Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (2): 280-293.doi: 10.3724/SP.J.1006.2023.34075

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification for yield and fiber quality traits and evaluation of molecular markers in modern cotton varieties

KE Hui-Feng1,**(), SU Hong-Mei1,**(), SUN Zheng-Wen1, GU Qi-Shen1, YANG Jun1, WANG Guo-Ning1, XU Dong-Yong2, WANG Hong-Zhe2, WU Li-Qiang1, ZHANG Yan1, ZHANG Gui-Yin1, MA Zhi-Ying1, WANG Xing-Fen1,*()   

  1. 1State Key Laboratory of North China Crop Improvement and Regulation / Key Laboratory for Crop Germplasm Resources of Hebei / North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, Hebei, China
    2Hejian Guoxin Rural Technical Service Association, Hejian 062450, Hebei, China
  • Received:2023-04-20 Accepted:2023-06-29 Online:2024-02-12 Published:2023-07-12
  • Contact: *E-mail: cotton@hebau.edu.cn
  • About author:**Contributed equally to this work
  • Supported by:
    Hebei Natural Science Foundation(C2022204205);Key Research and Development Program of Hebei Province(21326314D);High-level Talent Support Project of Hebei Province(031601801)

Abstract:

Cotton is an important cash crop and natural raw material for the textile industry. Cultivar is a major restrictive factor for cotton production, which depends on the identification, evaluation, and effective utilization of elite germplasms. In view of this, 141 modern cotton cultivars derived from the three major cotton-growing regions (the Yellow River valley, the Yangtze River valley, and the Northwest Inland cotton-growing areas) in China were used in the present study, and four yield and five fiber quality traits of these varieties were evaluated under different environments. The genetic diversity of these varieties based on KASP and SSR markers was also analyzed. The results showed that the varieties from the Yangtze River valley presented the highest lint percentage and lint index, the varieties from the Yellow River valley displayed the highest boll weight and seed index, while the varieties from the Northwest Inland cotton-growing areas possessed the best fiber quality traits. The analysis of variance showed that the yield and fiber quality traits were significant different among cotton varieties. The coefficient of variation (CV) of lint index was the largest (10.09%) in the yield traits while the CV of fiber strength was the largest (8.81%) in the fiber quality traits, indicating a great improvement potential in these two traits. The clustering result based on phenotypic traits showed that 141 varieties were divided into two groups with different yield and fiber quality traits. Meanwhile, a total of 74 polymorphic binds were amplified by 30 pairs of SSR primers, and 32 KASP markers were clearly classified among the tested varieties. Based on SSR and KASP markers, the average value of genetic similarity coefficient was 0.62, indicating a high genetic diversity in these cotton varieties. The clustering results based on molecular markers showed that 141 varieties were also divided into two groups, which indicating some consistent with the cluster result based on phenotypic traits. Moreover, three elite germplasms with high boll weight (> 7 g), 24 elite germplasms with high lint percentage (> 42%), six elite germplasms with high fiber length and strength (> 30), and two germplasms with multiple elite yield and fiber quality traits were screened out, which provides elite parents for developing new cotton varieties and theoretical basis for the further utilization of these germplasms.

Key words: cotton, germplasms, yield and fiber quality, molecular marker, genetic diversity

Table 1

The upland cotton varieties and their geographic origins in the present study"

编号
No.
品种名称
Name
来源
Origin
编号
No.
品种名称
Name
来源
Origin
1 冈棉9号 Gangmian 9 湖北 Hubei, China 72 冀丰4号 Jifeng 4 河北 Hebei, China
2 冈棉10号 Gangmian 10 湖北 Hubei, China 73 冀丰1458 Jifeng1458 河北 Hebei, China
3 冈棉11号 Gangmian 11 湖北 Hubei, China 74 冀棉298 Jimian 298 河北 Hebei, China
4 冈棉86 Gangmian 86 湖北 Hubei, China 75 冀棉229 Jimian 229 河北 Hebei, China
5 泗棉686 Simian 686 江苏 Jiangsu, China 76 冀棉315 Jimian 315 河北 Hebei, China
6 泗棉1035 Simian 1035 江苏 Jiangsu, China 77 冀棉521 Jimian 521 河北 Hebei, China
7 荆棉91 Jingmian 91 湖北 Hubei, China 78 冀棉803 Jimian 803 河北 Hebei, China
8 湘XH50 Xiang XH50 湖南 Hunan, China 79 冀棉262 Jimian 262 河北 Hebei, China
9 创棉11号 Chuangmian 11 江西 Jiangxi, China 80 冀178 Ji 178 河北 Hebei, China
10 湘FZ031 Xiang FZ031 湖南 Hunan, China 81 冀航8号 Jihang 8 河北 Hebei, China
11 赣棉15 Ganmian 15 江西 Jiangxi, China 82 冀172 Ji 172 河北 Hebei, China
12 荆0436 Jing 0436 湖北 Hubei, China 83 冀1518 Ji 1518 河北 Hebei, China
13 荆棉16 Jingmian 16 湖北 Hubei, China 84 冀棉2016 Jimian 2016 河北 Hebei, China
14 聊棉6号 Liaomian 6 山东 Shandong, China 85 冀棉27 Jimian 27 河北 Hebei, China
15 聊棉15号 Liaomian 15 山东 Shandong, China 86 衡棉3号 Hengmian 3 河北 Hebei, China
16 聊棉19号 Liaomian 19 山东 Shandong, China 87 衡无1086 Hengwu 1086 河北 Hebei, China
17 中棉所126 Zhongmiansuo 126 河南 Henan, China 88 衡棉HD008 Hengmian HD008 河北 Hebei, China
18 中棉所425 Zhongmiansuo 425 河南 Henan, China 89 衡棉1670 Hengmian 1670 河北 Hebei, China
19 中棉所94A915 Zhongmiansuo 94A915 河南 Henan, China 90 中69 Zhong 69 河南 Henan, China
20 中棉所117 Zhongmiansuo 117 河南 Henan, China 91 徐棉608 Xumian 608 江苏 Jiangsu, China
21 中棉所119 Zhongmiansuo 119 河南 Henan, China 92 金垦1565 Jinken 1565 新疆 Xinjiang, China
22 中棉所9001 Zhongmiansuo 9001 河南 Henan, China 93 金垦1775 Jinken 1775 新疆 Xinjiang, China
23 中棉9131 Zhongmian 9131 河南 Henan, China 94 湘K645 Xiang K645 湖南 Hunan, China
24 中棉105 Zhongmian 105 河南 Henan, China 95 湘FZ001 Xiang FZ001 湖南 Hunan, China
25 中棉所111 Zhongmiansuo 111 河南 Henan, China 96 湘K25 Xiang K25 湖南 Hunan, China
26 中棉所133 Zhongmiansuo 133 河南 Henan, China 97 湘K27 Xiang K27 湖南 Hunan, China
27 鲁棉1127 Lumian 1127 山东 Shandong, China 98 新陆早58号 Xinluzao 58 新疆 Xinjiang, China
28 鲁棉1131 Lumian 1131 山东 Shandong, China 99 Z1112 新疆 Xinjiang, China
29 鲁棉1141 Lumian 1141 山东 Shandong, China 100 Z1146 新疆 Xinjiang, China
30 鲁棉1143 Lumian 1143 山东 Shandong, China 101 辽棉23号 Liaomian 23 辽宁 Liaoning, China
31 鲁棉1157 Lumian 1157 山东 Shandong, China 102 辽棉27号 Liaomian 27 辽宁 Liaoning, China
32 山农SF06 Shannong SF06 山东 Shandong, China 103 辽棉31号 Liaomian 31 辽宁 Liaoning, China
33 山农圣棉1号 Shannongshengmian 1 山东 Shandong, China 104 辽棉34号 Liaomian 34 辽宁 Liaoning, China
34 山农棉9号 Shannongmian 9 山东 Shandong, China 105 辽35 Liao 35 辽宁 Liaoning, China
35 山农棉14号 Shannongmian 14 山东 Shandong, China 106 辽棉36号 Liaomian 36 辽宁 Liaoning, China
36 鲁棉301 Lumian 301 山东 Shandong, China 107 辽40 Liao 40 辽宁 Liaoning, China
37 鲁棉303 Lumian 303 山东 Shandong, China 108 辽43 Liao 43 辽宁 Liaoning, China
38 鲁棉312 Lumian 312 山东 Shandong, China 109 辽44 Liao 44 辽宁 Liaoning, China
39 鲁棉319 Lumian 319 山东 Shandong, China 110 辽棉45号 Liaomian 45 辽宁 Liaoning, China
40 鲁棉336 Lumian 336 山东 Shandong, China 111 辽棉46号 Liaomian 46 辽宁 Liaoning, China
41 鲁棉338 Lumian 338 山东 Shandong, China 112 辽棉53号 Liaomian 53 辽宁 Liaoning, China
42 鲁棉377 Lumian 377 山东 Shandong, China 113 金农16号 Jinnong 16 河北 Hebei, China
43 鲁棉378 Lumian 378 山东 Shandong, China 114 冀石33号 Jishi 33 河北 Hebei, China
44 鲁棉研37号 Lumianyan 37 山东 Shandong, China 115 冀石929 Jishi 929 河北 Hebei, China
45 N107 山西 Shanxi, China 116 冀创棉1号 Jichuangmian 1 河北 Hebei, China
46 A4 山西 Shanxi, China 117 金农969 Jinnong 969 河北 Hebei, China
47 晋棉56 Jinmian 56 山西 Shanxi, China 118 石抗126 Shikang 126 河北 Hebei, China
48 运棉3539 Yunmian 3539 山西 Shanxi, China 119 冀棉616 Jimian 616 河北 Hebei, China
49 邯258 Han 258 河北 Hebei, China 120 冀863 Ji 863 河北 Hebei, China
50 邯663 Han 663 河北 Hebei, China 121 冀958 Ji 958 河北 Hebei, China
51 邯818 Han 818 河北 Hebei, China 122 冀2000 Ji 2000 河北 Hebei, China
52 邯853 Han 853 河北 Hebei, China 123 邯棉559 Hanmian 559 河北 Hebei, China
53 邯901 Han 901 河北 Hebei, China 124 K418 新疆 Xinjiang, China
54 邯6203 Han 6203 河北 Hebei, China 125 新陆中54号 Xinluzhong 54 新疆 Xinjiang, China
55 邯218 Han 218 河北 Hebei, China 126 新陆中73号 Xinluzhong 73 新疆 Xinjiang, China
56 邯棉6101 Hanmian 6101 河北 Hebei, China 127 新陆中76号 Xinluzhong 76 新疆 Xinjiang, China
57 邯棉3022 Hanmian 3022 河北 Hebei, China 128 新陆中77号 Xinluzhong 77 新疆 Xinjiang, China
58 邯棉3008 Hanmian 3008 河北 Hebei, China 129 新陆中80号 Xinluzhong 80 新疆 Xinjiang, China
59 邯5158 Han 5158 河北 Hebei, China 130 新陆中83号 Xinluzhong 83 新疆 Xinjiang, China
60 邯7860 Han 7860 河北 Hebei, China 131 新陆中84号 Xinluzhong 84 新疆 Xinjiang, China
61 邯102 Han 102 河北 Hebei, China 132 源棉11号 Yuanmian 11 新疆 Xinjiang, China
62 邯8266 Han 8266 河北 Hebei, China 133 源棉35号 Yuanmian 35 新疆 Xinjiang, China
63 邯无216 Hanwu 216 河北 Hebei, China 134 源棉39号 Yuanmian 39 新疆 Xinjiang, China
64 邯6305 Han 6305 河北 Hebei, China 135 源棉40号 Yuanmian 40 新疆 Xinjiang, China
65 邯M263 Han M263 河北 Hebei, China 136 源棉41号 Yuanmian 41 新疆 Xinjiang, China
66 邯6382 Han 6382 河北 Hebei, China 137 源棉42号 Yuanmian 42 新疆 Xinjiang, China
67 冀石265 Jishi 265 河北 Hebei, China 138 源棉43号 Yuanmian 43 新疆 Xinjiang, China
68 冀丰1271 Jifeng 1271 河北 Hebei, China 139 源棉44号 Yuanmian 44 新疆 Xinjiang, China
69 冀丰103 Jifeng 103 河北 Hebei, China 140 源棉45号 Yuanmian 45 新疆 Xinjiang, China
70 冀丰1982 Jifeng 1982 河北 Hebei, China 141 源棉48号 Yuanmian 48 新疆 Xinjiang, China
71 冀丰914 Jifeng 914 河北 Hebei, China

Table 2

The chromosome distributions and primer sequences of KASP markers"

代号
ID
染色体
Chr.
引物
Primer_AlleleFAM (5°-3°)
引物
Primer_AlleleHEX (5°-3°)
引物
Primer_Common (5°-3°)
HAU060 D11 GCATTGTGAAAATCATTTTCAACCGCA CATTGTGAAAATCATTTTCAACCGCG CAAGGACAGGGTCTTGTAGCTGATT
HAU061 D11 AATAGTACCACTTCAGTCCAAGGTTA ATAGTACCACTTCAGTCCAAGGTTG CATGGGAACAACTCAACTACCTTAATCAT
HAU063 D11 GCAGATACTAACGAATTATTCTACCTC GGCAGATACTAACGAATTATTCTACCTT GGGAAGTGTTACTGCCTGGCGTA
HAU064 D11 GGTTAATGTCCTTCTTAGACTCAGTT GGTTAATGTCCTTCTTAGACTCAGTC CATACACCTACTTGGCGTATATTATGGAT
HAU065 D11 CTATTTGGTGCCATGCTTGGAAC CTCTATTTGGTGCCATGCTTGGAAT GTAAAGATGTTTCCCAATGAGTTTCTGGAA
HAU067 D11 GCAAAAATTCACACTTACTTAATTTGGCATT GCAAAAATTCACACTTACTTAATTTGGCATA GTGTTAAGAACCTTACGAGAGAACAAGTT
HAU069 D11 CAAGATGTATACACCAAAACCTCCCA CAAGATGTATACACCAAAACCTCCCT GACTGGGATGTGTGCTCATGCAAA
HAU075 D11 GTTACAAAACATATGTATAAGCCATCTGC AGTTACAAAACATATGTATAAGCCATCTGT GTTGTGGTTGCAAGTGAGCTATTTGTTTA
HAU077 D11 CGATTAACACTATGAACCACGCAT CGATTAACACTATGAACCACGCAC ATTGGTGAATGTCCTAAGTCGCTACTA
HAU080 D11 GACAATGCATGCAGAATGAAATATGC ATGACAATGCATGCAGAATGAAATATGT CAAGCATGGCAGCATCCAATCTCAT
HAU083 D11 GTTAGCTTTTTGGCACTATTTTTTACCAAA GTTAGCTTTTTGGCACTATTTTTTACCAAT TGCCTAGGGACGACTTAAGGCATT
HAU088 D11 AAAGTCTATAAATACCAATTAGAAGAAGAC CTAAAGTCTATAAATACCAATTAGAAGAAGAT TTTCTTCGATCTTCTCTGATGCTCCATTA
HAU089 D11 GTTTTTATACTTAGAAAAGCATTTGGGAGT TTTATACTTAGAAAAGCATTTGGGAGC TCGTGTGGCTTCTGAAAACAACTCTATTT
HAU092 D11 ATTGACTTGGTTCCTGGTACTACAC GACTTGGTTCCTGGTACTACAT CTGGTGCCATACGATAAAGTGATATCATT
HAU095 D11 GATTATACCAAGACATTCACTACTCG CTGATTATACCAAGACATTCACTACTCA CATGCTCATCGTAATATCTACCCAGTAAA
HAU097 D11 ATATTAGCTTCTTCGACTGAGGCC ATATTAGCTTCTTCGACTGAGGCT CAAAGCAGCCCAATTAATACATCGGAATA
HAU099 D11 CCCTTCCCTTTCCACCTTCCT CCCTTCCCTTTCCACCTTCCC GGGGACGATCGATGGTGAAGGAA
FLD02_1_10 D02 GGGCCGGACCTCGGGAAAT GGGCCGGACCTCGGGAAAA GAAATGGGGAGGGGAAATGAGAAATTTAT
FLD02_1_14 D02 TTGGGTGGTTTGGGTAAATTG AATGCTTTGGGTGGTTTGGGTAAATTA AAAACACGTGTAACAGAAAGAGGACTAAAA
FLD02_4_14 D02 ACGTCATCACATTTCTGAGCCTC ACACGTCATCACATTTCTGAGCCTT CTTAGCTGAGTTGAAAGCTAGACTGATAT
FLD02_4_18 D02 CAATGGACCGAACAGACGCG CTCAATGGACCGAACAGACGCA CCACTCTTTGGTTTTGGGCCAAATTTTAA
FLD02_4_24 D02 TATTTTCTGGACAATTGTCAGGAGCA TTCTGGACAATTGTCAGGAGCG CATGAGTATTTTCAGATTGCGCCCAAAAT
FLD02_4_30 D02 CCGGCCCGAGCCCAACTATTA CGGCCCGAGCCCAACTATTG CATTAAACTGGACACTTTATGGGACCTTT
FLD02_4_34 D02 CGCAACATAGGCCTTGCATGGT GCAACATAGGCCTTGCATGGC GCAAGGCACAAATTGCTCGTTGTGTT
FLD02_4_38 D02 AAAGGTAGAGTTTTCTTAACAGATTAGCTA GGTAGAGTTTTCTTAACAGATTAGCTG GGGCTTAAGTTCTTCCTCTCCCAAA
FLD02_4_44 D02 AATGACAACATCCCTGGGCCG CAATGACAACATCCCTGGGCCA TAGATGCTCTTCTATAGACCGAAAGCATT
FLD02_4_48 D02 GCATAATCATATCATTAGCACATTATACAC CGCATAATCATATCATTAGCACATTATACAT GGTATGTTATTCATGCCACGTGAGAAT
FLD02_4_6 D02 ATATCTGACACTCAGTGCCTCATCT CTGACACTCAGTGCCTCATCG GAGGCGCGAAACAAATATTATACTTCGAA
FSD11_1_10 D11 CCTCCTACATTGACAACAATACTAATAC ATCCTCCTACATTGACAACAATACTAATAT ATTGCACATGCGCACCACCCATATA
FSD11_1_14 D11 TCCACCACCGACACCGCT CCACCACCGACACCGCC GTGAGTTCTTAAGTAGCAATGGGATGAAT
FSD11_1_24 D11 GTCGGTGTAACTTAATCTGTATTGTTAA GTCGGTGTAACTTAATCTGTATTGTTAG TCTCTATTTATAGTTACGTTCCCCCAGAA
FSD11_1_2 D11 AGAACCTGGTGTGGTCTTTTGACTT AACCTGGTGTGGTCTTTTGACTG GTTCTATCACTGGAAATTGAAGGGTGATT

Table 3

Genetic variations on yield and fiber quality traits of cotton varieties"

性状
Trait
均值
Mean
标准差
SD
变异系数
CV (%)
最小值
Min.
最大值
Max.
多样性
指数H’
峰度
Skew.
偏度
Kurt.
P
P-value
铃重BW (g) 6.03 0.48 7.96 4.78 7.16 2.08 -0.16 -0.16 7.19E-52
衣分 LP (%) 40.18 0.02 4.52 33.83 43.30 2.01 -0.33 -0.59 5.48E-17
子指 SI (g) 10.38 0.90 8.67 8.40 13.04 2.07 0.32 0.16 2.89E-47
衣指 LI (g) 7.75 0.78 10.09 5.36 9.81 2.04 -0.06 0.41 4.77E-50
纤维长度 FL (mm) 28.18 1.33 4.72 25.63 33.92 1.96 0.61 0.63 1.34E-28
断裂比强度 FS (cN tex-1) 28.77 2.53 8.81 23.43 38.23 1.93 0.64 0.88 4.04E-28
马克隆值 FM 4.88 0.39 7.95 3.72 5.95 2.06 -0.95 1.06 4.38E-53
整齐度 FU (%) 85.18 0.84 0.99 82.90 87.43 1.90 -0.04 0.17 4.97E-05
伸长率FE (%) 6.44 0.21 3.20 5.00 6.85 2.06 -0.54 0.28 1.94E-51

Table 4

Performances of two screening germplasms with multiple superior traits"

品种名称
Name
铃重
BW (g)
衣指
LI (g)
衣分
LP (%)
子指
SI (g)
纤维长度
FL (mm)
断裂比强度
FS (cN tex-1)
马克隆值FM 整齐度
FU (%)
伸长率
FE (%)
冀丰1982 Jifeng 1982 7.02 9.33 40.61 12.20 29.70 30.48 5.14 85.41 6.53
衡棉1670 Hengmian 1670 7.16 9.81 41.50 12.39 29.21 29.68 5.24 85.63 6.65

Table 5

Comparison on yield and fiber quality traits of cotton varieties from different geographical origins"

性状
Trait
长江流域棉区
Yangtze River valley
黄河流域棉区
Yellow River valley
西北内陆棉区
Northwest innerland
平均值
Mean
变异系数
CV (%)
平均值
Mean
变异系数
CV (%)
平均值
Mean
变异系数
CV (%)
单铃重BW (g) 5.91 9.06 6.10 7.15 5.80 9.76
衣分 LP (%) 41.69 2.20 40.26 4.33 38.94 4.62
子指 SI (g) 10.15 5.82 10.59 8.12 9.59 7.95
衣指 LI (g) 8.06 6.10 7.91 8.77 6.84 9.74
纤维长度 FL (mm) 27.88 2.69 27.97 4.57 29.31 4.44
断裂比强度 FS (cN tex-1) 28.20 8.63 28.17 6.95 31.82 8.76
马克隆值 FM 4.73 6.63 4.95 7.61 4.66 8.36
整齐度 FU (%) 85.05 1.12 85.11 0.90 85.57 1.21
伸长率FE (%) 6.45 2.28 6.41 3.36 6.54 2.43

Fig. 1

Correlation analysis of yield and fiber quality traits in cotton varieties * and ** indicate significant correlation at P < 0.05 and P < 0.01, respectively."

Fig. 2

Cluster diagram of cotton varieties based on yield and fiber quality traits"

Table 6

Cluster result of cotton varieties based on phenotypic differences"

类群
Group
参数
Parameter
单铃重
BW (g)
衣分
LP (%)
子指
SI (g)
衣指
LI (g)
纤维长度
FL (mm)
断裂比强度
FS (cN tex-1)
马克隆值
FM
整齐度
FU (%)
伸长率
FE (%)
I 平均值Mean 5.57 38.56 10.04 7.01 29.89 34.22 4.39 86.08 6.63
标准差SD 0.47 0.02 0.71 0.79 1.07 1.47 0.38 0.74 0.08
变异系数CV (%) 8.41 4.84 7.05 11.27 3.57 4.29 8.58 0.86 1.26
最小值 Min. 4.84 34.72 8.47 5.36 28.13 32.48 3.72 84.40 6.53
最大值 Max. 6.58 42.34 11.03 8.47 32.37 38.23 5.01 87.00 6.80
II-I 平均值Mean 5.95 40.43 10.24 7.71 27.34 27.54 4.98 85.00 6.40
标准差SD 0.43 0.02 0.65 0.63 0.72 0.78 0.32 0.61 0.13
变异系数CV (%) 7.30 4.04 6.32 8.13 2.65 2.85 6.46 0.71 2.04
最小值 Min. 4.78 36.78 8.85 6.11 25.63 25.65 4.33 83.65 6.08
最大值 Max. 7.09 43.13 11.73 9.33 28.92 28.90 5.71 86.43 6.65
II-II 平均值Mean 6.16 40.80 10.55 8.08 27.02 25.73 4.97 84.28 6.25
标准差SD 0.41 0.02 0.97 0.79 0.74 0.98 0.38 0.74 0.17
变异系数CV (%) 6.62 3.90 9.17 9.81 2.73 3.79 7.73 0.88 2.69
最小值 Min. 5.01 36.52 8.91 6.63 25.76 23.43 4.20 82.90 6.00
最大值 Max. 6.56 43.10 12.78 9.58 28.81 27.00 5.95 85.51 6.50
II-III 平均值Mean 6.18 40.23 10.55 7.89 28.83 29.41 4.88 85.44 6.48
标准差SD 0.46 0.02 1.07 0.79 1.08 1.16 0.38 0.71 0.23
变异系数CV (%) 7.40 4.49 10.11 10.00 3.75 3.95 7.70 0.83 3.51
最小值 Min. 5.13 33.83 8.40 6.04 27.15 27.03 3.72 83.74 5.00
最大值 Max. 7.16 43.30 13.04 9.81 33.92 31.89 5.42 87.43 6.85

Table 7

Polymorphic sites and PIC values of 30 SSR primers in cotton varieties"

引物名称
Primer name
多态性位点
Polymorphic site
PIC值
PIC value
引物名称
Primer name
多态性位点
Polymorphic site
PIC值
PIC value
MGHES-31 3 0.36 H036 3 0.36
MGHES-60 2 0.27 H042 3 0.32
BNL530 3 0.29 H057 5 0.50
BNL1672 5 0.40 H062 4 0.41
BNL1053 2 0.26 H068 2 0.28
BNL1414 5 0.41 H074 3 0.48
BNL2634 2 0.31 H098 1 0.16
BNL3065 1 0.20 H108 4 0.45
BNL3408 1 0.17 H122 3 0.31
BNL3649 1 0.19 H136 2 0.30
MGHES5-6 2 0.23 H157 4 0.42
MGHES-66 2 0.25 H003 6 0.42
H016 3 0.35 H010 2 0.31
H019 3 0.29 H053 1 0.26
H032 3 0.29 MGHES-62 3 0.34

Fig. 3

Fluorescence detection results of 141 cotton varieties based on KASP markers a-f represent KASP results of HAU063, HAU064, HAU077, HAU095, HAU061, and FDS11-1-14. Blue dots represent reference genotypes, red dots represent alternate genotypes."

Table 8

PIC values of 32 KASP markers in cotton varieties"

标记名称
Marker name
PIC值
PIC value
标记名称
Marker name
PIC值
PIC value
标记名称
Marker name
PIC值
PIC value
HAU060 0.36 HAU088 0.35 FLD02_4_30 0.60
HAU061 0.35 HAU089 0.36 FLD02_4_34 0.57
HAU063 0.36 HAU092 0.34 FLD02_4_38 0.58
HAU064 0.37 HAU095 0.36 FLD02_4_44 0.56
HAU065 0.39 HAU097 0.35 FLD02_4_48 0.35
HAU067 0.37 HAU099 0.35 FLD02_4_6 0.48
HAU069 0.35 FLD02_1_10 0.51 FSD11_1_10 0.39
HAU075 0.35 FLD02_1_14 0.80 FSD11_1_14 0.36
HAU077 0.36 FLD02_4_14 0.56 FSD11_1_2 0.59
HAU080 0.80 FLD02_4_18 0.56 FSD11_1_24 0.55
HAU083 0.39 FLD02_4_24 0.52

Fig. 4

Dendrogram of the 141 cotton varieties based on SSR and KASP markers"

[1] Ma Z Y, Zhang Y, Wu L Q, Zhang G Y, Sun Z W, Li Z K, Jiang Y F, Ke H F, Chen B, Liu Z W, Gu Q S, Wang Z C, Wang G N, Yang J, Wu J H, Yan Y Y, Meng C S, Li L H, Li X X, Mo S J, Wu N, Ma L M, Chen L T, Zhang M, Si A J, Yang Z W, Wang N, Wu L Z, Zhang D M, Cui Y R, Cui J, Lyu X, Li Y, Shi R K, Duan Y H, Tian S L, Wang X F. High-quality genome assembly and resequencing of modern cotton cultivars provide resources for crop improvement. Nat Genet, 2021, 53: 1385-1391.
doi: 10.1038/s41588-021-00910-2 pmid: 34373642
[2] 杨向东. 中国棉花产业现状分析. 农村经济与科技, 2022, 33(5): 19-22.
Yang X D. Analysis of current situation of cotton industry in China. Rural Econ Sci Technol, 2022, 33(5): 19-22 (in Chinese).
[3] 卢秀茹, 贾肖月, 牛佳慧. 中国棉花产业发展现状及展望. 中国农业科学, 2018, 51: 26-36.
doi: 10.3864/j.issn.0578-1752.2018.01.003
Lu X R, Jia X Y, Niu J H. The present situation and prospects of cotton industry development in China. Sci Agric Sin, 2018, 51: 26-36 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.01.003
[4] 徐涛, 赵明, 卓建伟. 中国棉花历史价格研究. 安徽农业科学, 2008, 36: 4324-4326.
Xu T, Zhao M, Zhuo J W. Research on historical price of cotton. J Anhui Agric Sci, 2008, 36: 4324-4326 (in Chinese with English abstract).
[5] Pareek A, Dhankher O P, Foyer C H. Mitigating the impact of climate change on plant productivity and ecosystem sustainability. J Exp Bot, 2020, 71: 451-456.
doi: 10.1093/jxb/erz518 pmid: 31909813
[6] Laborde D, Martin W, Swinnen J, Vos R. COVID-19 risks to global food security. Science, 2020, 369: 500-502.
doi: 10.1126/science.abc4765 pmid: 32732407
[7] 戴茂华, 刘丽英, 郑书宏, 王瑞清, 吴振良. 陆地棉主要农艺性状的相关性及聚类分析. 中国农学通报, 2015, 31(12): 139-144.
doi: 10.11924/j.issn.1000-6850.casb14120107
Dai M H, Liu L Y, Zheng S H, Wang R Q, Wu Z L. Correlation and cluster analysis for main agronomic characters of upland cotton. Chin Agric Sci Bull, 2015, 31(12): 139-144 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb14120107
[8] 杜雄明, 周忠丽. 棉花种质资源描述规范和数据标准. 北京: 中国农业出版社, 2005. pp 25-26.
Du X M, Zhou Z L. Descriptors and Data Standard for Cotton (Gossypium spp.). Beijing: China Agriculture Press, 2005. pp 25-26 (in Chinese).
[9] 杨伟华, 许红霞, 王延琴, 周大云, 唐淑荣, 冯新爱. 优质棉的定义及其评价方法解读. 中国棉花, 2008, 35(10): 2-4.
Yang W H, Xu H X, Wang Y Q, Zhou D Y, Tang S R, Feng X A. Interpretation of the definition and evaluation methods of high quality cotton. China Cotton, 2008, 35(10): 2-4 (in Chinese with English abstract).
[10] Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993, 11: 122-127.
doi: 10.1007/BF02670470
[11] 匡猛, 杨伟华, 许红霞, 王延琴, 周大云, 冯新爱. 中国棉花主栽品种DNA指纹图谱构建及SSR标记遗传多样性分析. 中国农业科学, 2011, 44: 20-27.
Kuang M, Yang W H, Xu H X, Wang Y Q, Zhou D Y, Feng X A. Construction of DNA fingerprinting and analysis of genetic diversity with SSR markers for cotton major cultivars in China. Sci Agric Sin, 2011, 44: 20-27 (in Chinese with English abstract).
[12] Li L H, Sun Z W, Zhang Y, Ke H F, Yang J, Li Z K, Wu L Q, Zhang G Y, Wang X F, Ma Z Y. Development and utilization of functional kompetitive allele-specific PCR markers for key genes underpinning fiber length and strength in Gossypium hirsutum L. Front Plant Sci, 2022, 13: 853827.
doi: 10.3389/fpls.2022.853827
[13] Fukunaga K, Hill J, Vigouroux Y, Matsuoka Y, Sanchez G J, Liu K J, Buckler E, Doebley J. Genetic diversity and population structure of teosinte. Genetics, 2005, 169: 2241-2254.
pmid: 15687282
[14] 李晶, 南铭. 俄罗斯和乌克兰引进冬小麦在我国西北地区的农艺性状表现和遗传多样性分析. 作物杂志, 2019, (5): 9-14.
Li J, Nan M. Analysis of agronomic characters and genetic diversity of 62 winter wheat germplasms from Russia and Ukraine in northwest China. Crops, 2019, (5): 9-14 (in Chinese with English abstract).
[15] 翟书伟, 邓婷婷, 曹云泉, 陈奇, 汤盈盈, 袁宝童, 汪保华. 基于SSR标记的26份棉花材料的遗传多样性分析. 种子, 2020, 39(10): 67-72.
Zhai S W, Deng T T, Cao Y Q, Chen Q, Tang Y Y, Yuan B T, Wang B H. Genetic diversity analysis of 26 cotton cultivars based on SSR markers. Seed, 2020, 39(10): 67-72 (in Chinese with English abstract).
[16] 刘文欣. 建国以来我国棉花品种遗传改良研究. 中国农业大学博士学位论文, 北京, 2004.
Liu W X. Studies on Genetic Improvement in Cotton Planted in China since 1949. PhD Dissertation of China Agricultural University, Beijing, China, 2004 (in Chinese with English abstract).
[17] 代攀虹, 孙君灵, 贾银华, 杜雄明, 王谧. 利用表型数据构建陆地棉核心种质. 植物遗传资源学报, 2016, 17: 961-968.
doi: 10.13430/j.cnki.jpgr.2016.06.001
Dai P H, Sun J L, Jia Y H, Du X M, Wang M. Construction of core collection of upland cotton based on phenotypic data. J Plant Genet Res, 2016, 17: 961-968 (in Chinese with English abstract).
[18] 胡德玉, 张条平, 郭志明, 何庆虎. 抗草甘膦棉花杂交组合筛选及优势分析. 安徽农业科学, 2018, 46(27): 32-34.
Hu D Y, Zhang T P, Guo Z M, He Q H. Screening and advantage analysis cross combination of glyphosate-resistant cotton. J Anhui Agric Sci, 2018, 46(27): 32-34 (in Chinese with English abstract).
[19] 王国宁, 张桂寅, 吴立强, 王省芬, 李志坤, 张艳, 吴金华, 柯会锋, 孟成生, 马峙英. 转iaaM基因高衣分棉花新种质材料创制. 中国棉花, 2014, 41(7): 27-31.
Wang G N, Zhang G Y, Wu L Q, Wang X F, Li Z K, Zhang Y, Wu J H, Ke H F, Meng C S, Ma Z Y. Creation of novel high lint percentage cotton germplasm with iaaM gene. China Cotton, 2014, 41(7): 27-31 (in Chinese with English abstract).
[20] 张安红, 王志安, 肖娟丽, 刘圆, 罗晓丽. 转新型抗虫基因Vip3A棉花新种质的创制. 西北植物学报, 2020, 40: 1287-1293.
Zhang A H, Wang Z A, Xiao J L, Liu Y, Luo X L. Development of cotton germplasm introduced with novel insect resistance gene Vip3A. Acta Bot Boreali-Occident Sin, 2020, 40: 1287-1293 (in Chinese with English abstract).
[21] Kuang M, Wei S J, Wang Y Q, Zhou D Y, Ma L, Fang D, Yang W H, Ma Z Y. Development of a core set of SNP markers for the identification of upland cotton cultivars in China. J Integr Agric, 2016, 15: 954-962.
doi: 10.1016/S2095-3119(15)61226-6
[1] DAI Yu-Yang, YUE Ye, LIU Zhen-Yu, HE Run, LIU Yu-Ting, CHEN Yuan, ZHANG Xiang, CHEN De-Hua. Effects of low temperature on the expression of insecticidal protein in Bt cotton fibers and its physiological mechanism [J]. Acta Agronomica Sinica, 2024, 50(3): 709-720.
[2] CHEN Tian, LI Yu-Ying, RONG Er-Hua, WU Yu-Xiang. Character identification and floral organ transcriptome analysis on artificial allotetraploids of Gossypium hirsutum L. [J]. Acta Agronomica Sinica, 2024, 50(2): 325-339.
[3] LI Zhi-Kun, JIA Wen-Hua, ZHU Wei, LIU Wei, MA Zong-Bin. Effects of nitrogen fertilizer and DPC combined application on temporal distribution of cotton yield and fiber quality [J]. Acta Agronomica Sinica, 2024, 50(2): 514-528.
[4] TAN Dan, CHEN Jia-Ting, GAO Yu, ZHANG Xiao-Jun, LI Xin, YAN Gui-Yun, LI Rui, CHEN Fang, CHANG Li-Fang, ZHANG Shu-Wei, GUO Hui-Juan, CHANG Zhi-Jian, QIAO Lin-Yi. Discovery of auxin pathway genes involving spike type and association analysis between TaARF23-A and spikelet number in wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 506-513.
[5] FAN Zi-Pei, LI Long, SHI Yu-Gang, SUN Dai-Zhen, LI Chao-Nan, JING Rui-Lian. Cloning of TabHLH112-2B gene and development of its functional marker associated with the number of spikelet per spike in wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 403-413.
[6] XIAO Sheng-Hua, LU Yan, LI An-Zi, QIN Yao-Bin, LIAO Ming-Jing, BI Zhao-Fu, ZHUO Gan-Feng, ZHU Yong-Hong, ZHU Long-Fu. Function analysis of an AP2/ERF transcription factor GhTINY2 in cotton negatively regulating salt tolerance [J]. Acta Agronomica Sinica, 2024, 50(1): 126-137.
[7] SHANG-GUAN Xiao-Xia, YANG Qin-Li, LI Huan-Li. Analysis of mutants developed by CRISPR/Cas9-based GhbHLH71 gene editing in cotton [J]. Acta Agronomica Sinica, 2024, 50(1): 138-148.
[8] TAN Zhi-Xin, XIE Liu-Wei, LI Hong-Ge, LI Fang-Jun, TIAN Xiao-Li, LI Zhao-Hu. Identification of cotton low potassium tolerance based on AHP-membership function method at cotyledonary stage [J]. Acta Agronomica Sinica, 2024, 50(1): 199-208.
[9] SUN Shang-Wen, SHU Hong-Mei, YANG Chang-Qin, ZHANG Guo-Wei, WANG Xiao-Jing, MENG Ya-Li, WANG You-Hua, LIU Rui-Xian. Mechanism of cyclanilide enhanced the defoliation efficiency of thidiazuron in cotton by regulating endogenous hormones under low temperature stress [J]. Acta Agronomica Sinica, 2024, 50(1): 187-198.
[10] LIU Tao-Fen, LUO Dan, ZHANG Qi-Peng, SUN Yuan-Yuan, LI Pei-Song, TIAN Jing-Shan, ZHANG Wang-Feng, XIANG Dao, ZHANG Ya-Li, YANG Ming-Feng, GOU Ling. Ethephon ripening affects boll weight and fiber quality of machine-harvested cotton [J]. Acta Agronomica Sinica, 2024, 50(1): 209-218.
[11] GUO Jia-Xin, YE Yang, GUO Hui-Juan, MIN Wei. Effects and variability analysis of different salt and alkali stresses on the proteome of cotton leaves [J]. Acta Agronomica Sinica, 2024, 50(1): 219-236.
[12] LI Yi-Yang, LI Yuan, ZHAO Zi-Xu, ZHANG Ding-Shun, DU Jia-Ning, WU Shu-Juan, SUN Si-Qi, CHEN Yuan, ZHANG Xiang, CHEN De-Hua, LIU Zhen-Yu. Effects of increased nitrogen on Bt protein expression and nitrogen metabolism in the leaf subtending to cotton boll [J]. Acta Agronomica Sinica, 2023, 49(9): 2505-2516.
[13] SU Yi-Jun, ZHAO Lu-Kuan, TANG Fen, DAI Xi-Bin, SUN Ya-Wei, ZHOU Zhi-Lin, LIU Ya-Ju, CAO Qing-He. Genetic diversity and population structure analysis of 378 introduced sweetpotato germplasm collections [J]. Acta Agronomica Sinica, 2023, 49(9): 2582-2593.
[14] SU Zai-Xing, HUANG Zhong-Qin, GAO Run-Fei, ZHU Xue-Cheng, WANG Bo, CHANG Yong, LI Xiao-Shan, DING Zhen-Qian, YI Yuan. Identification of wheat dwarf mutant Xu1801 and analysis of its dwarfing effect [J]. Acta Agronomica Sinica, 2023, 49(8): 2133-2143.
[15] WANG Qian, ZHANG Li-Yuan, XU Yue, LI Hai, LIU Shao-Xiong, XUE Ya-Peng, LU Ping, WANG Rui-Yun, LIU Min-Xuan. High motif EST-SSR markers development and genetic diversity evaluation for 200 core germplasms in proso millet [J]. Acta Agronomica Sinica, 2023, 49(8): 2308-2318.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .