Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (2): 294-309.doi: 10.3724/SP.J.1006.2023.34062

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Mine the genes of premature yellowing and aging in soybean leaves by BSA-seq combined with RNA-seq technology

LI Shi-Kuan1,2,**(), HONG Hui-Long2,**, FU Jia-Qi1,2, GU Yong-Zhe1,2, SUN Ru-Jian3, QIU Li-Juan1,2,*()   

  1. 1College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, Heilongjiang, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3Hulun Buir Institution of Agricultural Sciences, Zhalantun 162650, Inner Mongolia, China
  • Received:2023-03-23 Accepted:2023-06-29 Online:2024-02-12 Published:2023-07-14
  • Contact: *E-mail: qiulijuan@caas.cn
  • About author:**Contributed equally to this work
  • Supported by:
    National Natural Science Foundation of China(32172005)

Abstract:

The yield of soybean is positively correlated with the duration of reproductive growth, which delays the aging of leaves after flowering, enhances their physiological performance, and supports growing plants with heavier grains. Leaf yellowing is one of the distinctive features of plant aging. Studies on leaf yellowing at the late stage of soybean drum grain have rarely been reported. The early yellowing feature of soybean late tympanic leaves was controlled by a single recessive nuclear gene, according to the genetic analysis of the hybrid of the early yellowing mutant ly and wild-type ofc in this study. Using Molecular Marker to Map-Based Cloning, a 2.23 Mb preliminary localization interval on chromosome 19 was obtained. The interval was shortened to 1.75 Mb and contained 219 genes. When this interval was combined with RNA-Seq analysis, 12 candidate genes were detected, including 4 SNP variant genes and 8 differentially expressed genes. The findings of this study provides the framework for the cloning of genes that cause aging and yellowing during the filling later period in soybean.

Key words: soybean, mutant, BSA-Seq, RNA-Seq, map-based cloning

Fig. 1

Wild and mutant types of dwarf wrinkled leaves and tall flat leaves"

Table 1

Upstream and downstream primer sequences of 7 mutation sites"

引物名称
Primer name
上游引物序列
Forward primer (5°-3°)
下游引物序列
Reverse primers (5°-3°)
Glyma.19G223400 TGATTGGTTTAGCCGTGTTTC AACATCTCGGTTGTAAGTCCTCT
Glyma.19G228000 ATGTAACAGAAGGACGCG TGTTGGTAAATAGAGTAATG
Glyma.19G236800 TAACATCACTCAAATAAAAC AACCAGCTTAACAACCTCAA
Glyma.19G237000 AGAAGACATGGTTCCAGCAC CCCGAGGAATCTCAAAGGA
Glyma.19G216000 CACTTTGCTTTCTTCTCCCTT TACCAGCATTGATGCAGTTT
Glyma.19G233000 AATAGCCATTTCGCTTATC ACAAACTTGTTGGGAGTAG
Glyma.19G219600 AGTAGTATAGAAGTGCGTAA CTTCTCAACTACTTATTAAGATATG
Glyma.19G241500D ATGCGTATGGACTTCCCCAA TGGCATTCGTTGGGCACTAA

Table 2

Primer sequences of seven markers located in the interval"

引物名称
Primer ID
上游引物序列
Forward primer (5°-3°)
下游引物序列
Reverse primers (5°-3°)
216000 Fam: GAAGGTGACCAAGTTCATGCTTGGAGGGAGGGGGACTGg
Hex: GAAGGTCGGAGTCAACGGATTGTGGAGGGAGGGGGACTGa
ACTTTGCTTTCTTCTCCCTTTTATCTTTCT
223400 Fam: GAAGGTGACCAAGTTCATGCTATAGGACCATTAAGAGGCGGCATt
Hex: GAAGGTCGGAGTCAACGGATTTAGGACCATTAAGAGGCGGCATc
AAGACAGATGCTGCAGCTGCG
228000 Fam: GAAGGTGACCAAGTTCATGCTCGCCGAAATATAGTCACCGg
Hex: GAAGGTCGGAGTCAACGGATTAACGCCGAAATATAGTCACCGa
CTGAGATTCGGAGAAGCTTGC
219600 Fam: GAAGGTGACCAAGTTCATGCTGGTGTCAATTTTCTAAAAATTCATACTCTTc
Hex: GAAGGTCGGAGTCAACGGATTGGTGTCAATTTTCTAAAAATTCATACTCTTt
TTGTGACTTTCTCTTCTCAACTACTTATTAAG
233000 Fam: GAAGGTGACCAAGTTCATGCTATAAGTTCTTCAGTGTTCACTTGAGAGg
Hex: GAAGGTCGGAGTCAACGGATTAATAAGTTCTTCAGTGTTCACTTGAGAGa
TCATTAGTCCTTAACCCGTCACATAG
237000 Fam: GAAGGTGACCAAGTTCATGCTATGCATCACGGGTCATTCTg
Hex: GAAGGTCGGAGTCAACGGATTAAATGCATCACGGGTCATTCTa
CAAAGAAAGAAAGTAACTACTGAAGTGTACG
241500D ATGCGTATGGACTTCCCCAA ATCAGTTTTGTAAATAATAGTTGTgA

Fig. 2

Differences in overall changes of plants in soybean filling later period of wild type and mutant tympanum (A), leaf color change (B), pod color change (C), and mature seeds (D)"

Table 3

Differences in moisture and dry matter at the late stages of mutant and wild tympanums"

取样时间
Time
(种子鲜重-种子干重)/荚果重
(Seed fresh weight-Seed dry weight)/Pod weight
种子干重/荚果重
Seed dry weight/Pod weight
野生型
Wild-type
突变型
Mutant
t检验的P
P-value by t-test
野生型
Wild-type
突变型
Mutant
t检验的P
P-value by t-test
第1天Day 1 0.31 0.31 P=0.91 0.24 0.28 P=0.04<0.05
第2天Day 2 0.31 0.31 0.26 0.29
第3天Day 3 0.29 0.31 0.28 0.30
第4天Day 4 0.34 0.35 0.26 0.30
第5天Day 5 0.34 0.34 0.33 0.31
第6天Day 6 0.35 0.34 0.35 0.34
第7天Day 7 0.36 0.34 0.35 0.39
第8天Day 8 0.22 0.23 0.50 0.52

Fig. 3

Changes of SPAD values of leaves at the late stage of soybean drum grain"

Table 4

Analysis of wild-type and mutant-type agronomic trait data"

生长条件
Growth
conditions
性状
Characters
株高
Plant height (cm)
分枝
Branch
节数
Number of
sections
荚数
Number of
pods
粒数
Number of grains
百粒重
100-grain weight
(g)
短日照条件
Short-day
conditions
矮皱叶
Dwarf-wrink led leaves
野生型
Wild
34.32±3.98* 0.37±0.51 12.75±1.42 27.36±7.33* 42.93±14.08* 34.81±4.18**
突变型
Mutant
29.31±3.45* 0.27±0.53 11.07±1.93 22.34±10.58* 37.18±18.32* 29.44±2.21**
高展叶
Tall-flat leaves
突变型
Mutant
45.28±6.20** 1.52±1.72* 11.91±1.26* 32.06±16.13 61.96±31.66 30.72±3.14**
野生型
Wild
52.32±5.02** 0.77±1.14* 13.32±1.65* 32.75±14.60 65.55±34.33 37.44±3.51**
长日照条件
Long-day
conditions
矮皱叶
Dwarf-wrink led leaves
野生型
Wild
65.66±7.52 0.44±0.42 19.51±2.47 35.97±10.02* 51.37±13.93 27.74±1.50
突变型
Mutant
67.30±7.38 0.55±0.40 21.71±1.05 42.89±9.42* 51.27±6.29 27.32±1.20
高展叶
Tall-flat leaves
突变型
Mutant
122.15±6.23 4.31±1.11* 23.26±0.95 114.50±25.84 194.39±51.06* 33.62±1.82**
野生型
Wild
124.79±9.12 2.95±1.06* 22.67±1.32 85.81±17.37 173.87±29.41* 37.42±1.72**

Fig. 4

ED and index correlation analysis of SNP/InDel A and B in the figure show the ED correlation analysis results of SNP and InDel: C and D are the index correlation analysis results of SNP and InDel; The abscissa is the chromosome position, the vertical coordinate represents the ED or index value, the black line is the fitted ED or index association value, and the red dashed line represents the significance association threshold."

Table 5

Associated region on chromosome 19 based on SNP/InDel analysis by two methods"

关联分析类型
Association analysis type
染色体
Chr.
起始位置
Start position
终止位置
Termination location
区间大小
Region size (Mb)
区间内基因数量
Gene number in the regions
SNP关联结果SNP correlates results Chr19 45760000 50720000 4.96 636
InDel关联结果InDel correlates results Chr11 0 250000 0.25 44
Chr05 20110000 21450000 1.34 10
Chr12 16090000 16560000 0.47 16
Chr16 21180000 23610000 2.43 51
Chr17 24150000 25190000 1.04 12
Chr17 35420000 35660000 0.24 2
Chr18 26340000 26470000 0.13 3
Chr18 9180000 9390000 0.21 15
Chr19 46440000 49040000 2.60 326
2个关联结果交集
The intersection of the two association results
Chr19 46810000 49040000 2.23 277

Fig. 5

Visual distribution of SNP (A) and InDel (B) results on chromosomes From outside to inside: the first circle: chromosome coordinates, the second circle: gene distribution, the third circle: density distribution, the fourth circle: ED value distribution, the fifth circle: Δindex value distribution."

Fig. 6

Phenotypic linkage analysis of seven labeled homozygous rows at F2:3"

Table 6

Single label analysis of seven markers in F2:3 homozygous rows"


Value
表型
Phenotype
基因型
Genotype
标记Marker
216000 219600 223400 228000 233000 237000 241500D
理论值
Theoretical value
绿色Green A 197 195 259 197 180 197 214
黄色Yellow B 149 196 183 194 183 149 163
实际值
Actual value
绿色Green A 67 182 181 257 176 171 145
黄色Yellow B 115 119 193 166 189 176 102
χ2值χ2-value 31.13 6.91 0.97 1.50 2.24 0.63 22.25
PP-value 0 0.01 0.31 0.21 0.12 0.40 0

Table 7

Four candidate genes for SNP mutations"

基因ID
Gene ID
SNP位点
SNP loci
碱基类型 Base type 突变类型
Mutation type
突变的影响
Effects of mutations
野生型
Wild type
突变型
Mutant
Glyma.19G223400 47582632 A G 基因的3'UTR内
Gene within 3' UTR
改变RNA二级结构
Change the RNA secondary structure
Glyma.19G233000 48299560 A G 基因的3'UTR内
Gene within 3' UTR
改变RNA二级结构
Change the RNA secondary structure
Glyma.19G236800 48581005 A G 非同义SNV
Non-synonymous SNV
脯氨酸变成亮氨酸, 改变蛋白结构
Proline becomes leucine, changing the protein structure
Glyma.19G237000 48622649 T C 基因的5'UTR内
Gene within 5' UTR
改变RNA二级结构
Change the RNA secondary structure

Table 8

Relative expression information of four SNP genes"

基因编号
Gene number
野生型子代FPKM值
Wild type offspring FPKM value
突变型子代FPKM值
Mutant offspring FPKM value
野生型亲本FPKM值
FPKM values of wild type parents
突变型亲本FPKM值
FPKM values of mutant parents
野生型vs突变型
Wild type vs mutant
Glyma.19G223400 5.97 8.20 6.65 7.87 no
Glyma.19G233000 15.50 17.41 15.19 14.89 no
Glyma.19G236800 22.14 14.91 19.63 19.63 no
Glyma.19G237000 2.35 4.24 1.97 2.89 no

Fig. 7

Intersection of differential genes between parents or offspring of wild-type and mutant type (A) combination of differentiating genes of wild-type or mutant type of parents and offspring (B)"

Table 9

Eight differentially expressed genes in the interval"

基因编号
Gene number
野生型子代FPKM值
Wild type offspring FPKM value
突变型子代FPKM值
Mutant offspring FPKM value
野生型亲本FPKM值
FPKM values of wild type parents
突变型亲本FPKM值
FPKM values of mutant parents
野生型vs突变型
Wild type vs mutant
Glyma.19G222400 1.141 0.311 1.959 0.334 up
Glyma.19G224500 2.857 15.923 1.933 10.123 down
Glyma.19G225900 0.446 0.083 0.959 0.039 up
Glyma.19G226800 14.965 3.935 11.658 2.708 up
Glyma.19G228200 1.935 0.051 1.032 0.200 up
Glyma.19G228300 4.934 0.775 4.272 0.751 up
Glyma.19G230600 1.125 0.470 1.485 0.329 down
Glyma.19G241200 59.422 137.849 45.382 103.845 down

Fig. 8

Relative expression profile of 12 candidate genes Colors in the square represent the expression level of candidate genes: blue is the lowest, white is middle, and red is the highest."

Table 10

BLAST analysis of candidate gene protein sequences"

类型
Type
基因编号
Gene number
具有同源序列的蛋白
Proteins with homologous sequences
SNP突变
SNP mutations
Glyma.19G223400 G蛋白β亚基(含WD40重复蛋白同源序列)、丝氨酸/苏氨酸激酶受体相关蛋白以及醌血红素蛋白β亚基
G protein β subunits (containing WD40 repeat homologous sequences), serine/threonine kinase receptor-associated proteins, and quinone heme protein β subunits
Glyma.19G233000 乙酰肝素-α-氨基葡萄糖苷N-乙酰转移酶Heparan-α-glucosaside N-acetyltransferase
Glyma.19G236800 E3泛素蛋白连接酶、和锌指结构域 E3 ubiquitin protein ligase, and zinc finger domains
Glyma.19G237000 PLP依赖的D-天冬氨酸氨基转移酶, 核苷三磷酸水解酶的P环
PLP-dependent D-aspartate aminotransferase, the P loop of nucleoside triphosphate hydrolases
差异表达基因
Differentially expressed genes
Glyma.19G222400 果胶乙酰酯酶家族蛋白Pectin acetylesterase family proteins
Glyma.19G224500 果胶乙酰酯酶家族蛋白Pectin acetylesterase family proteins
Glyma.19G225900 碳水化合物代谢过程碳水化合物结合X8结构域蛋白
Carbohydrate metabolism process, carbohydrate binding to X8 domain protein
Glyma.19G226800 核苷三磷酸水解酶的P环P loop of nucleoside triphosphate hydrolases
Glyma.19G228200 类似ECH相关蛋白1的Kelch Kelch-like ech-associated protein 1
Glyma.19G228300 转录因子MEIS1和相关HOX结构域蛋白
Transcription factor MEIS1 and associated HOX-domain proteins
Glyma.19G230600 丝氨酸/苏氨酸特异性蛋白磷酸酶, 蛋白磷酸酶2C
Serine/threonine-specific protein phosphatase, protein phosphatase 2C
Glyma.19G241200 转移酶活性, 转移氨基酰基以外的酰基
Transferase activity, transfer of acyl groups other than aminoacyl
[1] Ainsworth E A, Yendrek C R, Skoneczka J A. Accelerating yield potential in soybean: potential targets for biotechnological improvement. Plant Cell Environ, 2012, 35: 38-52.
doi: 10.1111/pce.2012.35.issue-1
[2] Lindoo S J, Larry D N. The interrelation of fruit development and leaf senescence in Anoka soybeans. Bot Gaz, 1976, 137: 218-223.
doi: 10.1086/336861
[3] Aharoni N. Endogenous gibberellin and abscisic acid as related to senescence of detached lettuce leaves. Plant Physiol, 1978, 62: 224-228.
doi: 10.1104/pp.62.2.224 pmid: 16660490
[4] Back A, Richmond A E. Interrelations between gibberellic acid, cytokinins and abscisic acid inretarding leaf senescence. Plant Physiol, 1971, 24: 76-79.
doi: 10.1111/ppl.1971.24.issue-1
[5] Zeev E C, Itai C. The role of abscisic acid in senescence of detached tobacco leaves. Plant Physiol, 1975, 34: 97-100.
[6] Killough D T, Horlacher W R. The inheritance of virescent yellow and red plant colors in cotton. Genetics, 1933, 18: 329-334.
doi: 10.1093/genetics/18.4.329 pmid: 17246695
[7] Huang X Q, Wang P R, Zhao H X, Deng X J. Genetic analysis and molecular mapping of a novel chlorophyll-deficit mutant gene in rice. Rice Sci, 2008, 15: 7-12.
doi: 10.1016/S1672-6308(08)60013-X
[8] Sinclair T R, Dewit C T. Analysis of the carbon and nitrogen limitations to soybean yield. Agron J, 1976, 68: 319-324.
doi: 10.2134/agronj1976.00021962006800020021x
[9] Spano G, Di F N, Perrotta C, Platani C, Ronga G, Lawlor D W, Napier J A, Shewry P R. Physiological characterization of ‘stay-green’ mutants in durum wheat. J Exp Bot, 2003, 54: 1415-1420.
doi: 10.1093/jxb/erg150 pmid: 12709488
[10] 傅金民, 张庚灵, 苏芳, 王振林, 董燕, 史春余. 大豆籽粒形成期14C同化物的分配和源库调节效应的研究. 作物学报, 1999, 25: 169-173.
Fu J M, Zhang G L, Su F, Wang Z L, Dong Y, Shi C Y. Partitioning of 14C-assimilates and effects of source-sink manipulation at seed-filling in soybean. Acta Agron Sin, 1999, 25: 169-173 (in Chinese with English abstract).
[11] 薛丽华, 章建新. 大豆鼓粒期非叶光合器官与粒重的关系. 大豆科学, 2006, 25: 425-428.
Xue L H, Zhang J X. Relationship between non-leaf photosynthetic organs of soybean and seed weight at pod-filling date. Soybean Sci, 2006, 25: 425-428 (in Chinese with English abstract).
[12] Lin S, Cianzio S R, Shoemaker R C. Mapping genetic loci for iron deficiency chlorosis in soybean. Mol Breed, 1997, 3: 219-229.
doi: 10.1023/A:1009637320805
[13] Palmer R G, Burzlaff J D, Shoemaker R C. Genetic analyses of two independent chlorophyll-deficient mutants identified among the progeny of a single chimeric foliage soybean plant. J Hered, 2000, 91: 297-303.
pmid: 10912676
[14] Kato K K, Palmer R G. Duplicate chlorophyll-deficient loci in soybean. Genome Biol, 2004, 47: 190-198.
[15] 崔世友, 喻德跃. 大豆不同生育时期叶绿素含量QTL的定位及其与产量的关联分析. 作物学报, 2007, 33: 744-750.
Cui S Y, Yu D Y. QTL mapping of chlorophyll content at various growing stages and its relationship with yield in soybean. Acta Agron Sin, 2007, 33: 744-750 (in Chinese with English abstract).
[16] Zhang H, Zhang D, Han S, Zhang X, Yu D. Identification and gene mapping of a soybean chlorophyll-deficient mutant. Plant Breed, 2011, 130: 133-138.
doi: 10.1111/pbr.2011.130.issue-2
[17] Reed S, Atkinson T, Gorecki C, Espinosa K, Przybylski S, Goggi AS, Palmer R G, Sandhu D. Candidate gene identification for a lethal chlorophyll-deficient mutant in soybean. Agron J, 2014, 4: 462-469.
[18] 陈薇. 大豆叶片黄化新突变体的表现特点与遗传研究. 南京农业大学硕士学位论文, 江苏南京, 2014.
Chen W. Performance and Genetic Analyses of the New Yellow Leaf Mutants in Soybean. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2014 (in Chinese with English abstract).
[19] 冯星星. 大豆黄化突变体 Gmcdm l 与矮化突变体Gmdwf 6的基因定位. 中国科学院大学硕士学位论文, 北京, 2015.
Feng X X. Genetic Analysis and Gene Mapping of the Gmcdm l and Gmdwf 6 in Soybean. MS Thesis of University of Chinese Academy of Sciences, Beijing, China, 2015 (in Chinese with English abstract).
[20] Campbell B W, Mani D, Curtin S J, Slattery R A, Michno J M, Ort D R, Schaus P J, Palmer R G, Orf J H, Stupar R M. Identical substitutions in magnesium chelatase paralogs result in chlorophyll-deficient soybean mutants. G3: Genes Genom Genet, 2014, 5: 123-131.
[21] 朱晓炜. 大豆叶色突变基因GmLCM的图位克隆及功能研究. 中国科学院大学博士学位论文, 北京, 2016.
Zhu X W. Map-based Cloning and Functional Analysis of GmLCM Associated with Soybean Leaf Color Mutant. PhD Dissertation of University of Chinese Academy of Sciences, Beijing, China, 2016 (in Chinese with English abstract).
[22] 李清. 大豆叶片黄化基因的克隆与功能分析. 中国科学院大学博士学位论文, 北京, 2016.
Li Q. Clone and Function Analysis of the Leaf Etiolation Gene in Soybean. PhD Dissertation of University of Chinese Academy of Sciences, Beijing, China, 2016 (in Chinese with English abstract).
[23] 孔可可, 许孟歌, 王亚琪, 孔杰杰, Al-Amin G M, 赵团结. 大豆黄绿叶突变体NJ9903-5性状表现与基因定位研究. 大豆科学, 2017, 36: 494-501.
Kong K K, Xu M G, Wang Y Q, Kong J J, Al-Amin G M, Zhao T J. Gene mapping and character performance of a yellow-green leaf mutant NJ9903-5 in soybean. Soybean Sci, 2017, 36: 494-501 (in Chinese with English abstract).
[24] Liu M, Wang Y, Nie Z, Gai J, Bhat J A, Kong J, Zhao T. Double mutation of two homologous genes YL1 and YL2 results in a leaf yellowing phenotype in soybean [Glycine max (L.) Merr.]. Plant Mol Biol, 2020, 103: 527-543.
doi: 10.1007/s11103-020-01008-9
[25] Wang M, Li W, Fang C, Xu F, Liu Y, Wang Z, Yang R, Zhang M, Liu S, Lu S, Lin T, Tang J, Wang Y, Wang H, Lin H, Zhu B, Chen M, Kong F, Liu B, Zeng D, Jackson S A, Chu C, Tian Z. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat Genet, 2018, 50: 1435-1441.
doi: 10.1038/s41588-018-0229-2 pmid: 30250128
[26] Nawy T, Bayer M, Mravec J, Friml J, Birnbaum K D, Lukowitz W. The GATA factor HANABA TARANU is required to position the proembryo boundary in the early Arabidopsis embryo. Dev Cell, 2010, 19: 103-113.
doi: 10.1016/j.devcel.2010.06.004 pmid: 20643354
[27] Gallavotti A, Long J A, Stanfield S, Yang X, Jackson D, Vollbrecht E, Schmidt R J. The control of axillary meristem fate in the maize ramosa pathway. Development, 2010, 137: 2849-2856.
doi: 10.1242/dev.051748 pmid: 20699296
[28] Vlad D, Kierzkowski D, Rast M I, Vuolo F, Ioio R D, Galinha C, Gan X, Hajheidari M, Hay A, Smith R S, Huijser P, Bailey C D, Tsiantis M. Leaf shape evolution through duplication, regulatory diversification, and loss of a homeobox gene. Science, 2014, 343: 780-783.
doi: 10.1126/science.1248384 pmid: 24531971
[29] Stewart G C, Roeder A K, Patrick S, Chris S, Wolfgang L, Hector C. A genetic screen for mutations affecting cell division in the Arabidopsis thaliana embryo identifies seven loci required for cytokinesis. PLoS Genet, 2016, 11: e0146492.
[30] Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R. Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol, 2012, 30: 174-178.
doi: 10.1038/nbt.2095 pmid: 22267009
[31] Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano L M, Kamoun S, Terauchi R. QTL-Seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J, 2013, 74: 174-183.
doi: 10.1111/tpj.2013.74.issue-1
[32] Zhang H, Wang X, Pan Q, Li P, Liu Y, Lu X, Zhong W, Li M, Han L, Li J, Wang P, Li D, Liu Y, Li Q, Yang F, Zhang Y M, Wang G, Li L. QTL-Seq accelerates QTL fine mapping through QTL partitioning and whole-genome sequencing of bulked segregant samples. Mol Plant, 2019, 12: 426-437.
doi: 10.1016/j.molp.2018.12.018
[33] Klein H, Xiao Y, Conklin P A, Govindarajulu R, Kelly J A, Scanlon M J, Whipple C J, Bartlett M. Bulked-segregant analysis coupled to whole genome sequencing (BSA-Seq) for rapid gene cloning in maize. G3: Genes Genom Genet, 2018, 8: 3583-3592.
[34] Lopez M H, Brinza L, Marchet C, Kielbassa J, Bastien S, Boutigny M, Monnin D, Filali A E, Carareto C M, Vieira C, Picard F, Kremer N, Vavre F, Sagot M F, Lacroix V. SNP calling from RNA-Seq data without a reference genome: identification, quantification, differential analysis and impact on the protein sequence. Nucleic Acids Res, 2016, 44: e148.
[35] Rogier O, Chateigner A, Amanzougarene S, Lesage-Descauses M C, Balzergue S, Brunaud V, Caius J, Soubigou-Taconnat L, Jorge V, Segura V. Accuracy of RNA-seq based SNP discovery and genotyping in Populusnigra. BMC Genomics, 2018, 19: 909.
doi: 10.1186/s12864-018-5239-z pmid: 30541448
[36] Wang H, Cheng H, Wang W, Liu J, Hao M, Mei D, Zhou R, Fu L, Hu Q. Identification of BnaYucca6 as a candidate gene for branch angle in Brassica napus by QTL-Seq. Sci Rep, 2016, 6: 38493-38502.
doi: 10.1038/srep38493 pmid: 27922076
[37] Lu H, Lin T, Klein J, Wang S, Qi J, Zhou Q, Sun J, Zhang Z, Weng Y, Huang S. QTL-Seq identifies an early flowering QTL located near flowering locus T in cucumber. Theor Appl Genet, 2014, 127: 1491-1499.
doi: 10.1007/s00122-014-2313-z pmid: 24845123
[38] Lei L, Zheng H, Bi Y, Yang L, Liu H, Wang J, Sun J, Zhao H, Li X, Li J, Lai Y, Zou D. Identification of a major QTL and candidate gene analysis of salt tolerance at the bud burst stage in rice using QTL-Seq and RNA-Seq. Rice (N Y), 2020, 13: 55-68.
doi: 10.1186/s12284-020-00416-1 pmid: 32778977
[39] Song Q J, Jenkins J, Jia G F, Hyten D L, Pantalone V, Jackson S A. Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01. BMC Genomics, 2016, 17: 33.
doi: 10.1186/s12864-015-2344-0 pmid: 26739042
[40] Mckenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, Depristo M A. The genome analysis toolkit: a map reduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010, 20: 1297-1303.
doi: 10.1101/gr.107524.110
[41] Cingolani P, Platts A, Wang L L, Coon M, Nguyen T, Wang L, Land S J, Lu X Y, Ruden D M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin), 2012, 6: 80-92.
doi: 10.4161/fly.19695 pmid: 22728672
[42] Trapell C, Pacher L, Salzberg S L. Tophat: discovering splice junctions with RNA-Seq. Bionformatics, 2009, 25: 1105-1111.
[43] Trapell C, Roberts A, Goff L, Pertea G, Kim D, Kelley D R, Pimental H, Salzberg S L, Rinn J L, Pachter L. Differential gene and transcript expression analysis of RNA-Seq experiments with TopHat and Cufflinks. Nat Protoc, 2012, 7: 562-578.
doi: 10.1038/nprot.2012.016 pmid: 22383036
[44] Benjamini Y, Yektieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat, 2001, 29: 1165-1188.
[45] Hill J T, Demarest B L, Bisgrove B W, Gorsi B, Su Y C, Yost H J. MMAPPR: mutation mapping analysis pipeline for pooled RNA-Seq. Genome Res, 2013, 23: 687-697.
doi: 10.1101/gr.146936.112 pmid: 23299975
[46] Mckenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A. The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010, 20: 1297-1303.
doi: 10.1101/gr.107524.110 pmid: 20644199
[47] Robinson M D, McCarthy D J, Smyth G K. EdgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010, 26, 139-140.
doi: 10.1093/bioinformatics/btp616 pmid: 19910308
[48] 李得孝, 王晶, 刘修杰, 胡超, 刘义. 利用荚果厚度模拟大豆鼓粒进程的研究. 中国农业大学学报, 2014, 19(1): 29-36.
Li D X, Wang J, Liu X J, Hu C, Liu Y. Seed-bulging simulation with pod thickness in soybean. J China Agric Univ, 2014, 19(1): 29-36 (in Chinese with English abstract).
[49] Fraser J, Egli D B, Leggett J E. Pod and seed development in soybean cultivars with differences in seed size. Agron J, 1982, 74: 81-85.
doi: 10.2134/agronj1982.00021962007400010022x
[50] 苏黎, 张仁双, 宋书宏, 董钻, 谢甫绨, 王晓光. 不同结荚习性大豆开花结荚鼓粒进程的比较研究. 大豆科学, 1997, (3): 52-59.
Su L, Zhang R S, Song S H, Dong J, Xie F T, Wang X G. Comparative studies on flowering pod setting and seed filling of soybeans with different podding habits. Soybean Sci, 1997, (3): 52-59 (in Chinese with English abstract).
[51] 于龙凤, 孙海桥, 安福全. 不同大豆品种叶片叶绿素变化规律的研究. 黑龙江农业科学, 2009, (2): 32-34.
Yu L F, Sun H Q, An F Q. Study on leaf blade chlorophyll change of different soybean varieties. Heilongjiang Agric Sci, 2009, (2): 32-34 (in Chinese with English abstract).
[52] 王聪, 赵连佳, 张建勋, 章建新. 春大豆鼓粒期冠层翻叶原因及翻叶对叶片净光合速率和粒重的影响. 中国农学通报, 2020, 36(33): 38-44.
doi: 10.11924/j.issn.1000-6850.casb20191200926
Wang C, Zhao L J, Zhang J X, Zhang J X. Canopy leaf turning of spring soybean at seed-filling stage: reasons and effects on net photosynthetic rate and grain weight. Chin Agric Sci Bull, 2020, 36(33): 38-44 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb20191200926
[53] 杨阳, 苍晶, 王学东, 崔琳, 王兴, 周子珊. 大豆豆荚光合特性及其对产量的贡献. 东北农业大学学报, 2008, 39(12): 51-56.
Yang Y, Cang J, Wang X D, Cui L, Wang X, Zhou Z S. Photosynthetic characteristics of soybean pod and its contribution to yield. J Northeast Agric Univ, 2008, 39(12): 51-56 (in Chinese with English abstract).
[54] 林国强, 黄建成, 徐树传, 王金官. 菜用大豆“292”秋播花后干物质积累及鼓粒特性的研究. 大豆科学, 1997, 16: 293-297.
Lin G Q, Huang J C, Xu S C, Wang J G. Studies on dry matter accumulation and seed filling characteristics after anthesis in fall of vegetable soybean 292. Soybean Sci, 1997, 16: 293-297 (in Chinese with English abstract).
[55] Kavakli I H, Slattery C J, Ito H, Okita T W. The conversion of carbon and nitrogen into starch and storage proteins in developing storage organs: an overview. Funct Plant Biol, 2000, 27: 561-570.
doi: 10.1071/PP99176
[56] 郎漫, 刘元英, 彭显龙, 张文钊. 不同氮肥用量下镁对大豆碳氮代谢的影响. 大豆科学, 2006, 25: 49-52.
Lang M, Liu Y Y, Peng X L, Zhang W Z. Effects of magnesium on carbon and nitrogen metabolism of soybean at different effects of magnesium on carbon and nitrogen metabolism of soybean at different. Soybean Sci, 2006, 25: 49-52 (in Chinese with English abstract).
[57] 李菁华, 张明聪, 金喜军, 王孟雪, 任春元, 张玉先, 胡国华, 宋晓慧. 高油型和高蛋白型大豆鼓粒期的糖分积累规律. 大豆科学, 2017, 36: 68-73.
Li J H, Zhang M C, Jin X J, Wang M X, Ren C Y, Zhang Y X, Hu G H, Song X H. Sugar accumulation rule of high oil and high protein soybean during the seed-filling period. Soybean Sci, 2017, 36: 68-73 (in Chinese with English abstract).
[1] WANG Qiong, ZHU Yu-Xiang, ZHOU Mi-Mi, ZHANG Wei, ZHANG Hong-Mei, CEHN Xin, CEHN Hua-Tao, CUI Xiao-Yan. Genome-wide association analysis and candidate genes predication of leaf characteristics traits in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2024, 50(3): 623-632.
[2] LIU Wei, WANG Yu-Bin, LI Wei, ZHANG Li-Feng, XU Ran, WANG Cai-Jie, ZHANG Yan-Wei. Overexpression of soybean isopropyl malate dehydrogenase gene GmIPMDH promotes flowering and growth [J]. Acta Agronomica Sinica, 2024, 50(3): 613-622.
[3] SONG Jian, XIONG Ya-Jun, CHEN Yi-Jie, XU Rui-Xin, LIU Kang-Lin, GUO Qing-Yuan, HONG Hui-Long, GAO Hua-Wei, GU Yong-Zhe, ZHANG Li-Juan, GUO Yong, YAN Zhe, LIU Zhang-Xiong, GUAN Rong-Xia, LI Ying-Hui, WANG Xiao-Bo, GUO Bing-Fu, SUN Ru-Jian, YAN Long, WANG Hao-Rang, JI Yue-Mei, CHANG Ru-Zhen, WANG Jun, QIU Li-Juan. Genetic analysis of seed coat and flower color based on a soybean nested association mapping population [J]. Acta Agronomica Sinica, 2024, 50(3): 556-575.
[4] YANG Chuang, WANG Ling, QUAN Cheng-Tao, YU Liang-Qian, DAI Cheng, GUO Liang, FU Ting-Dong, MA Chao-Zhi. Relative expression profiles of genes response to salt stress and constructions of gene co-expression networks in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(1): 237-250.
[5] YANG Li-Da, REN Jun-Bo, PENG Xin-Yue, YANG Xue-Li, LUO Kai, CHEN Ping, YUAN Xiao-Ting, PU Tian, YONG Tai-Wen, YANG Wen-Yu. Crop growth characteristics and its effects on yield formation through nitrogen application and interspecific distance in soybean/maize strip relay intercropping [J]. Acta Agronomica Sinica, 2024, 50(1): 251-264.
[6] SHI Yu-Xin, LIU Xin-Yue, SUN Jian-Qiang, LI Xiao-Fei, GUO Xiao-Yang, ZHOU Ya, QIU Li-Juan. Knockout of GmBADH1 gene using CRISPR/Cas9 technique to reduce salt tolerance in soybean [J]. Acta Agronomica Sinica, 2024, 50(1): 100-109.
[7] YUAN Xiao-Ting, WANG Tian, LUO Kai, LIU Shan-Shan, PENG Xin-Yue, YANG Li-Da, PU Tian, WANG Xiao-Chun, YANG Wen-Yu, YONG Tai-Wen. Effects of bandwidth and plant spacing on biomass accumulation and allocation and yield formation in strip intercropping soybean [J]. Acta Agronomica Sinica, 2024, 50(1): 161-171.
[8] HU Xin, LUO Zheng-Ying, LI Chun-Jia, WU Zhuan-Di, LI Xu-Juan, LIU Xin-Long. Comparative transcriptome analysis of elite ‘ROC’ sugarcane parents for exploring genes involved in Sporisorium scitamineum infection by using Illumina- and SMRT-based RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(9): 2412-2432.
[9] WANG Juan, XU Xiang-Bo, ZHANG Mao-Lin, LIU Tie-Shan, XU Qian, DONG Rui, LIU Chun-Xiao, GUAN Hai-Ying, LIU Qiang, WANG Li-Ming, HE Chun-Mei. Characterization and genetic analysis of a new allelic mutant of Miniature1 gene in maize [J]. Acta Agronomica Sinica, 2023, 49(8): 2088-2096.
[10] SU Zai-Xing, HUANG Zhong-Qin, GAO Run-Fei, ZHU Xue-Cheng, WANG Bo, CHANG Yong, LI Xiao-Shan, DING Zhen-Qian, YI Yuan. Identification of wheat dwarf mutant Xu1801 and analysis of its dwarfing effect [J]. Acta Agronomica Sinica, 2023, 49(8): 2133-2143.
[11] LI Gang, ZHOU Yan-Chen, XIONG Ya-Jun, CHEN Yi-Jie, GUO Qing-Yuan, GAO Jie, SONG Jian, WANG Jun, LI Ying-Hui, QIU Li-Juan. Haplotype analysis of soybean leaf type regulator gene Ln and its homologous genes [J]. Acta Agronomica Sinica, 2023, 49(8): 2051-2063.
[12] LIU Ting-Xuan, GU Yong-Zhe, ZHANG Zhi-Hao, WANG Jun, SUN Jun-Ming, QIU Li-Juan. Mapping soybean protein QTLs based on high-density genetic map [J]. Acta Agronomica Sinica, 2023, 49(6): 1532-1541.
[13] DAI Wen-Hui, ZHU Qi, ZHANG Xiao-Fang, LYU Shen-Yang, XIANG Xian-Bo, MA Tao, CHEN Yu-Jie, ZHU Shi-Hua, DING Wo-Na. Identification and gene mapping of brittle culm mutant bc21 in rice [J]. Acta Agronomica Sinica, 2023, 49(5): 1426-1431.
[14] LI Hui, LU Yi-Ping, WANG Xiao-Kai, WANG Lu-Yao, QIU Ting-Ting, ZHANG Xue-Ting, HUANG Hai-Yan, CUI Xiao-Yu. GmCIPK10, a CBL-interacting protein kinase promotes salt tolerance in soybean [J]. Acta Agronomica Sinica, 2023, 49(5): 1272-1281.
[15] YAN Xin, XIANG Chao, LIU Rong, LI Guan, LI Meng-Wei, LI Zheng-Li, ZONG Xu-Xiao, YANG Tao. Fine mapping of flower colour gene in pea (Pisum sativum L.) based on BSA-seq technique [J]. Acta Agronomica Sinica, 2023, 49(4): 1006-1015.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .