 2 华北夏谷区
North China Summer Sowing region
2016-2017国家东北区试
2016-2017 National Northeast China regional trial
5.59 3 东北春谷区
Northeast China Spring Sowing region
长生13
Changsheng 13
一级
First grade
125.60 2015-2016国家西北区试
2015-2016 National Northwest China regional trial
14.19 1 西北春谷中晚熟区
Northwest China Spring Sowing and Mid-late-maturing region
豫谷25
Yugu 25
一级
First grade
121.00 2014-2015国家华北区试
2014-2015 National North China regional trial
14.51 1 华北夏谷区
North China Summer Sowing region
公矮2号
Gongai 2
一级
First grade
108.00 2002-2003吉林省谷子区试
2002-2003 Jilin regional trial
13.55 1 东北春谷区
Northeast China Spring Sowing region
赤谷K3
Chigu K3
一级
First grade
109.00 2018-2019内蒙古谷子区试
2018-2019 Inner Mongolia regional trial
4.94 2 西北春谷早熟区
Northwest China Spring Sowing and eraly-maturing region

Fig. 3

Foxtail millet dwarf variety Gonggu 85 and its extensive production A: morphology of Gongai 85 adjacent to traditional tall foxtail millet varieties. B: extensive production of Gongai 88, a dwarf variety cultivated by Crop Institute of Crop Resources, Jilin Academy of Agricultural Sciences."

[1] 刁现民. 禾谷类杂粮作物耐逆和栽培技术研究新进展. 中国农业科学, 2019, 52: 3943-3949.
doi: 10.3864/j.issn.0578-1752.2019.22.001
Diao X M. Progresses in stress tolerance and field cultivation studies of orphan cereals in China. Sci Agric Sin, 2019, 52: 3943-3949 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2019.22.001
[2] Peng J R, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature, 1999, 400: 256-261.
doi: 10.1038/22307
[3] Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y. Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res, 2002, 9: 11-17.
doi: 10.1093/dnares/9.1.11 pmid: 11939564
[4] Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G S, Kitano H, Matsuoka M. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature, 2002, 416: 701-702.
doi: 10.1038/416701a
[5] Spielmeyer W, Ellis M H, Chandler P M. Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA, 2002, 99: 9043-9048.
doi: 10.1073/pnas.132266399 pmid: 12077303
[6] Evenson R E, Gollin D. Assessing the impact of the green revolution, 1960 to 2000. Science, 2003, 300: 758-762.
doi: 10.1126/science.1078710 pmid: 12730592
[7] 杜瑞恒, 王天宇, 高杜朝, 宁香武. 中国矮秆谷子资源类型分析. 粟类作物, 1995, (1/2): 5-7.
Du R H, Wang T Y, Gao D W, Ning X W. Analysis of types of dwarfing sources in foxtail millet of China. Millet Crops, 1995, (1/2): 5-7 (in Chinese).
[8] Ratnaswamy M C, Dhanaraj L. A non-lodging mutant in Tenai (Setaria italica Beauv.) the Italian millet. Sci Cult, 1961, 27: 194-195.
[9] 师公贤. 谷子矮秆性状遗传规律研究初报. 陕西农业科学, 1986, (4): 25-26.
Shi G X. Preliminary study on inheritance of dwarfing traits in foxtail millet. J Shaanxi Agric Sci, 1986, (4): 25-26 (in Chinese).
[10] 丁汝坤. 河南谷子矮源及其选育. 河南农业科学, 1988, (7): 1-2.
Ding R K. Dwarfing sources and breeding of foxtail millet in Henan Province. J Henan Agric Sci, 1988, (7): 1-2 (in Chinese).
[11] 孟昭桂, 焦新海. 谷子郑矮2号矮秆基因的遗传研究. 河南农业科学, 1990, (1): 1-3.
Meng S G, Jiao X H. Genetic study on dwarfing genes of foxtail millet variety Zheng’ai 2. J Henan Agric Sci, 1990, (1): 1-3 (in Chinese).
[12] Liu X T, Tang S, Jia G Q, Schnable J C, Su H X, Tang C J, Zhi H, Diao X M. The C-terminal motif of SiAGO1b is required for the regulation of growth, development and stress responses in foxtail millet (Setaria italica (L.) P. Beauv.). J Exp Bot, 2016, 67: 3237-3249.
doi: 10.1093/jxb/erw135
[13] Xue C X, Zhi H, Fang X J, Liu X T, Tang S, Chai Y, Zhao B H, Jia G Q, Diao X M. Characterization and fine mapping of SiDWARF2 (D2) in foxtail millet. Crop Sci, 2016, 56: 95-103.
doi: 10.2135/cropsci2015.05.0331
[14] Fan X K, Tang S, Zhi H, He M M, Ma W S, Jia Y C, Zhao B H, Jia G Q, Diao X M. Identification and fine mapping of SiDWARF (D3), a pleiotropic locus controlling environment-independent dwarfism in foxtail millet. Crop Sci, 2017, 57: 2431-2442.
doi: 10.2135/cropsci2016.11.0952
[15] 袁蕊. EMS诱变谷子矮秆突变体生理及品质性状研究. 山西农业大学硕士学位论文, 山西太古, 2019.
Yuan R. Study on the Physiological and Quality Traits of EMS Induced Mutants from Jingu 21. MS Thesis of Shanxi Agricultural University, Taigu, Shanxi, China, 2019 (in Chinese with English abstract).
[16] 姚占廷, 梁同生. 谷子显性矮秆基因的发现. 内蒙古农业科技, 1989, (1): 8-10.
Yao Z T, Liang T S. Identification of dominant dwarf gene in foxtail millet. Inner Mongolia Agric Sci Technol, 1989, (1): 8-10 (in Chinese).
[17] Dineshkumar S P, Shashidhar V R, Ravikumar R L, Seetharam A, Gowda B T S. Identification of true genetic dwarfing sources in foxtail millet (Setaria italica Beauv.), Euphytica, 1992, 60: 207-212.
doi: 10.1007/BF00039400
[18] 田伯红, 朱秀华, 张立新. 谷子高粱杂交后代在谷子育种上的应用. 华北农学报, 1995, 10(4): 39-43.
doi: 10.3321/j.issn:1000-7091.1995.04.007
Tian B H, Zhu X H, Zhang L X. Millet × sorghum and its progeny application on foxtail millet. Acta Agric Boreali-Sin, 1995, 10(4): 39-43 (in Chinese with English abstract).
[19] 杜贵, 崔文生, 赵治海. 低矮秆紧凑型春谷新品种选育初报. 河北农业科学, 1994, (1): 36.
Du G, Cui W S, Zhao Z H. Preliminary report on breeding of dwarf and compact spring variety of foxtail millet. J Hebei Agric Sci, 1994, (1): 36 (in Chinese).
[20] Qian J Y, Jia G Q, Zhi H, Li W, Wang Y F, Li H Q, Shang Z L, Doust A N, Diao X M. Sensitivity to gibberellin of dwarf foxtail millet varieties. Crop Sci, 2012, 52: 1068-1075.
doi: 10.2135/cropsci2011.04.0192
[21] 陈金桂, 周燮, 张玉宗. 3种谷子矮秆突变体对GA3反应差异的内源激素解析. 南京农业大学学报, 1996, 19(2): 6-11.
Chen J G, Zhou X, Zhang Y Z. Different responses of millet mutants to GA3 and their endogenous hormone analysis. J Nanjing Agric Univ, 1996, 19(2): 6-11 (in Chinese with English abstract).
[22] 陈金桂, 张玉宗, 周燮. 赤霉素反应敏感型和不敏感型谷子矮秆突变体的鉴定. 华北农学报, 1998, 12(1): 46-52.
Chen J G, Zhang Z Y, Zhou X. Characterization of gibberellin- responding and non-responding dwarf mutants in foxtail millet. Acta Agric Boreali-Sin, 1998, 12(1): 46-52 (in Chinese with English abstract).
[23] 赵丽娟, 袁红梅, 赵丽伟, 郭文栋, 李志江, 李祥羽, 马金丰, 李延东, 宋维富, 杨雪峰, 刘东军. 谷子矮秆突变体d93090的表型变异及其对赤霉素的敏感性分析. 作物杂志, 2019, (6): 33-38.
Zhao L J, Yuan H M, Zhao L W, Guo W D, Li Z J, Li X Y, Ma J F, Li Y D, Song W F, Yang X F, Liu D J. The phenotypic variations and GA sensitivity of a dwarf mutant d93090 in foxtail millet. Crops, 2019, (6): 33-38 (in Chinese with English abstract).
[24] Zhao M C, Tang S, Zhang H S, He M M, Liu J H, Zhi H, Sui Y, Liu X T, Jia G Q, Zhao Z Y, Yan J J, Zhang B C, Zhou Y H, Chu J F, Wang X C, Zhao B H, Tang W Q, Li J Y, Wu C Y, Liu X G, Diao X M. DROOPY LEAF1 controls leaf architecture by orchestrating early brassinosteroid signaling. Proc Natl Acad Sci USA, 2020, 117: 21766-21774.
doi: 10.1073/pnas.2002278117 pmid: 32817516
[25] 籍贵苏, 杜瑞恒, 张喜英. 高秆矮秆谷子根的遗传、分布差异及根与产量有关性状的相关研究. 华北农学报, 1999, 14(2): 42-47.
Ji G S, Du R H, Zhang X Y. Root inheritance and distribution in high and short plant types of foxtail millet and correlation of root characters with yield related characters. Acta Agric Boreali-Sin, 1999, 14(2): 42-47 (in Chinese with English abstract).
doi: 10.3321/j.issn:1000-7091.1999.02.009
[26] 籍贵苏, 崔路平, 郝风武. 高矮秆夏谷个体发育差异及产量形成特点的研究. 生态农业研究, 2000, 8(3): 36-39.
Ji G S, Cui L P, Hao F W. Study on the developing characteristics of individual plant and yield formation in high and dwarf plant types of summer millet. Eco-Agric Res, 2000, 8: 36-39 (in Chinese with English abstract).
[27] 高俊华, 王润奇, 毛丽萍, 刁现民. 安矮3号谷子矮秆基因的染色体定位. 作物学报, 2003, 29: 152-154.
Gao J H, Wang R Q, Mao L P, Diao X M. Chromosome location of dwarf gene in foxtail millet An’ai 3. Acta Agron Sin, 2003, 29: 152-154 (in Chinese with English abstract).
[28] 王润奇, 高俊华, 王志兴, 王志民. 谷子三体系列的建立. 植物学报, 1994, 36: 690-695.
Wang R Q, Gao J H, Wang Z X, Wang Z M. Establishment of trisomic series of millet (Setaria italica L. Beauv.). Acta Bot Sin, 1994, 36: 690-695 (in Chinese with English abstract).
[29] 王润奇, 高俊华, 关中波, 毛丽萍. 谷子几种农艺性状基因染色体定位及连锁关系的初步研究. 作物学报, 2007, 33: 9-14.
Wang R Q, Gao J H, Guan Z B, Mao L P. Chromosome location and linkage analysis of a few agronomical important traits in foxtail millet. Acta Agron Sin, 2007, 33: 9-14 (in Chinese with English abstract).
[30] 杨冠翼. 谷子延四直矮秆基因的精细定位. 河北师范大学硕士学位论文, 河北石家庄, 2013.
Yang G Y. Fine-mapping of the Dwarf Gene in Yansizhi of Foxtail Millet. MS Thesis of Hebei Normal University, Shijiazhuang, Hebei, China, 2013 (in Chinese with English abstract).
[31] Zhao M C, Zhi H, Zhang X, Jia G Q, Diao X M. Retrotransposon-mediated DELLA transcriptional reprograming underlies semi-dominant dwarfism in foxtail millet. Crop J, 2019, 7: 458-468.
doi: 10.1016/j.cj.2018.12.008
[32] Jia G Q, Huang X H, Zhi H, Zhao Y, Zhao Q, Li W J, Chai Y, Yang L F, Liu K Y, Lu H Y, Zhu C R, Lu Y Q, Zhou C C, Fan D L, Weng Q J, Guo Y L, Huang T, Zhang L, Lu T T, Feng Q, Hao H F, Liu H K, Lu P, Zhang N, Li Y H, Guo E H, Wang S J, Wang S Y, Liu J R, Zhang W F, Chen G Q, Zhang B J, Li W, Wang Y F, Li H Q, Zhao B H, Li J Y, Diao X M, Han B. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat Genet, 2013, 45: 957-961.
doi: 10.1038/ng.2673 pmid: 23793027
[33] He Q, Tang S, Zhi H, Chen J F, Zhang J, Liang H K, Alam O, Li H B, Zhang H, Xing L H, Li X K, Zhang W, Wang H L, Shi J P, Du H, Wu H L, Wang L W, Yang P, Xing L, Yan H S, Song Z Q, Liu J R, Wang H G, Tian X, Qiao Z J, Feng G J, Guo R F, Zhu W J, Ren Y M, Hao H B, Li M Z, Zhang A Y, Guo E H, Yan F, Li Q Q, Liu Y L, Tian B H, Zhao X Q, Jia R L, Feng B L, Zhang J W, Wei J H, Lai J S, Jia G Q, Purugganan M, Diao X M. A graph-based genome and pan-genome variation of the model plant Setaria. Nat Genet, 2023, 55: 1232-1242.
doi: 10.1038/s41588-023-01423-w
[34] Feldman M J, Paul R E, Banan D, Barrett J F, Sebastian J, Yee M C, Jiang H, Lipka A E, Brutnell T P, Dinneny J R, Leakey A D B, Baxter I. Time dependent genetic analysis links field and controlled environment phenotypes in the model C4 grass Setaria. PLoS Genet, 2017, 13: e1006841.
doi: 10.1371/journal.pgen.1006841
[35] Mauro-Herrera M, Doust A N. Development and genetic control of plant architecture and biomass in the panicoid grass, Setaria. PLoS One, 2016, 11: e0151346.
[36] Zhang K, Fan G Y, Zhang X X, Zhao F, Wei W, Du G H, Feng X L, Wang X M, Wang F, Song G L, Zou H F, Zhang X L, Li S D, Ni X M, Zhang G Y, Zhao Z H. Identification of QTLs for 14 agronomically important traits in Setaria italica based on SNPs generated from high-throughput sequencing. Genes Genom Genet, 2017, 7: 1587-1594.
[37] Ni X M, Xia Q J, Zhang H B, Cheng S, Li H, Fan G Y, Guo T, Huang P, Xiang H T, Chen Q C, Li N, Zou H F, Cai X M, Lei X J, Wang X M, Zhou C S, Zhao Z H, Zhang G Y, Du G H, Cai W, Quan Z W. Updated foxtail millet genome assembly and gene mapping of nine key agronomic traits by resequencing a RIL population. GigaScience, 2017, 6: giw005.
[38] Wang Z L, Wang J, Peng J X, Du X F, Jiang M S, Li Y F, Han F, Du G H, Yang H Q, Lian S C, Yong J P, Cai W, Cui J D, Han K N, Yuan F, Chang F, Yuan G B, Zhang W N, Zhang L Y, Peng S Z, Zou H F, Guo E H. QTL mapping for 11 agronomic traits based on a genome-wide Bin-map in a large F2 population of foxtail millet (Setaria italica (L.) P. Beauv.). Mol Breed, 2019, 39: 18.
doi: 10.1007/s11032-019-0930-6
[39] He Q, Zhi H, Tang S, Xing L, Wang S Y, Wang H G, Zhang A Y, Li Y H, Gao M, Zhang H J, Chen G Q, Dai S T, Li J X, Yang J J, Liu H F, Zhang W, Jia Y C, Li S J, Liu J R, Qiao Z J, Guo E H, Jia G Q, Liu J, Diao X M. QTL mapping for foxtail millet plant height in multi-environment using an ultra-high density bin map. Theor Appl Genet, 2021, 134: 557-572.
doi: 10.1007/s00122-020-03714-w pmid: 33128073
[40] Zhu M Y, He Q, L M J, Shi T T, Gao Q, Zhi H, Wang H, Jia G Q, Tang S, Cheng X L, Wang R, Xu A D, Wang H G, Qiao Z J, Liu J, Diao X M, Gao Y. Integrated genomic and transcriptomic analysis reveals genes associated with plant height of foxtail millet. Crop J, 2022, 11: 593-604.
doi: 10.1016/j.cj.2022.09.003
[41] Zhi H, He Q, Tang S, Yang J J, Zhang W, Liu H F, Jia Y C, Jia G Q, Zhang A Y, Li Y H, Guo E H, Gao M, Li S J, Li J X, Qin N, Zhu C C, Ma C Y, Zhang H J, Chen G Q, Zhang W F, Wang H G, Qiao Z J, Li S G, Cheng R H, Xing L, Wang S Y, Liu J R, Liu J, Diao X M. Genetic control and phenotypic characterization of panicle architecture and grain yield-related traits in foxtail millet (Setaria italica). Theor Appl Genet, 2021, 134: 3023-3036.
doi: 10.1007/s00122-021-03875-2 pmid: 34081150
[42] 吴建刚, 姜海程. 我国第一个紧凑型谷子品种“矮88”. 北京农业, 1994, (2): 18-19.
Wu J G, Jiang H C. The first upright leaf foxtail millet variety Ai 88. Beijing Agric, 1994, (2): 18-19 (in Chinese).
[43] 卫丽, 丁勇. 高产高蛋白夏谷新品种豫谷8号简介. 河南农业科学, 1988, (9): 36-36.
Wei L, Ding Y. Introduction of a new summer foxtail millet variety Yugu 8 with high yield and high protein. J Henan Agric Sci, 1988, (9): 36-36 (in Chinese).
[44] 姚占廷. 矮秆蒙谷6号的选育与应用. 内蒙古农业科技, 2004, (1): 44-45.
Yao Z T. Breeding and application of dwarf foxtail millet variety Menggu 6. Inner Mongolia Agric Sci Technol, 2004, (1): 44-45 (in Chinese).
[45] Tian B H, Wang J G, Zhang L X, Li Y J, Wang S Y, Li H J. Assessment of resistance to lodging of landrace and improved cultivars in foxtail millet. Euphytica, 2010, 172: 295-302.
doi: 10.1007/s10681-009-9999-z
[46] 田伯红. 禾谷类作物抗倒伏性的研究方法与谷子抗倒性评价. 植物遗传资源学报, 2013, 14: 265-269.
doi: 10.13430/j.cnki.jpgr.2013.02.011
Tian B H. The methods of lodging resistance assessment in cereal crops and their application in foxtail millet. J Plant Genet Resour, 2013, 14: 265-269 (in Chinese with English abstract).
[47] 杜艳伟, 赵晋锋, 王高鸿, 李颜方, 赵根有, 阎晓光. 春播谷子成熟期抗倒伏性研究. 作物杂志, 2019, (1): 141-145.
Du Y W, Zhao J F, Wang G H, Li Y F, Zhao G Y, Yan X G. Study of lodging resistance of spring-sowing foxtail millet in maturity stages. Crops, 2019, (1): 141-145 (in Chinese with English abstract).
[48] 刘艳丽, 田伯红, 张立新, 宋淑贤, 王建广. 谷子育成品种的抗倒性评价. 河北农业科学, 2014, 18(4): 8-12.
Liu Y L, Tian B H, Zhang L X, Song S X, Wang J G. The evaluation on lodging resistance of foxtail millet bred varieties. J Hebei Agric Sci, 2014, 18(4): 8-12 (in Chinese with English abstract).
[49] 贾小平, 董普辉, 张红晓, 孔祥生. 不同谷子品种(系)生长发育特性及抗倒性分析. 河南农业科学, 2015, 44(8): 27-31.
Jia X P, Dong P H, Zhang H X, Kong X S. Analysis of growth and development characteristics and lodging resistance of different foxtail millet cultivars (strains). J Henan Agric Sci, 2015, 44(8): 27-31 (in Chinese with English abstract).
[50] 贾小平, 董普辉, 张红晓, 全建章, 董志平. 谷子抗倒伏性和株高、穗部性状的相关性研究. 植物遗传资源学报, 2015, 16: 1188-1193.
doi: 10.13430/j.cnki.jpgr.2015.06.008
Jia X P, Dong P H, Zhang H X, Quan J Z, Dong Z P. Correlation Study of lodging resistance and plant height, panicle traits in foxtail millet. J Plant Genet Resour, 2015, 16: 1188-1193 (in Chinese with English abstract).
[51] Diao X M, Schnable J, Bennetzen J L, Li J Y. Initiation of Setaria as a model plant. Front Agric Sci Eng, 2014, 1: 16-20.
[52] Peng R H, Zhang B H. Foxtail millet: a new model for C4 plants. Trends Plant Sci, 2021, 26: 199-201.
doi: 10.1016/j.tplants.2020.12.003
[53] Yang Z R, Zhang H S, Li X K, Shen H M, Gao J H, Hou S Y, Zhang B, Mayes S, Bennett M, Ma J X, Wu C Y, Sui Y, Han Y H, Wang X C. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nat Plants, 2020, 6: 1167-1178.
doi: 10.1038/s41477-020-0747-7
[54] Cheng Z X, Sun Y, Yang S H, Zhi H, Yin T, Ma X J, Zhang H S, Diao X M, Guo Y, Li X H, Wu C Y, Sui Y. Establishing in planta haploid inducer line by edited SiMTL in foxtail millet (Setaria italica). Plant Biotechnol J, 2021, 19: 1089-1091.
doi: 10.1111/pbi.v19.6
[1] LI Bo-Yang, YE Yin, CHU Rui-Wen, JING Miao, ZHANG Sui-Qi, YAN Jia-Kun. Effects of biochar application on dry matter accumulation, transport, and distribution of foxtail millet and soil physicochemical properties [J]. Acta Agronomica Sinica, 2024, 50(3): 695-708.
[2] LIU Wei, WANG Yu-Bin, LI Wei, ZHANG Li-Feng, XU Ran, WANG Cai-Jie, ZHANG Yan-Wei. Overexpression of soybean isopropyl malate dehydrogenase gene GmIPMDH promotes flowering and growth [J]. Acta Agronomica Sinica, 2024, 50(3): 613-622.
[3] YANG Chen-Xi, ZHOU Wen-Qi, ZHOU Xiang-Yan, LIU Zhong-Xiang, ZHOU Yu-Qian, LIU Jie-Shan, YANG Yan-Zhong, HE Hai-Jun, WANG Xiao-Juan, LIAN Xiao-Rong, LI Yong-Sheng. Mapping and cloning of plant height gene PHR1 in maize [J]. Acta Agronomica Sinica, 2024, 50(1): 55-66.
[4] JIA Lu-Qi, SUN You, TIAN Ran, ZHANG Xue-Fei, DAI Yong-Dong, CUI Zhi-Bo, LI Yang-Yang, FENG Xin-Yu, SANG Xian-Chun, and WANG Xiao-Wen. Identification of the rgs1 mutant with rapid germination of seed and isolation of the regulated gene in rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2288-2295.
[5] DAI Shu-Tao, ZHU Can-Can, MA Xiao-Qian, QIN Na, SONG Ying-Hui, WEI Xin, WANG Chun-Yi, LI Jun-Xia. Genome-wide identification of the HAK/KUP/KT potassium transporter family in foxtail millet and its response to K+ deficiency and high salt stress [J]. Acta Agronomica Sinica, 2023, 49(8): 2105-2121.
[6] SU Zai-Xing, HUANG Zhong-Qin, GAO Run-Fei, ZHU Xue-Cheng, WANG Bo, CHANG Yong, LI Xiao-Shan, DING Zhen-Qian, YI Yuan. Identification of wheat dwarf mutant Xu1801 and analysis of its dwarfing effect [J]. Acta Agronomica Sinica, 2023, 49(8): 2133-2143.
[7] WAN Yi-Man, XIAO Sheng-Hui, BAI Yi-Chao, FAN Jia-Yin, WANG Yan, WU Chang-Ai. Establishment and optimization of a high-efficient hairy-root system in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2023, 49(7): 1758-1768.
[8] LIU Jia, ZOU Xiao-Yue, MA Ji-Fang, WANG Yong-Fang, DONG Zhi-Ping, LI Zhi-Yong, BAI Hui. Genome-wide identification and characterization of MAPK genes and their response to biotic stresses in foxtail millet [J]. Acta Agronomica Sinica, 2023, 49(6): 1480-1495.
[9] ZHU Zhi, LI Long, LI Chao-Nan, MAO Xin-Guo, HAO Chen-Yang, ZHU Ting, WANG Jing-Yi, CHANG Jian-Zhong, JING Rui-Lian. Transcription factor TaMYB5-3B is associated with plant height and 1000- grain weight in wheat [J]. Acta Agronomica Sinica, 2023, 49(4): 906-916.
[10] MA Ya-Jie, BAO Jian-Xi, GAO Yue-Xin, LI Ya-Nan, QIN Wen-Xuan, WANG Yan-Bo, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association analysis of plant height and ear height related traits in maize [J]. Acta Agronomica Sinica, 2023, 49(3): 647-661.
[11] ZHAO Die, HU Wen-Jing, CHENG Xiao-Ming, WANG Shu-Ping, ZHANG Chun-Mei, LI Dong-Sheng, GAO De-Rong. Detection and verification of QTL for plant height in Yangmai 4/Yanzhan 1 recombinant inbred lines population and their genetic effects on Fusarium head blight resistance [J]. Acta Agronomica Sinica, 2023, 49(12): 3215-3226.
[12] WANG Rong, CHEN Xiao-Hong, WANG Qian, LIU Shao-Xiong, LU Ping, DIAO Xian-Min, LIU Min-Xuan, WANG Rui-Yun. Genetic diversity and genetic relationship of Chinese traditional foxtail millet accessions [J]. Acta Agronomica Sinica, 2022, 48(8): 1914-1925.
[13] WEI Gang, CHEN Dan-Yang, REN De-Yong, YANG Hong-Xia, WU Jing-Wen, FENG Ping, WANG Nan. Identification and gene mapping of slender stem mutant sr10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(8): 2125-2133.
[14] HAN Shang-Ling, HUO Yi-Qiong, LI Hui, HAN Hua-Rui, HOU Si-Yu, SUN Zhao-Xia, HAN Yuan-Huai, LI Hong-Ying. Identification of regulatory genes related to flavonoids synthesis by weighted gene correlation network analysis in the panicle of foxtail millet [J]. Acta Agronomica Sinica, 2022, 48(7): 1645-1657.
[15] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[4] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[5] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[6] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[7] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[8] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[9] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[10] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .