Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (3): 613-622.doi: 10.3724/SP.J.1006.2024.34093


Overexpression of soybean isopropyl malate dehydrogenase gene GmIPMDH promotes flowering and growth

LIU Wei(), WANG Yu-Bin, LI Wei, ZHANG Li-Feng, XU Ran, WANG Cai-Jie, ZHANG Yan-Wei   

  1. Crop Research Institute, Shandong Academy of Agricultural Sciences / Shandong Engineering Laboratory of Featured Crops, Jinan 250100, Shandong, China
  • Received:2023-06-02 Accepted:2023-09-13 Online:2024-03-12 Published:2023-09-28
  • Contact: *E-mail: zywei-1987@163.com
  • Supported by:
    Natural Science Foundation of Shandong Province(ZR2020MC101);Natural Science Foundation of Shandong Province(ZR2020QC119);National Natural Science Foundation of China(32301905);China Agriculture Research System of MOF and MARA(CARS-04-CES12);High Level Talents Found of Jinan(202228094)


Isopropyl malate synthase (IPMS) and isopropyl malate dehydrogenase (IPMDH) are important rate-limiting enzymes in leucine biosynthesis. However, their functions in plant growth and development have rarely been reported. In this study, we cloned and performed sequence analysis of GmIPMDH, a homologous gene of Arabidopsis AtIPMDH2 in soybean. GmIPMDH contained a conserved domain of Iso_dh, and the promoter of GmIPMDH contained a large number of light and hormonal responsive elements. The qRT-PCR showed that the relative expression level of GmIPMDH in soybean leaves gradually increased with the growth and development of plants. We then performed a function analysis of GmIPMDH by ectopic expression in tobacco and overexpression in soybean. Phenotypic analysis revealed that the overexpression of GmIPMDH significantly promoted flowering of tobacco and soybean. Meanwhile, plant height and nodes number were also increased significantly. Transcriptome analysis displayed that the expression of several flowering-related genes and gibberellin synthesis-related genes were changed in soybean GmIPMDH-overexpression plants. Therefore, we speculated that GmIPMDH may be involved in the gibberellin-mediated flowering and plant type architecture regulation. This study elucidates the role of GmIPMDH in the regulation of flowering time and provides a molecular basis for further research on the mechanism of GmIPMDH regulating soybean flowering and plant growth.

Key words: soybean, isopropylmalate dehydrogenase, GmIPMDH, flowering time, plant height

Table 1

Primer sequence"

引物名称 引物序列 目的
Primer name Primer sequence (5'-3') Purpose
GmIPMDH promoter cloning
GmIPMDH CDS cloning
Transgenic plants detection

Fig. 1

Sequence analysis of GmIPMDH A: the structure of GmIPMDH; B: the conserved domain prediction of GmIPMDH; chromosomal distribution of GmIPMDH and its homologs; C: the secondary structure analysis of GmIPMDH. The blue lines represent alpha helix, purple lines represent random coil, red lines represent extended strand, green lines represent beta turn; D: the tertiary structure prediction of GmIPMDH protein."

Table 2

Cis-elements of GmIPMDH promoter"

Position (bp)
Sequence (5'-3')
3-AF1 binding site -2037 TAAGAGAGGAA 光应答 Light responsive element
TCT-motif +162 TCTTAC 光应答 Part of a light responsive element
AT1-motif +1886, -1103 AATTATTTTTTATT 光应答 Part of a light responsive module
Box 4 +1242, -723, +1133,
-697, +1170, -883
Part of a conserved DNA module involved in light responsiveness
G-Box -1532, +64 CACGTT/TACGTG 光应答
Cis-acting regulatory element involved in light responsiveness
MYC +772, -356, +666, -42 CATTTG MYC结合位点 MYC-binding site
ABRE +1532, +64 ACGTG 脱落酸应答
Cis-acting element involved in the abscisic acid responsiveness
ERE +250, +220, -248, +185 ATTTTAAA/ ATTTCATA 乙烯应答 Ethylene-responsive element
TCA +780 TCATCTTCAT 水杨酸响应 Salicylic acid responsiveness
STRE +1506 AGGGG 胁迫响应 Stress responsiveness
WUN-motif -997 AAATTACT 创伤响应 Wound responsiveness

Fig. 2

Relative expression pattern of GmIPMDH genes A: tissue specific expression of GmIPMDH; B: the relative expression pattern of GmIPMDH genes in leaf during differential vegetative periods."

Fig. 3

Phenotypes of tobacco with ectopic expression of GmIPMDH A: flowering phenotype of tobacco with ectopic expression of GmIPMDH; B: flowering times in tobacco with ectopic expression of GmIPMDH; C: plant height in tobacco with ectopic expression of GmIPMDH at 120 days after germination. ** represents significant difference at the 0.01 probability level (t-test)."

Fig. 4

Flowering phenotype of GmIPMDH under short-day conditions A: flowering phenotype of GmIPMDH overexpression plants; B: the relative expression level of GmIPMDH in transgenic lines; C: flowering times in wild type plants and GmIPMDH overexpression plants; D: plant height in wild type plants and GmIPMDH overexpression plants at 36 days after planting; E: nodes number in wild type plants and GmIPMDH overexpression plants at 36 days after planting. ** represents significant difference at the 0.01 probability level."

Fig. 5

Flowering time statistics of GmIPMDH overexpression lines in the field A: the relative expression level of GmIPMDH in GmIPMDH overexpression lines; B: flowering time statistics of GmIPMDH overexpression lines in the field. ** represents significant difference at the 0.01 probability level."

Fig. 6

Transcriptome analysis of GmIPMDH overexpression soybean A, B: heat map for cluster analysis of the DEGs (differentially expressed genes) in GmIPMDH overexpression plants (35S::GmIPMDH) compared to the wild type plants (Wm82); C: the number of DEGs; D: Venn diagram of DEGs; E: the relative expression level of DEGs related to flowering time at 14 d after planting; F: the relative expression level of DEGs related to flowering time at 17 d after planting."

Table 3

Functional annotation of DEGs related to flowering time"

Gene ID
Glyma.02G185500 AGL18, AT3G57390 光周期、光感知及信号传导
Photoperiodism, light perception and signaling
14 d
Glyma.07G132400 AS1, AT2G37630 光周期、光感知及信号传导
Photoperiodism, light perception and signaling
Glyma.15G044400 TOE1, AT2G28550 衰老光周期、光感知及信号传导
Aging photoperiodism, light perception and signaling
Glyma.09G261600 LATE MERISTEM IDENTITY2, AT3G61250 花发育及分生组织特性
Flower development and meristem identity
Glyma.02G121500 SEPALLATA1, AT5G15800 花发育及分生组织特性
Flower development and meristem identity
Glyma.20G153700 SEPALLATA 3, AT1G24260 花发育及分生组织特性
Flower development and meristem identity
Glyma.20G144400 TIC, AT3G22380 节律钟途径
Circadian Clock
Glyma.06G173800 REF6, AT3G48430 整体交互途径
Glyma.11G256800 MED13, AT1G55325 整体交互途径
Glyma.13G027600 UBP12, AT5G06600 整体交互途径
Glyma.15G029000 FPA, AT2G43410 整体交互途径
Glyma.19G010200 MBD9, AT3G01460 整体交互途径
Glyma.04G022100 FD, AT4G35900 光周期、光感知及信号传导
Photoperiodism, light perception, and signaling
17 d
Glyma.05G239400 FKF1, AT1G68050 光周期、光感知及信号传导
Photoperiodism, light perception, and signaling
Glyma.07G058200 SPA1, AT2G46340 光周期、光感知及信号传导
Photoperiodism, light perception, and signaling
Glyma.08G141000 NF-YB3, AT4G14540 光周期、光感知及信号传导
Photoperiodism, light perception, and signaling
Glyma.10G204400 TEM1, AT1G25560 光周期、光感知及信号传导
Photoperiodism, light perception, and signaling
Glyma.18G174500 LATE, AT5G48890 光周期、光感知及信号传导
Photoperiodism, light perception, and signaling
Glyma.19G023200 CDF2, AT5G39660 光周期、光感知及信号传导
Photoperiodism, light perception, and signaling
Glyma.15G044400 TOE1, AT2G28550 衰老光周期、光感知及信号传导
Aging photoperiodism, light perception, and signaling
Glyma.10G066800 PETAL LOSS, AT5G03680 花发育及分生组织特性
Flower development and meristem identity
Glyma.20G153700 SEPALLATA 3, AT1G24260 花发育及分生组织特性
Flower development and meristem identity
Glyma.02G146900 TIC, AT3G22380 节律钟
Circadian clock
Glyma.04G228300 PRR5, AT5G24470 节律钟
Circadian clock
Glyma.03G206100 UBP12, AT5G06600 整体交互途径
Glyma.04G200500 ICE1, AT3G26744 春化途径
Glyma.07G033800 GA3ox1, AT1G15550 激素途径
Glyma.13G218200 GA2ox2, AT1G30040 激素途径
Glyma.13G259400 GA2ox1, AT1G78440 激素途径
Glyma.20G141200 GA2ox8, AT4G21200 激素途径
[1] Abedin M J, Wang D, McDonnell M A, Lehmann U, Keleka K. Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death Different, 2007, 14: 500-510.
doi: 10.1038/sj.cdd.4402039
[2] Binder S, Knill T, Schuster J. Branched-chain amino acid metabolism in higher plants. Physiol Plant, 2007, 129: 68-78.
doi: 10.1111/ppl.2007.129.issue-1
[3] Junk D J, Mourad G S. Isolation and expression analysis of the isopropylmalate synthase gene family of Arabidopsis thaliana. J Exp Bot, 2002, 53: 2453-2454.
doi: 10.1093/jxb/erf112
[4] He Y Q, Cheng J P, He Y, Yang B, Cheng Y H, Yang C, Zhang H S, Wang Z F. Influence of isopropylmalate synthase OsIPMS1 on seed vigor associated with amino acid and energy metabolism in rice. Plant Biotechnol J, 2019, 17: 322-337.
doi: 10.1111/pbi.2019.17.issue-2
[5] Field B, Furniss C, Wilkinson A, Mithen R. Expression of a Brassica isopropylmalate synthase gene in Arabidopsis perturbs both glucosinolate and amino acid metabolism. Plant Mol Biol, 2006, 60: 717-727.
doi: 10.1007/s11103-005-5547-y pmid: 16649108
[6] Ellerström M, Josefsson L G, Rask L, Ronne H. Cloning of a cDNA for rape chloroplast 3-isopropylmalate dehydrogenase by genetic complementation in yeast. Plant Mol Biol, 1992, 18: 557-566.
pmid: 1371407
[7] Jackson S D, Sonnewald U, Willmitzer L. Cloning and expression analysis of beta-isopropylmalate dehydrogenase from potato. Mol Genet Genomics, 1993, 236: 309-314.
[8] Nozawa A, Takano J, Miwa K, Nakagawa Y, Fujiwara T. Cloning of cDNAs encoding isopropylmalate dehydrogenase from Arabidopsis thaliana and accumulation patterns of their transcripts. Biosci Biotechnol Biochem, 2005, 69: 806-810.
doi: 10.1271/bbb.69.806
[9] He Y, Mawhinney T P, Preuss M L, Schroeder A C, Chen B, Abraham L, Jez J M, Chen S X. A redox-active isopropylmalate dehydrogenase functions in the biosynthesis of glucosinolates and leucine in Arabidopsis. Plant J, 2009, 60: 679-690.
doi: 10.1111/tpj.2009.60.issue-4
[10] He Y, Chen L, Zhou Y, Mawhinney T P, Chen B, Kang B H, Hauser B A, Chen S. Functional characterization of Arabidopsis thaliana isopropylmalate dehydrogenases reveals their important roles in gametophyte development. New Phytol, 2011, 189: 160-175.
doi: 10.1111/nph.2010.189.issue-1
[11] Goodstein D M, Shu S, Howson R, Neupane R, Hayes R D, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar D S. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res, 2012, 40: D1178-D1186.
doi: 10.1093/nar/gkr944
[12] Marchler-Bauer A, Derbyshire M K, Gonzales N R, Lu S, Chitsaz F, Geer L Y, Geer R C, He J, Gwadz M, Hurwitz D I, Lanczycki C J, Lu F, Marchler G H, Song J S, Thanki N, Wang Z, Yamashita R A, Zhang D, Zheng C, Bryant S H. CDD: NCBI’s conserved domain database. Nucleic Acids Res, 2015, 43: D222-D226.
[13] Geourjon C, Deléage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci, 1995, 11: 681-684.
[14] Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer F T, de Beer T A P, Rempfer C, Bordoli L, Lepore R, Schwede T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res, 2018, 46: W296-W303.
doi: 10.1093/nar/gky427
[15] Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30: 325-327.
[16] Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden T L. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics, 2012, 13: 134.
doi: 10.1186/1471-2105-13-134 pmid: 22708584
[17] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[18] Gallois P, Marinho P. Leaf disk transformation using Agrobacterium tumefaciens-expression of heterologous genes in tobacco. Methods Mol Biol, 1995, 49: 39-48.
pmid: 8563823
[19] Paz M M, Martinez J C, Kalvig A B, Fonger T M, Wang K. Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep, 2006, 25: 206-213.
doi: 10.1007/s00299-005-0048-7
[20] 李巧峡, 张丽, 王玉, 黄小霞. 赤霉素调控植物开花及花器官发育的研究进展. 中国细胞生物学学报, 2019, 41: 746-758.
Li Q X, Zhang L, Wang Y, Huang X X. The research progress of gibberellin on the regulation of flowering and floral organ development in plant. Chin J Cell Biol, 2019, 41: 746-758 (in Chinese with English abstract).
[21] Bao S J, Hua C M, Shen L S, Yu H. New insights into gibberellin signaling in regulating flowering in Arabidopsis. J Integr Plant Biol, 2020, 62: 118-131.
doi: 10.1111/jipb.v62.1
[22] Wu K, Xu H, Gao X H, Fu X D. New insights into gibberellin signaling in regulating plant growth-metabolic coordination. Curr Opin Plant Biol, 2021, 63: 102074.
doi: 10.1016/j.pbi.2021.102074
[23] Yamaguchi S. Gibberellin metabolism and its regulation. Annu Rev Plant Biol, 2008, 59: 225-251.
doi: 10.1146/annurev.arplant.59.032607.092804 pmid: 18173378
[24] Xie Y Y, Chen L T. Epigenetic regulation of gibberellin metabolism and signaling. Plant Cell Physiol, 2020, 61: 1912-1918.
doi: 10.1093/pcp/pcaa101 pmid: 32745197
[25] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定. 作物学报, 2022, 48: 886-895.
doi: 10.3724/SP.J.1006.2022.13026
Liu L, Zhan W M, Ding W S, Liu T, Cui L H, Jiang L L, Zhang Y P, Yang J P. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize. Acta Agron Sin, 2022, 48: 886-895 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.13026
[26] Osnato M, Castillejo C, Matías-Hernández L, Pelaz S. TEMPRANILLO genes link photoperiod and gibberellin pathways to control flowering in Arabidopsis. Nat Commun, 2012, 3: 808.
doi: 10.1038/ncomms1810
[27] Hu Y X, Tao Y B, Xu Z F. Overexpression of Jatropha gibberellin 2-oxidase 6 (JcGA2ox6) induces dwarfism and smaller leaves, flowers and fruits in Arabidopsis and Jatropha. Front Plant Sci, 2017, 8: 2103.
doi: 10.3389/fpls.2017.02103
[28] Cheng J, Ma J J, Zheng X B, Lyu H L, Zhang M M, Tan B, Ye X, Wang W, Zhang L L, Li Z Q, Li J D, Feng J C. Functional analysis of the gibberellin 2-oxidase gene family in peach. Front Plant Sci, 2021, 12: 61915.
[1] WANG Ya-Qi, XU Hai-Feng, LI Shu-Guang, FU Meng-Meng, YU Xi-Wen, ZHAO Zhi-Xin, YANG Jia-Yin, ZHAO Tuan-Jie. Genetic analysis and two pairs of genes mapping in soybean mutant NT301 with disease-like rugose leaf [J]. Acta Agronomica Sinica, 2024, 50(4): 808-819.
[2] WANG Qiong, ZHU Yu-Xiang, ZHOU Mi-Mi, ZHANG Wei, ZHANG Hong-Mei, CEHN Xin, CEHN Hua-Tao, CUI Xiao-Yan. Genome-wide association analysis and candidate genes predication of leaf characteristics traits in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2024, 50(3): 623-632.
[3] SONG Jian, XIONG Ya-Jun, CHEN Yi-Jie, XU Rui-Xin, LIU Kang-Lin, GUO Qing-Yuan, HONG Hui-Long, GAO Hua-Wei, GU Yong-Zhe, ZHANG Li-Juan, GUO Yong, YAN Zhe, LIU Zhang-Xiong, GUAN Rong-Xia, LI Ying-Hui, WANG Xiao-Bo, GUO Bing-Fu, SUN Ru-Jian, YAN Long, WANG Hao-Rang, JI Yue-Mei, CHANG Ru-Zhen, WANG Jun, QIU Li-Juan. Genetic analysis of seed coat and flower color based on a soybean nested association mapping population [J]. Acta Agronomica Sinica, 2024, 50(3): 556-575.
[4] DIAO Xian-Min, WANG Li-Wei, ZHI Hui, ZHANG Jun, LI Shun-Guo, CHENG Ru-Hong. Development, genetic deciphering, and breeding utilization of dwarf lines in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(2): 265-279.
[5] LI Shi-Kuan, HONG Hui-Long, FU Jia-Qi, GU Yong-Zhe, SUN Ru-Jian, QIU Li-Juan. Mine the genes of premature yellowing and aging in soybean leaves by BSA-seq combined with RNA-seq technology [J]. Acta Agronomica Sinica, 2024, 50(2): 294-309.
[6] YANG Chen-Xi, ZHOU Wen-Qi, ZHOU Xiang-Yan, LIU Zhong-Xiang, ZHOU Yu-Qian, LIU Jie-Shan, YANG Yan-Zhong, HE Hai-Jun, WANG Xiao-Juan, LIAN Xiao-Rong, LI Yong-Sheng. Mapping and cloning of plant height gene PHR1 in maize [J]. Acta Agronomica Sinica, 2024, 50(1): 55-66.
[7] YANG Li-Da, REN Jun-Bo, PENG Xin-Yue, YANG Xue-Li, LUO Kai, CHEN Ping, YUAN Xiao-Ting, PU Tian, YONG Tai-Wen, YANG Wen-Yu. Crop growth characteristics and its effects on yield formation through nitrogen application and interspecific distance in soybean/maize strip relay intercropping [J]. Acta Agronomica Sinica, 2024, 50(1): 251-264.
[8] SHI Yu-Xin, LIU Xin-Yue, SUN Jian-Qiang, LI Xiao-Fei, GUO Xiao-Yang, ZHOU Ya, QIU Li-Juan. Knockout of GmBADH1 gene using CRISPR/Cas9 technique to reduce salt tolerance in soybean [J]. Acta Agronomica Sinica, 2024, 50(1): 100-109.
[9] YUAN Xiao-Ting, WANG Tian, LUO Kai, LIU Shan-Shan, PENG Xin-Yue, YANG Li-Da, PU Tian, WANG Xiao-Chun, YANG Wen-Yu, YONG Tai-Wen. Effects of bandwidth and plant spacing on biomass accumulation and allocation and yield formation in strip intercropping soybean [J]. Acta Agronomica Sinica, 2024, 50(1): 161-171.
[10] HU Yan-Juan, XUE Dan, GENG Di, ZHU Mo, WANG Tian-Qiong, WANG Xiao-Xue. Mutation effects of OsCDF1 gene and its genomic variations in rice [J]. Acta Agronomica Sinica, 2023, 49(9): 2362-2372.
[11] LI Gang, ZHOU Yan-Chen, XIONG Ya-Jun, CHEN Yi-Jie, GUO Qing-Yuan, GAO Jie, SONG Jian, WANG Jun, LI Ying-Hui, QIU Li-Juan. Haplotype analysis of soybean leaf type regulator gene Ln and its homologous genes [J]. Acta Agronomica Sinica, 2023, 49(8): 2051-2063.
[12] LIU Ting-Xuan, GU Yong-Zhe, ZHANG Zhi-Hao, WANG Jun, SUN Jun-Ming, QIU Li-Juan. Mapping soybean protein QTLs based on high-density genetic map [J]. Acta Agronomica Sinica, 2023, 49(6): 1532-1541.
[13] LI Hui, LU Yi-Ping, WANG Xiao-Kai, WANG Lu-Yao, QIU Ting-Ting, ZHANG Xue-Ting, HUANG Hai-Yan, CUI Xiao-Yu. GmCIPK10, a CBL-interacting protein kinase promotes salt tolerance in soybean [J]. Acta Agronomica Sinica, 2023, 49(5): 1272-1281.
[14] WU Zong-Sheng, XU Cai-Long, LI Rui-Dong, XU Yi-Fan, SUN Shi, HAN Tian-Fu, SONG Wen-Wen, WU Cun-Xiang. Effects of wheat straw mulching on physical properties of topsoil and yield formation in soybean [J]. Acta Agronomica Sinica, 2023, 49(4): 1052-1064.
[15] ZHU Zhi, LI Long, LI Chao-Nan, MAO Xin-Guo, HAO Chen-Yang, ZHU Ting, WANG Jing-Yi, CHANG Jian-Zhong, JING Rui-Lian. Transcription factor TaMYB5-3B is associated with plant height and 1000- grain weight in wheat [J]. Acta Agronomica Sinica, 2023, 49(4): 906-916.
Full text



[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .