Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (1): 100-109.doi: 10.3724/SP.J.1006.2024.34056

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Knockout of GmBADH1 gene using CRISPR/Cas9 technique to reduce salt tolerance in soybean

SHI Yu-Xin1,2(), LIU Xin-Yue1,2, SUN Jian-Qiang1,2, LI Xiao-Fei1,2, GUO Xiao-Yang2, ZHOU Ya2, QIU Li-Juan1,2,*()   

  1. 1College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
    2National Key Facility for Gene Resources and Genetic Improvement / Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture and Rural Affairs / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2023-03-17 Accepted:2023-06-29 Online:2024-01-12 Published:2023-07-26
  • Contact: *E-mail: qiulijuan@caas.cn
  • About author:**Contributed equally to this study
  • Supported by:
    National Key Research and Development Program of China: "the Development and Application of High Yield, High Quality and Dense Tolerance New Germplasm of Soybean in Northern China"(2021YFD1201104)

Abstract:

Functional identification of salt-tolerant genes is crucial for the improvement of soybean varieties and the development and utilization of saline-alkali land. Under salt stress, crops reduce the effect of salt damage on crop yield by synthesizing and accumulating betaine as osmotic protective agent. BADH gene is been proved to regulate plant response to stress in many plants, but the regulation mechanism in soybean is not clear. In this study, GmBADH1 gene was cloned, and qRT-PCR showed that the gene was expressed stems and leaves, especially in roots. The expression vector constructed by CRISPR/Cas9 system was transferred into soybean variety JACK by Agrobacterium-mediated soybean genetic transformation technology, and three targeted mutations that could regulate the salt tolerance of soybean were produced. They all occurred in the coding region, which had three difference of deletion 19 bp, insertion 1 bp, and insertion 9 bp to replace 2 bp. The first two, premature termination codons, resulting in truncated BADH1 protein, the latter occurred frameshift mutation. The mutant homozygous plants were treated with salt at the emergence stage and seedling stage, respectively. The results showed that the salt tolerance of the mutant homozygous plants was significantly lower than that of the wild type at seedling stage, and there was no significant difference compared with the wild type at seeding stage, which indicating that GmBADH1 gene may mainly regulate the salt tolerance of seedling stage. This study provides a basis for further excavation of soybean salt-tolerant genes and cultivation of soybean salt-tolerant varieties.

Key words: soybean, GmBADH1, CRISPR/Cas9, salt tolerance

Table 1

Primers used in this study"

引物名称
Primer name
正向序列
Forward sequence (5°-3°)
反向序列
Reverse sequence (5°-3°)
D-GmBADH1-F/R AGCAAGAACAAGACGTAGCCT AGCGATGGCTCGAAGATAGC
zCAS9-F/R AAGAACCTGCCAAATGAGA CCTTGAATGTGAGGCTGTC
J-CDS-F/R ATGGCAATCTCCATACCCA TCACAGCTTTGAAGGCGAC
GmBADH1-off target-F1/R1 AGTTCTTCTGCCTCATTCC AGAATAGCCACATAATCCC
GmBADH1-off target-F2/R2 GCGTTTGTTTCACCAGTTT ATAGATGTAAGGAGGAGGG
GmBADH1-off target-F3/R3 AGATCAGTTCGCCTTGTAG AAATTATAGCAGGACCCAC
GmBADH1-off target-F4/R4 AGGAGGTCTGCTATTTATT CACTTTATAGAAGCCAAATC
Actin-18g290800 GGTGGTTCTATCTTGGCATC CTTTCGCTTCAATAACCCTA
qPCR-BADH1-F/R GAAGCACTGGCAGACCTGG GGGCTCCTTGAGAACATAA

Table 2

Symptoms of soybean at emergence and seeding stages under salt stress"

时期
Stage
类别
Category
表型特征
Symptom
出苗期
Emergence stage
I 植株凋亡, 子叶干枯(类别数值为1)
Plant deed, cotyledons were dry (category value is 1)
II 植株生长受到严重抑制, 子叶未展开(类别数值为2)
Plant groeth was severly inhibited (category value is 2)
III 植株生长受到抑制, 具有生长点, 但真叶未展开(类别数值为3)
Plant growth was inhibited, with shoot apical meristem, but true leaves were not unfolded (category value is 3)
IV 植株生长基本正常, 真叶未完全展开(类别数值为4)
Plant growth was basically normal, true leaves were not fully expanded (category value is 4)
V 植株生长正常, 真叶完全展开(类别数值为5)
The plant grow was normal,the true leaves were fully expanded (category value is 5)
苗期
Seedling stage
1 健康的绿叶, 没有观察到损伤
Healthy green leaves, no damage observed
2 轻度坏死, 真叶轻微发黄
Slight chlorosis, light yellowish color observed in ture leaves
3 中度坏死, 三出复叶发黄
Moderate chlorosis, chlorosis observed in trifoliate leaves
4 严重坏死, 超过75%的叶面发黄
Severe chlorosis,more than 75% of the leaf area showed chlorosis
5 凋亡, 植物完全枯萎
Dead, plants were completely withered

Fig. 1

Relative expression pattern of GmBADH1 genes A: the relative expression pattern of GmBADH1 genes in three different tissues (water treatment). Different lowercase letters are significantly different at the 0.05 probability level; B: GmBADH1 gene expression patterns in different tissues and saline treatment times, 2 h, 8 h, and 24 h represent time nodes of plant sampling under salt stress, and the error line represents standard error. The significant difference was evaluated by the Studuent’s t-test.*: P < 0.05; **: P < 0.01; ***: P < 0.001."

Fig. 2

Target sites of the gRNA in the GmBADH1 gene and recombining diagram of the pBSE401-GmBADH1-g6 vector A: the position of gRNA targets in the GmBADH1 gene locus; B: the recombining diagram of gRNA casaettes and pBSE401-GmBADH1-g6 vector."

Fig. 3

Screening for homozygous mutation in T1 and T2 generation A: nucleotide variation; B: the corresponding sequencing peak map; C: amino acid sequence alignment."

Table 3

Editing genotypes of homozygous mutants"

材料名称
Materials name
编码序列CDS sequence 氨基酸序列
Sequence of amino acid
长度Length 变异Variation
JACK CDS:1512 bp no 504个氨基酸
504 amino acids
BADH1-L1 1513 bp +1 bp 提前终止, 剩余32个氨基酸
Premature termination, residue 32 amino acids
BADH1-L3 1521 bp +9/replace2 bp 缺失3个氨基酸, 替换4个氨基酸
Miss 3 amino acids and substitude for 4 amino acids
BADH1-L4 1493 bp -19 bp 提前终止, 剩余29个氨基酸
Premature termination, residue 29 amino acids

Table 4

The number of CRISPR-mediated T1-T2 targeted mutant plants of BADH1 gene"

突变位点
Site of
mutation
T1 T2
纯合植株数目
No. of
homozygous plants
杂合植株数目
No. of
heterzygous plants
野生型植株数目
No. of
mutant
plants
纯合植株数目
No. of
homozygous plants
杂合植株数目
No. of
heterzygous plants
野生型植株数目
No. of
mutant
plants
L1 2 5 35 3 6 23
L3 2 10 56 3 3 8
L4 0 8 9 4 11 47
总数Total 4 23 100 10 20 78

Table 5

Potential miss site prediction of BADH1-Target"

潜在靶点
Potential target
物理位置
Physical position
靶点序列
Target sequence
位置
Position
Off-target-1 Glyma.08G210000 Chr08:16998801-16998823 CCTTTGCA[TAGTTGTCTACT] TGG CDS
Off-target-2 Glyma.07G032500 Chr07:2553714-2553736 CCTTTGCA[TAGTTGTCTACT] TGG CDS
Off-target-3 Glyma.18G016000 Chr18:1148893-1148915 GCTATTAA[AAATAGTCTACT] TGG CDS
Off-target-4 Glyma.17G194300 Chr17:29066147-29066169 TTGATGAA[ATGTTGTCTTCT] TGG CDS

Table 6

Transgene-clenn homozygous mutants"

株系
Line
检测植株数
No. of plant
detection
无T-DNA植株数量
No. of plants without T-DNA
L1 5 2
L3 5 5
L4 4 4
总数Total 14 11

Fig. 4

Positive identification and identification of transgenic components A: PAT/Bar strip test selection marker screening, red arrow indicates that Bar gene is positive; B is the gel image of PCR products in the T-DNA region, Cas9 is a part of the coding sequence, lane 1-5 is L1. Lane 6-10 is L2; Lane 11-14 is L3; Lane 15 was the negative control. Lane 16 was the positive control, and the fragment length was 619 bp. C is for sgRNA detection, the sample is the same as Cas9 detection, and the fragment length is 512 bp."

Table 7

Salt tolerance of GmBADH1 homozygous plants"

遗传材料
Genetic
materials
突变位点
Site of mutation
出苗期耐盐鉴定
Identification of salt tolerance at seedling stage
苗期耐盐鉴定
Identification of salt tolerance at seedling stage
耐盐等级
Salt tolerance rating
等级描述
Description of rank
耐盐等级
Salt tolerance rating
等级描述
Rank description
野生型WT CDS:1512 bp 1 高度耐盐High salt-tolerant 3 盐敏感Salt sensitivity
BADH1-L1 +1 bp 4 敏感型Salt-sensitive 3 盐敏感Salt sensitivity
BADH1-L3 +9/replace 2 bp 3 中度耐盐Moderate salt-tolerant 3 盐敏感Salt sensitivity
BADH1-L4 -19 bp 2 耐盐Salt-tolerant 3 盐敏感Salt sensitivity

Fig. 5

Identification of salt tolerance phenotype of mutant at seedling stage a: wild-type plant; b-d: the mutant plant; e: negative control: salt-sensitive material wild bean NY27-38; f: positive control: soybean ZH39 cultivated with salt-tolerant materials; the salt concentration was 150 mmol L-1 at the emergence stage and was rated on the 15th day."

[1] Conde A, Chaves M M, Gerós H. Membrane transport, sensing and signaling in plant adaptation to environmental stress. Plant Cell Physiol, 2011, 52: 1583-1602.
doi: 10.1093/pcp/pcr107 pmid: 21828102
[2] Hashemi F S G, Ismail M R, Rafii M Y, Aslani F, Miah G, Muharam F M. Critical multifunctional role of the betaine aldehyde dehydrogenase gene in plants. Biotechnol Equip, 2018, 32: 815-829.
[3] Bao Y, Zhao R, Li F, Tang W, Han L B. Simultaneous expression of Spinacia oleracea chloroplast choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH) genes contribute to dwarfism in transgenic Lolium perenne. Plant Mol Biol Rep, 2011, 29: 379-388.
[4] Rathinasabapathi B, McCue K F, Gage D A, Hanson A D. Metabolic engineering of glycine betaine synthesis: plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance. Planta, 1994, 193: 155-162.
doi: 10.1007/BF00192524 pmid: 7764986
[5] Meng Y L, Wang Y M, Zhang B, Nii N. Isolation of a choline monooxygenase cDNA clone from Amaranthus tricolor and its expressions under stress conditions. Cell Res, 2001, 11: 187-193.
pmid: 11642403
[6] Niazian M, Sadat-Noori S A, Tohidfar M, Galuszka P, Mortazavian S M M. Agrobacterium-mediated genetic transformation of ajowan (Trachyspermum ammi (L.) Sprague): an important industrial medicinal plant. Ind Crop Prod, 2019, 132: 29-40.
doi: 10.1016/j.indcrop.2019.02.005
[7] Wai A H, Naing A H, Lee D J, Kim C K, Chung M Y. Molecular genetic approaches for enhancing stress tolerance and fruit quality of tomato. Plant Biotechnol Rep, 2020, 14: 515-537.
doi: 10.1007/s11816-020-00638-1
[8] Weretilnyk E A, Hanson A D. Molecular cloning of a plant betaine-aldehyde dehydrogenase, an enzyme implicated in adaptation to salinity and drought. Proc Natl Acad Sci USA, 1990, 87: 2745-2749.
pmid: 2320587
[9] Fujiwara T, Hori K, Ozaki K, Yokota Y, Mitsuya S, Ichiyanagi T, Hattori T, Takabe T. Enzymatic characterization of peroxisomal and cytosolic betaine aldehyde dehydrogenases in barley. Physiol Plant, 2008, 134: 22-30.
doi: 10.1111/j.1399-3054.2008.01122.x pmid: 18429940
[10] 唐露, 杨振, 乔飞, 李新国. 香蕉BADH基因序列及表达特性分析. 分子植物育种, 2019, 17: 719-728.
Tang L, Yang Z, Qiao F, Li X G. Sequence analysis and expression characteristics of BADH gene in banana. Mol Plant Breed, 2019, 17: 719-728. (in Chinese with English abstract)
[11] 曹红利, 郝心愿, 岳川, 马春雷, 王新超, 杨亚军. 茶树甜菜碱醛脱氢酶基因(CsBADH1)的全长cDNA克隆与表达分析. 茶叶科学, 2013, 33: 99-108.
Cao H L, Hao X Y, Yue C, Ma C L, Wang X C, Yang Y J. Cloning and expression analysis of betaine aldehyde dehydragenase gene (CsBADH1) from tea plant [Camellia sinensis (L.) O. Kuntze]. J Tea Sci, 2013, 33: 99-108. (in Chinese with English abstract)
[12] Li M, Li Z, Li S, Guo S, Meng Q, Li G, Yang X. Genetic engineering of glycine betaine biosynthesis reduces heat-enhanced photoinhibition by enhancing antioxidative defense and alleviating lipid peroxidation in tomato. Plant Mol Biol Rep, 2014, 32: 42-51
doi: 10.1007/s11105-013-0594-z
[13] 赵贺, 冯咏琪, 张默, 王淇, 姜南, 王丕武. 转badh基因玉米自交系苗期抗旱耐盐碱性鉴定分析. 分子植物育种, 2020, 18: 3579-3586.
Zhao H, Feng Y Q, Zhang M, Wang Q, Jiang N, Wang P W. Authenticate analysis of drought and salinity tolerance of transgenic maize inbred line with badh gene at seedling stage. Mol Plant Breed, 2020, 18: 3579-3586. (in Chinese with English abstract)
[14] 王小丽, 杜建中, 郝曜山, 张丽君, 赵欣梅, 王亦学, 孙毅. 转BADH基因玉米植株的获得及其耐盐性分析. 作物学报, 2014, 40: 1973-1979.
doi: 10.3724/SP.J.1006.2014.01973
Wang X L, Du J Z, Hao Y S, Zhang J L, Zhao X M, Wang Y X, Sun Y. Transformation of BADH gene into maize and salt tolerance of transgenic plant. Acta Agron Sin, 2014, 40: 1973-1979. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01973
[15] 李春枝, 潘彩霞, 刘宏伟, 刘冰, 罗晓明, 李大红. 转甜菜碱醛脱氢酶基因增强羽衣甘蓝的耐盐性研究. 北方园艺, 2018, 404(5): 33-38.
Li C Z, Pan C X, Liu H W, Liu B, Luo X M, Li D H. Salinity tolerance in transgenic kale expressing the betaine aldehyde dehydrogenase gene. Northern Hortic, 2018, 404(5): 33-38. (in Chinese with English abstract)
[16] 李秀英, 王丕武. 转BADH基因大豆抗旱、耐盐性及主要农艺性状分析. 江苏农业科学, 2013, 41: 75-77.
Li X Y, Wang P W. Analysis of drought resistance, salt tolerance and main agronomic traits of BADH transgenic soybean. Jiangsu Agric Sci, 2013, 41: 75-77. (in Chinese with English abstract)
[17] Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi J J, Qiu J L, Gao C. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol, 2013, 31: 686-688.
doi: 10.1038/nbt.2650 pmid: 23929338
[18] Bao A, Burritt D J, Chen H, Zhou X, Cao D, Tran LP. The CRISPR/Cas9 system and its applications in crop genome editing. Crit Rev Biotechnol, 2019, 39: 321-336.
doi: 10.1080/07388551.2018.1554621 pmid: 30646772
[19] Zhang R, Chen S, Meng X, Chai Z, Wang D, Yuan Y, Chen K, Jiang L, Li J, Gao C. Generating broad-spectrum tolerance to ALS-inhibiting herbicides in rice by base editing. Sci China Life Sci, 2021, 64: 1624-1633.
doi: 10.1007/s11427-020-1800-5 pmid: 33165814
[20] Li J, Wang Z, He G, Ma L, Deng X W. CRISPR/Cas9-mediated disruption of TaNP1 genes results in complete male sterility in bread wheat. J Genet Genomics, 2020, 47: 263-272.
doi: 10.1016/j.jgg.2020.05.004
[21] Luo Y, Zhang M, Liu Y, Liu J, Li W, Chen G, Peng Y, Jin M, Wei W, Jian L, Yan J, Fernie A R, Yan J. Genetic variation in YIGE1 contributes to ear length and grain yield in maize. New Phytol, 2022, 234: 513-526.
doi: 10.1111/nph.v234.2
[22] Jacobs T B, LaFayette P R, Schmitz R J, Parrott W A. Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol, 2015, 15: 16.
doi: 10.1186/s12896-015-0131-2 pmid: 25879861
[23] Hu R B, Fan C M, Li H Y, Zhang Q Z, Fu Y F. Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. BMC Mol Biol, 2009, 10: 93.
doi: 10.1186/1471-2199-10-93 pmid: 19785741
[24] Gu Y Z, Li W, Jiang H W, Wang Y, Gao H W, Liu M, Chen Q S, Lai Y C, He C Y. Differential expression of a WRKY gene between wild and cultivated soybeans correlates to seed size. J Exp Bot, 2017, 68: 2717-2729.
doi: 10.1093/jxb/erx147
[25] Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014-8018.
doi: 10.1073/pnas.81.24.8014 pmid: 6096873
[26] 刘谢香, 常汝镇, 关荣霞, 邱丽娟. 大豆出苗期耐盐性鉴定方法建立及耐盐种质筛选. 作物学报, 2020, 46: 1-8.
doi: 10.3724/SP.J.1006.2020.94062
Liu X X, Chang R Z, Guan R X, Qiu L J. Establishment of screening method for salt tolerant soybean at emergence stage and screening of tolerant germplasm. Acta Agron Sin, 2020, 46: 1-8. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94062
[27] Guan R, Qu Y, Guo Y, Yu L, Liu Y, Jiang J, Chen J, Ren Y, Liu G, Tian L, Jin L, Liu Z, Hong H, Chang R, Gilliham M, Qiu L. Salinity tolerance in soybean is modulated by natural variation in GmSALT3. Plant J, 2014, 80: 937-950.
doi: 10.1111/tpj.2014.80.issue-6
[28] Stemmer M, Thumberger T, Del Sol Keyer M, Wittbrodt J, Mateo J L. CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One, 2015, 10: e0124633.
doi: 10.1371/journal.pone.0124633
[29] Han J, Guo B, Guo Y, Zhang B, Wang X, Qiu L J. Creation of early flowering germplasm of soybean by CRISPR/Cas9 technology. Front Plant Sci, 2019, 10: 1446.
doi: 10.3389/fpls.2019.01446 pmid: 31824524
[30] Cheng Q, Dong L, Su T, Li T, Gan Z, Nan H, Lu S, Fang C, Kong L, Li H, Hou Z, Kou K, Tang Y, Lin X, Zhao X, Chen L, Liu B, Kong F. CRISPR/Cas9-mediated targeted mutagenesis of GmLHY genes alters plant height and internode length in soybean. BMC Plant Biol, 2019, 19: 562.
doi: 10.1186/s12870-019-2145-8 pmid: 31852439
[31] Song J H, Shin G, Kim H J, Lee S B, Moon J Y, Jeong J C, Choi H K, Kim I A, Song H J, Kim C Y, Chung Y S. Mutation of GmIPK1 gene using CRISPR/Cas9 reduced phytic acid content in soybean seeds. Int J Mol Sci, 2022, 23: 10583.
doi: 10.3390/ijms231810583
[32] Dong L, Hou Z, Li H, Li Z, Fang C, Kong L, Li Y, Du H, Li T, Wang L, He M, Zhao X, Cheng Q, Kong F, Liu B. Agronomical selection on loss-of-function of GIGANTEA simultaneously facilitates soybean salt tolerance and early maturity. J Integr Plant Biol, 2022, 64: 1866-1882.
doi: 10.1111/jipb.v64.10
[33] Jia G X, Zhu Z Q, Chang F Q, Li Y X. Transformation of tomato with the BADH gene from Atriplex improves salt tolerance. Plant Cell Rep, 2002, 21: 141-146.
doi: 10.1007/s00299-002-0489-1
[34] Hasthanasombut S, Ntui V, Supaibulwatana K, Mii M, Nakamura I. Expression of Indica rice OsBADH1 gene under salinity stress in transgenic tobacco. Plant Biotechnol Rep, 2010, 4: 75-83.
doi: 10.1007/s11816-009-0123-6
[35] Tang W, Sun J, Liu J, Liu F F, Yan J, Gou X J, Lu B R, Liu Y S. RNAi-directed downregulation of betaine aldehyde dehydrogenase 1 (OsBADH1) results in decreased stress tolerance and increased oxidative markers without affecting glycine betaine biosynthesis in rice (Oryza sativa). Plant Mol Biol, 2014, 86: 443-454.
doi: 10.1007/s11103-014-0239-0 pmid: 25150410
[36] He Q, Yu J, Kim T S, Cho Y H, Lee Y S, Park Y J. Resequencing reveals different domestication rate for BADH1 and BADH2 in rice (Oryza sativa). PLoS One, 2015, 10: e0134801.
doi: 10.1371/journal.pone.0134801
[37] Fitzgerald T L, Waters D L E, Henry R J. The effect of salt on betaine aldehyde dehydrogenase transcript levels and 2-acetyl- 1-pyrroline concentration in fragrant and non-fragrant rice (Oryza sativa). Plant Sci, 2008, 175: 539-546.
doi: 10.1016/j.plantsci.2008.06.005
[38] 胡雯恬. 大豆幼苗性状耐盐碱胁迫能力优异等位变异的挖掘. 黑龙江大学硕士学位论文, 黑龙江哈尔滨, 2020.
Hu W T. Mining of Excellent Allelic Variation of Saline-alkali Stress Tolerance in Soybean Seedlings. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2020. (in Chinese with English abstract)
[39] Chen Z H, Cuin T A, Zhou M X, Twomey A, Naidu B P, Shabala S. Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J Exp Bot, 2007, 58: 4245-4255
doi: 10.1093/jxb/erm284 pmid: 18182428
[40] Manghwar H, Li B, Ding X, Hussain A, Lindsey K, Zhang X, Jin S. CRISPR/Cas systems in genome editing: methodologies and tools for sgRNA design, off-target evaluation, and strategies to mitigate off-target effects. Adv Sci, 2020, 7: 1902312.
doi: 10.1002/advs.v7.6
[1] LI Shi-Kuan, HONG Hui-Long, FU Jia-Qi, GU Yong-Zhe, SUN Ru-Jian, QIU Li-Juan. Mine the genes of premature yellowing and aging in soybean leaves by BSA-seq combined with RNA-seq technology [J]. Acta Agronomica Sinica, 2024, 50(2): 294-309.
[2] YANG Li-Da, REN Jun-Bo, PENG Xin-Yue, YANG Xue-Li, LUO Kai, CHEN Ping, YUAN Xiao-Ting, PU Tian, YONG Tai-Wen, YANG Wen-Yu. Crop growth characteristics and its effects on yield formation through nitrogen application and interspecific distance in soybean/maize strip relay intercropping [J]. Acta Agronomica Sinica, 2024, 50(1): 251-264.
[3] YUAN Xiao-Ting, WANG Tian, LUO Kai, LIU Shan-Shan, PENG Xin-Yue, YANG Li-Da, PU Tian, WANG Xiao-Chun, YANG Wen-Yu, YONG Tai-Wen. Effects of bandwidth and plant spacing on biomass accumulation and allocation and yield formation in strip intercropping soybean [J]. Acta Agronomica Sinica, 2024, 50(1): 161-171.
[4] HU Yan-Juan, XUE Dan, GENG Di, ZHU Mo, WANG Tian-Qiong, WANG Xiao-Xue. Mutation effects of OsCDF1 gene and its genomic variations in rice [J]. Acta Agronomica Sinica, 2023, 49(9): 2362-2372.
[5] XU Yang, ZHANG Dai, KANG Tao, WEN Sai-Qun, ZHANG Guan-Chu, DING Hong, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of salt stress on ion dynamics and the relative expression level of salt tolerance genes in peanut seedlings [J]. Acta Agronomica Sinica, 2023, 49(9): 2373-2384.
[6] LI Gang, ZHOU Yan-Chen, XIONG Ya-Jun, CHEN Yi-Jie, GUO Qing-Yuan, GAO Jie, SONG Jian, WANG Jun, LI Ying-Hui, QIU Li-Juan. Haplotype analysis of soybean leaf type regulator gene Ln and its homologous genes [J]. Acta Agronomica Sinica, 2023, 49(8): 2051-2063.
[7] WANG Hui-Wei, ZHANG Xiang-Ge, LI Chun-Xin, XU Xin-Ran, HU Hai-Yan, ZHU Ya-Jing, WANG Yan, ZHANG Xin-You. Evaluation of salt tolerance in Cyperus esculentus and transcriptomic analysis of seedling roots under salt stress [J]. Acta Agronomica Sinica, 2023, 49(7): 1882-1894.
[8] LIU Ting-Xuan, GU Yong-Zhe, ZHANG Zhi-Hao, WANG Jun, SUN Jun-Ming, QIU Li-Juan. Mapping soybean protein QTLs based on high-density genetic map [J]. Acta Agronomica Sinica, 2023, 49(6): 1532-1541.
[9] LI Hui, LU Yi-Ping, WANG Xiao-Kai, WANG Lu-Yao, QIU Ting-Ting, ZHANG Xue-Ting, HUANG Hai-Yan, CUI Xiao-Yu. GmCIPK10, a CBL-interacting protein kinase promotes salt tolerance in soybean [J]. Acta Agronomica Sinica, 2023, 49(5): 1272-1281.
[10] WU Zong-Sheng, XU Cai-Long, LI Rui-Dong, XU Yi-Fan, SUN Shi, HAN Tian-Fu, SONG Wen-Wen, WU Cun-Xiang. Effects of wheat straw mulching on physical properties of topsoil and yield formation in soybean [J]. Acta Agronomica Sinica, 2023, 49(4): 1052-1064.
[11] SHU Ze-Bing, LUO Wan-Yu, PU Tian, CHEN Guo-Peng, LIANG Bing, YANG Wen-Yu, WANG Xiao-Chun. Optimization of field configuration technology of strip intercropping of fresh corn and fresh soybean based on high yield and high efficiency [J]. Acta Agronomica Sinica, 2023, 49(4): 1140-1150.
[12] LIU Shan-Shan, PANG Ting, YUAN Xiao-Ting, LUO Kai, CHEN Ping, FU Zhi-Dan, WANG Xiao-Chun, YANG Feng, YONG Tai-Wen, YANG Wen-Yu. Effects of row spacing on root nodule growth and nitrogen fixation potential of different nodulation characteristics soybeans in intercropping [J]. Acta Agronomica Sinica, 2023, 49(3): 833-844.
[13] YANG Shuo, WU Yang-Chun, LIU Xin-Lei, TANG Xiao-Fei, XUE Yong-Guo, CAO Dan, WANG Wan, LIU Ting-Xuan, QI Hang, LUAN Xiao-Yan, QIU Li-Juan. Fine mapping of qPRO-20-1 related to high protein content in soybean [J]. Acta Agronomica Sinica, 2023, 49(2): 310-320.
[14] ZHANG Wen-Xuan, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome editing of BnaMPK6 gene by CRISPR/Cas9 for loss of salt tolerance in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(2): 321-331.
[15] YANG Xiao-Yi, WANG Hui-Hui, ZHANG Yan-Wen, HOU Dian-Yun, ZHANG Hong-Xiao, KANG Guo-Zhang, XU Hua-Wei. Function analysis of OsPIN5c gene by CRISPR/Cas9 [J]. Acta Agronomica Sinica, 2023, 49(2): 354-364.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .