Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (1): 161-171.doi: 10.3724/SP.J.1006.2024.34070

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of bandwidth and plant spacing on biomass accumulation and allocation and yield formation in strip intercropping soybean

YUAN Xiao-Ting(), WANG Tian, LUO Kai, LIU Shan-Shan, PENG Xin-Yue, YANG Li-Da, PU Tian, WANG Xiao-Chun, YANG Wen-Yu, YONG Tai-Wen*()   

  1. College of Agronomy, Sichuan Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs / Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu 611130, Sichuan, China
  • Received:2023-04-10 Accepted:2023-06-29 Online:2024-01-12 Published:2023-07-21
  • Contact: *E-mail: yongtaiwen@sicau.edu.cn
  • Supported by:
    Agriculture Research System of China of MOF and MARA(CARS-04-PS20);Science and Technology Plan of Sichuan(21NZZH0063)

Abstract:

Reasonable field configuration can improve crop growth environment and increase system yield in intercropping systems. To further improve the field configuration technology for high yield and efficiency in the soybean-maize strip intercropping system in Southwest China, the soybean-maize strip intercropping system was used as the research object, and two factor split zone design was adopted. The effects of two bandwidths of 2.0 m (B1) and 2.4 m (B2) and four plant spacings of 9 cm (P1), 11 cm (P2), 14 cm (P3), and 18 cm (P4) on soybean biomass accumulation, allocation, grain filling, and yield were comprehensively analyzed. The results showed that the net photosynthetic rate of each plant spacing treatment under B2 bandwidth was higher than that of B1, and the two-year average increased by 14.26% compared with B1 under B2. At the same bandwidth, the net photosynthetic rate reached the maximum in B1P4 and B2P4, which increased by 13.57% and 25.21% compared with B1P1 and B2P1 at flowering stage, respectively. The biomass accumulation of soybean population increased and then decreased with the increase of plant spacing under the two bandwidths, and reached the maximum at B1P3 and B2P2, respectively, and B2 increased by 9.82%-22.08% compared with B1 at maturity stage. And the increase of bandwidth and plant spacing promoted the accumulation and transfer of soybean post-flowering matter to grain. Compared with B1, post-flowering dry matter accumulation and dry matter transfer increased by 13.82-28.01% and 13.38%-37.76% under B2 treatment, respectively, and the proportion of grain matter accumulation increased to 41.80%-44.26%. The increase of biomass accumulation improved the grain filling process, and the active grain-filling period (D) of soybean under B2 was extended by 2-3 days compared with B1. The mean grain-filling rate reached its maximum at P4 and increased by 5.80% and 6.58% compared with P1 under the two bandwidths. The yield results showed that, with the increase of bandwidth and plant spacing, the effective plants decreased, and the seeds per plan and 100-seed weight increased in the soybean-maize strip intercropping model. The soybean yield under B2 bandwidth increased by 22.32%-36.87% compared with B1, it reached the maximum in B1P3 and B2P2 under the two bandwidths, respectively, and increased by 17.83%-26.44% and 10.71%-10.76% compared with B1P1 and B2P1 for two years. In summary, the soybean plant spacing of 11 cm at the bandwidth of 2.4 m can effectively improve the post-flowering dry matter accumulation and allocation, promote grain filling, increase the number of seeds per plant and 100-seed weight, improve soybean population yield, and achieve the high yield and high efficiency in the soybean-maize intercropping system.

Key words: intercropping soybean, bandwidth, plant spacing, biomass accumulation, yield

Table 1

Effect of bandwidth and plant spacing on soybean yield and yield component"

年份
Year
带宽
Bandwidth
株距
Plant spacing
有效株数
Effective plants
单株粒数
Seeds per plant
百粒重
100-seed weight (g)
产量
Yield (kg hm-2)
2018 B1 P1 93,967±1590 a 52.5±4.1 c 19.4±0.4 b 956.8±76.4 b
P2 86,467±1443 b 62.2±2.7 b 20.5±0.4 a 1101.4±40.7 a
P3 80,356±1273 c 73.4±3.7 a 20.5±0.1 a 1209.8±56.6 a
B2 P1 86,930±802 a 79.6±5.5 b 20.3±0.4 a 1407.0±96.9 b
P2 84,485±549 b 85.5±0.8 b 20.9±0.4 a 1558.4±122 a
P3 78,270±345 c 95.1±3.4 a 20.9±0.9 a 1507.3±15.2 ab
2019 B1 P1 91,280±1342 a 60.6±2.1 d 18.1±0.5 b 1004.1±43.1 b
P2 84,265±2585 b 66.7±4.6 c 18.4±0.2 b 1034.0±47.4 b
P3 78,278±1812 c 77.7±2.5 b 19.5±0.5 a 1183.1±25.4 a
P4 61,557±511 d 93.3±2.9 a 19.8±0.3 a 1136.4±29.4 a
B2 P1 85,041±749 a 78.8±2.7 d 18.8±0.6 b 1260.9±36.8 c
P2 82,357±1699 b 87.6±2.2 c 19.4±0.5 ab 1395.9±13.4 a
P3 71,496±882 c 96.4±2.5 b 19.8±0.3 a 1366.0±6.3 ab
P4 58,597±1221 d 111.8±2.7 a 20.0±0.3 a 1307.6±61.5 bc
年份Year (Y) 40.6** 8.8** 80.1** 17.8**
带宽Bandwidth (B) 1.7** 388.4** 15.2** 290.8**
株距Plant spacing (P) 4.5** 87.9** 13.6** 26.0**
Y×B 1.9 4.6* 0.1 11.7**
Y×P 2.5 0.1 1.8 0.8
B×P 8.5** 0.4 0.7 3.3
Y×B×P 3.4* 0.9 0.6 1.4

Fig. 1

Effects of bandwidth and plant spacing on soybean net photosynthesis rate at different growth stages Treatments are the same as those given in Table 1. R2: blooming flower stage; R5: beginning seed stage. Different lowercase letters mean significant difference among treatments at the 0.05 probability level."

Fig. 2

Effect of bandwidth and plant spacing on soybean dry matter accumulation at different growth stage Treatments are the same as those given in Table 1. V5: the fifth trifoliate; R1: beginning flower stage; R3: beginning pod stage; R5: beginning seed stage; R8: maturity stage. Different lowercase letters mean significant difference among treatments at the 0.05 probability level."

Fig. 3

Effect of bandwidth and plant spacing on soybean dry matter allocation of at different growth stage Treatments and stages are the same as those given in Fig. 2. Different lowercase letters mean significant difference between different treatments at the 0.05 probability level."

Table 2

Effect of bandwidth and plant spacing on dry matter accumulation and transport after flowering"

年份Year 带宽
Band width
株距
Plant spacing
花后干物质积累量
Dry matter accumulation after flowering
(kg hm-2)
干物质转移量
Dry matter transfer amount
(kg hm-2)
干物质转移率
Dry matter transfer ratio (%)
转移干物质
对荚果贡献率
Transfer dry matter to pod contribution ratio (%)
2018 B1 P1 2231.3±190 b 833.4±77.6 a 37.70±1.94 a 41.88±3.68 a
P2 2344.8±171.2 ab 900.1±149.4 a 39.49±3.89 a 42.92±4.04 a
P3 2468.3±164.8 a 828.2±75.3 a 37.83±2.94 a 38.45±4.16 a
B2 P1 2770.9±22.0 b 1189.6±100.8 a 43.47±1.45 a 47.36±3.79 a
P2 3095.0±62.7 a 1180.7±55.5 a 42.39±1.52 a 44.16±2.52 a
P3 3150.8±87.9 a 1158.7±141.6 a 41.75±2.18 a 43.31±5.74 a
2019 B1 P1 1911.0±168.1 b 745.6±28.9 a 38.33±1.15 a 41.75±1.18 a
P2 1931.5±169.7 b 756.3±38.4 a 39.22±2.52 a 41.28±3.19 ab
P3 2202.1±69.7 a 657.9±74.7 a 35.21±3.22 a 33.21±4.92 b
P4 2086.4±145.6 ab 461.8±70.5 b 27.79±2.83 b 24.78±2.51 c
B2 P1 2376.3±234.8 ab 820.7±104.9 a 39.45±3.93 a 37.09±6.72 a
P2 2569.6±52.7 a 732.6±122.0 a 35.58±3.98 a 31.22±5.14 a
P3 2203.6±76.5 bc 745.6±96.3 a 39.65±3.84 a 35.82±4.87 a
P4 2105.5±61.1 c 673.4±145.6 a 38.04±3.99 a 33.63±6.96 a
年份Year (Y) 107.02** 72.41** 6.88* 18.39**
带宽Band width (B) 123.29** 33.28** 6.27* 0.01
株距Plant spacing (P) 6.33** 0.98 0.46 2.90
Y×B 9.80** 18.65** 3.39 7.26*
Y×P 2.44 0.47 0.31 0.17
B×P 4.86* 0.77 2.12 2.60
Y×B×P 4.51* 0.08 1.20 0.94

Fig. 4

Grain weight gain process and grain filling rate under different band width and plant spacing treatment Treatments are the same as those given in Table 1. A and B represent the grain weight gain process and filling rate in 2019, respectively."

Table 3

Characteristics of soybean grain filling under different bandwidth and plant spacing treatment"

年份Year 带宽
Band width
株距
Plant spacing
Tmax
(d)
Wmax
(mg g-1)
Vmax
(mg g-1 d-1)
Vmean
(mg g-1 d-1)
D
(d)
2018 B1 P1 62.9±0.78 ab 10.3±0.44 a 0.69±0.025 a 0.212±0.002 b 44.7±3.5 b
P2 63.1±0.56 a 10.6±0.44 a 0.69±0.029 a 0.216±0.008 ab 45.9±0.8 ab
P3 62.9±0.73 ab 10.6±0.57 a 0.68±0.026 a 0.215±0.009 ab 46.8±0.7 ab
B2 P1 63.1±0.61 ab 10.7±0.18 a 0.68±0.021 a 0.216±0.003 ab 46.8±1.9 ab
P2 63.0±0.28 ab 10.9±0.19 a 0.68±0.015 a 0.219±0.002 ab 48.0±1.6 a
P3 62.1±0.46 b 10.8±0.18 a 0.70±0.019 a 0.222±0.004 a 46.1±1.0 ab
2019 B1 P1 58.6±0.22 a 9.22±0.16 f 0.89±0.015 a 0.224±0.003 f 31.1±0.5 b
P2 58.4±0.17 ab 9.29±0.06 ef 0.90±0.041 a 0.226±0.003 ef 31.1±1.6 b
P3 58.4±0.16 ab 9.57±0.13 cd 0.90±0.046 a 0.231±0.002 cd 31.8±2.0 ab
P4 58.2±0.23 bc 9.79±0.08 b 0.93±0.016 a 0.237±0.002 b 31.7±0.6 ab
B2 P1 58.6±0.24 a 9.46±0.13 de 0.89±0.01 a 0.228±0.001 de 31.8±0.7 ab
P2 58.7±0.35 a 9.78±0.15 bc 0.89±0.028 a 0.233±0.001 c 33.1±1.5 ab
P3 58.3±0.22 abc 9.98±0.08 ab 0.89±0.035 a 0.238±0.003 b 33.5±1.5 a
P4 58.0±0.23 c 10.06±0.16 a 0.93±0.007 a 0.243±0.002 a 32.6±0.7 ab
年份 (Y) 822.76** 146.09** 487.17** 94.01** 679.82**
带宽 (B) 0.22 13.10** 0.06 13.75** 5.69*
株距 (P) 3.07 4.87* 0.15 8.01** 1.36
Y×B 1.20 0.30 0.13 0.27 0.08
Y×P 0.60 0.83 0.02 0.84 0.30
B×P 1.28 0.08 0.34 0.35 0.68
Y×B×P 0.86 0.39 0.49 0.28 1.00
[1] 翟涛, 吴玲. 开放视角下中国大豆产业发展态势与振兴策略研究. 大豆科学, 2020, 39: 472-478.
Zhai T, Wu L. Study on development situation and revitalization strategy of soybean industry in China from an open perspective. Soybean Sci, 2020, 39: 472-478. (in Chinese with English abstract)
[2] Zhang R, Meng L, Li Y, Wang X, Ogundeji A O, Li X, Sang P, Mu Y, Wu H, Li S. Yield and nutrient uptake dissected through complementarity and selection effects in the maize/soybean intercropping. Food Energy Secur, 2021, 10: e282.
[3] Xu Z, Li C, Zhang C, Yu Y, van der Werf W, Zhang F. Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use: a meta-analysis. Field Crops Res, 2020, 246: 107661.
doi: 10.1016/j.fcr.2019.107661
[4] 王兴才, 杨文钰. 基于间套作弱光胁迫下作物源库协调与产量研究进展. 中国油料作物学报, 2019, 41: 292-299.
doi: 10.7505/j.issn.1007-9084.2019.02.019
Wang X C, Yang W Y. Review on relationship of source-sink and crop yield under shading stress in intercropping systems. Chin J Oil Crop Sci, 2019, 41: 292-299 (in Chinese with English abstract).
[5] Raza M A, Cui L, Khan I, Din A M U, Chen G, Ansar M, Ahmed M, Ahmad S, Manaf A, Titriku J K, Shah G A, Yang F, Yang W. Compact maize canopy improves radiation use efficiency and grain yield of maize/soybean relay intercropping system. Environ Sci Poll Res, 2021, 28: 41135-41148.
doi: 10.1007/s11356-021-13541-1
[6] 范元芳, 杨峰, 王锐, 黄山, 雍太文, 刘卫国, 杨文钰. 弱光对大豆生长、光合特性及产量的影响. 中国油料作物学报, 2016, 38: 71-76.
doi: 10.7505/j.issn.1007-9084.2016.01.012
Fan Y F, Yang F, Wang R, Huang S, Yong T W, Liu W G, Yang W Y. Effects of low light on growth, photosynthetic characteristics and yield of soybean. Chin J Oil Crop Sci, 2016, 38: 71-76. (in Chinese with English abstract)
[7] 崔亮, 苏本营, 杨峰, 杨文钰. 不同玉米-大豆带状套作组合条件下光合有效辐射强度分布特征对大豆光合特性和产量的影响. 中国农业科学, 2014, 47: 1489-1501.
doi: 10.3864/j.issn.0578-1752.2014.08.005
Cui L, Su B Y, Yang F, Yang W Y. Effects of photo-synthetically active radiation on photosynthetic characteristics and yield of soybean in different maize/soybean relay strip intercropping systems. Sci Agric Sin, 2014, 47: 1489-1501. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2014.08.005
[8] 王雅梅, 许彦骁, 王亚露, 李静, 张海芳, 杨殿林, 赵建宁, 轩清霞. 玉米-大豆不同宽幅间作对大豆光合特性及群体产量的影响. 农业环境科学学报, 2020, 39: 2587-2595.
Wang Y M, Xu Y X, Wang Y L, Li J, Zhang H F, Yang D L, Zhao J N, Xuan Q X. Effects of maize-soybean intercropping with different widths on photosynthetic characteristics of soybean and population yield. J Agro-Environ Sci, 2020, 39: 2587-2595. (in Chinese with English abstract)
[9] Chen X F, Sun N, Gu Y, Zheng H Y, Li J F, Wu C S, Wang Z M. Photosynthetic and chlorophyll fluorescence responses in maize and soybean strip intercropping system. Int J Agric Biol, 2020, 24: 799-811.
[10] 代希茜, 詹和明, 赵银月, 王铁军. 玉/豆间作模式下幅宽和玉米密度配置优化研究. 西南农业学报, 2018, 31: 39-43.
Dai X X, Zhan H M, Zhao Y Y, Wang T J. Research of optimization for planting width and density in maize/soybean intercropping model. Southwest China J Agric Sci, 2018, 31: 39-43. (in Chinese with English abstract)
[11] 王竹, 杨文钰. 玉米株型和幅宽对套作大豆碳氮代谢及产量的影响. 中国油料作物学报, 2014, 36: 206-212.
doi: 10.7505/j.issn.1007-9084.2014.02.010
Wang Z, Yang W Y. Effects of plant-types of maize and planting width on carbon-nitrogen metabolism and yield of relay-cropping soybean. Chin J Oil Crop Sci, 2014, 36: 206-212. (in Chinese with English abstract)
doi: 10.7505/j.issn.1007-9084.2014.02.010
[12] 王甜, 庞婷, 杜青, 陈平, 张晓娜, 周颖, 汪锦, 杨文钰, 雍太文. 田间配置对间作大豆光合特性、干物质积累及产量的影响. 华北农学报, 2020, 35: 107-116.
doi: 10.7668/hbnxb.20190359
Wang T, Pang T, Du Q, Chen P, Zhang X N, Zhou Y, Wang J, Yang W Y, Yong T W. Effects of different field collocation patterns on photosynthetic characteristics and dry matter accumulation and yield in intercropping soybean. Acta Agric Boreali-Sin, 2020, 35: 107-116. (in Chinese with English abstract)
doi: 10.7668/hbnxb.20190359
[13] 白晶, 张春雨, 丁相鹏, 张吉旺, 刘鹏, 任佰朝, 赵斌. 行距配置和覆反光膜对夏玉米产量及光能利用的影响. 中国农业科学, 2020, 53: 3942-3953.
doi: 10.3864/j.issn.0578-1752.2020.19.008
Bai J, Zhang C Y, Ding X P, Zhang J W, Liu P, Ren B Z, Zhao B. Effects of row spacing and mulching reflective film on the yield and light utilization of summer maize. Sci Agric Sin, 2020, 53: 3942-3953. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.19.008
[14] 彭姜龙, 张永强, 唐江华, 张娜, 苏丽丽, 李亚杰, 徐文修. 株行距配置对夏大豆光合特性及产量的影响. 大豆科学, 2015, 34: 794-800.
Peng J L, Zhang Y Q, Tang J H, Zhang N, Su L L, Li Y J, Xu W X. Effect of plant-row spacing on photosynthetic characteristics and yield of summer soybean. Soybean Sci, 2015, 34: 794-800. (in Chinese with English abstract)
[15] 周勋波, 杨国敏, 孙淑娟, 陈雨海. 不同株行距配置对夏大豆群体结构及光截获的影响. 生态学报, 2010, 30: 691-697.
Zhou X B, Yang G M, Sun S J, Chen Y H. Effect of different plant-row spacing on population structure and PAR interception in summer soybean. Acta Ecol Sin, 2010, 30: 691-697. (in Chinese with English abstract)
[16] 陈传信, 唐江华, 陈佳君, 王娜, 符小文, 杜孝敬, 徐文修. 种植方式对夏大豆鼓粒期叶片光合能力及籽粒灌浆特性的影响. 干旱地区农业研究, 2018, 36(3): 101-105.
Chen C X, Tang J H, Chen J J, Wang N, Fu X W, Du X J, Xu W X. Effect of planting patterns on photosynthetic capacity and grain filling characteristics of summer soybean at seed-filling stage. Agric Res Arid Areas, 2018, 36(3): 101-105. (in Chinese with English abstract)
[17] 庞婷, 陈平, 袁晓婷, 雷鹿, 杜青, 付智丹, 张晓娜, 周颖, 任建锐, 王甜, 汪锦, 杨文钰, 雍太文. 种间距对不同结瘤特性套作大豆物质积累、鼓粒及产量形成的影响. 中国农业科学, 2019, 52: 3751-3762.
doi: 10.3864/j.issn.0578-1752.2019.21.004
Pang T, Chen P, Yuan X T, Lei L, Du Q, Fu Z D, Zhang X N, Zhou Y, Ren J R, Wang T, Wang J, Yang W Y, Yong T W. Effects of row spacing on dry matter accumulation, grain filling and yield formation of different nodulation characteristic soybeans in intercropping. Sci Agric Sin, 2019, 52: 3751-3762. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2019.21.004
[18] 徐彤, 吕艳杰, 邵玺文, 耿艳秋, 王永军. 不同时期化控对密植玉米冠层结构及籽粒灌浆特性的影响. 作物学报, 2023, 49: 472-484.
doi: 10.3724/SP.J.1006.2023.23028
Xu T, Lyu Y J, Shao X W, Geng Y Q, Wang Y J. Effect of different times of spraying chemical regulator on the canopy structure and grain filling characteristics of high planting densities. Acta Agron Sin, 2023, 49: 472-484. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2023.23028
[19] Slewinski T, Braun D. Current perspectives on the regulation of whole-plant carbohydrate partitioning. Plant Sci, 2010, 178: 341-349.
doi: 10.1016/j.plantsci.2010.01.010
[20] 高仁才, 杨峰, 廖敦平, 苏本营, 崔亮, 邓传蓉, 杨文钰. 行距配置对套作大豆冠层光环境及其形态特征和产量的影响. 大豆科学, 2015, 34: 611-615.
Gao R C, Yang F, Liao D P, Su B Y, Cui L, Deng C R, Yang W Y. Effects of different row spacings of maize on light environment, morphological characteristics and yield of soybeans in a relay intercropping system. Soybean Sci, 2015, 34: 611-615. (in Chinese with English abstract)
[21] Marcos J L, Nogueira M A, Hungria M. Feasibility of lowering soybean planting density without compromising nitrogen fixation and yield. Agron J, 2014, 106: 2118-2124.
doi: 10.2134/agronj14.0234
[22] 程彬, 刘卫国, 王莉, 许梅, 覃思思, 卢俊吉, 高阳, 李淑贤, Raza A, 张熠, Ahmad I, 敬树忠, 刘然金, 杨文钰. 种植密度对玉米-大豆带状间作下大豆光合、产量及茎秆抗倒的影响. 中国农业科学, 2021, 54: 4084-4096.
doi: 10.3864/j.issn.0578-1752.2021.19.005
Cheng B, Liu W G, Wang L, Xu M, Qin S S, Lu J J, Gao Y, Li S X, Raza A, Zhang Y, Ahmad I, Jing S Z, Liu R J, Yang W Y. Effects of planting density on photosynthetic characteristics, yield and stem lodging resistance of soybean in maize-soybean strip intercropping system. Sci Agric Sin, 2021, 54: 4084-4096. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2021.19.005
[23] Cui X, Dong Y, Gi P, Wang H, Xu K, Zhang Z. Relationship between root vigour, photosynthesis and biomass in soybean cultivars during 87 years of genetic improvement in the northern China. Photosynthetica, 2016, 54: 81-86.
doi: 10.1007/s11099-015-0160-z
[24] 高英波, 陶洪斌, 黄收兵, 田北京, 王丽君, 李芸, 任建宏, 王璞. 密植和行距配置对夏玉米群体光分布及光合特性的影响. 中国农业大学学报, 2015, 20(6): 9-15.
Gao Y B, Tao H B, Huang S B, Tian B J, Wang L J, Li Y, Ren J H, Wang P. Effect of high planting density and row spacing on canopy light distribution and photosynthetic characteristics of summer maize. J China Agric Univ, 2015, 20(6): 9-15. (in Chinese with English abstract)
[25] 徐婷, 雍太文, 刘文钰, 刘小明, 董茜, 宋春, 杨峰, 王小春, 杨文钰. 播期和密度对玉米-大豆套作模式下大豆植株、干物质积累及产量的影响. 中国油料作物学报, 2014, 36: 593-601.
doi: 10.7505/j.issn.1007-9084.2014.05.006
Xu T, Yong T W, Liu W Y, Liu X M, Dong Q, Song C, Yang F, Wang X C, Yang W Y. Effects of sowing time and density on soybean agronomic traits, dry matter accumulation and yield in maize-soybean relay strip intercropping system. Chin J Oil Crop Sci, 2014, 36: 593-601. (in Chinese with English abstract)
[26] Raza M A, Feng L Y, vander W W, Cai G R, Bin Khalid M H, Iqbal N, Hassan M J, Meraj T A, Naeem M, Khan I, Rehman S, Ansar M, Ahmed M, Yang F, Yang W. Narrow-wide-row planting pattern increases the radiation use efficiency and seed yield of intercrop species in relay-intercropping system. Food Energy Secur, 2019, 8: e170.
doi: 10.1002/fes3.2019.8.issue-3
[27] Yang F, Liao D, Fan Y, Gao R, Wu X, Rahman T, Yong T, Liu W, Liu J, Du J, Shu K, Wang X, Yang W. Effect of narrow-row planting patterns on crop competitive and economic advantage in maize-soybean relay strip intercropping system. Plant Prod Sci, 2017, 20: 1-11.
doi: 10.1080/1343943X.2016.1224553
[28] Yang F, Liao D, Wu X L, Gao R C, Fan Y F, Raza M A, Wang X C, Yong T W, Liu W G, Liu J, Du J B, Shu K, Yang W Y. Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crops Res, 2017, 203: 16-23.
doi: 10.1016/j.fcr.2016.12.007
[29] 王贝贝, 廖敦平, 范元芳, 王仲林, 张佳伟, 雍太文, 王小春, 刘卫国, 杨文钰, 杨峰. 玉米大豆套作窄行距对作物竞争效应及物质分配的影响. 中国油料作物学报, 2020, 42: 734-742.
Wang B B, Liao D P, Fan Y F, Wang Z L, Zhang J W, Yong T W, Wang X C, Liu W G, Yang W Y, Yang F. Effects of narrow row spacing on crop competition and substance distribution under maize-soybean relay strip intercropping. Chin J Oil Crop Sci, 2020, 42: 734-742. (in Chinese with English abstract)
doi: 10.19802/j.issn.1007-9084.2019203
[30] Luo K, Yuan X, Xie C, Liu S, Chen P, Du Q, Zheng B, Wu Y, Wang X, Yong T, Yang W. Diethyl aminoethyl hexanoate increase relay strip intercropping soybean grain by optimizing photosynthesis aera and delaying leaf senescence. Front Plant Sci, 2022, 12: 818327.
doi: 10.3389/fpls.2021.818327
[31] Xu C, He Y, Sun S, Song W, Wu T, Han T, Wu C. Analysis of soybean yield formation differences across different production regions in China. Agron J, 2020, 112: 4195-4206.
doi: 10.1002/agj2.v112.5
[32] 李刘龙, 库旭灿, 李赟, 王小燕. 花后弱光对江汉平原稻茬小麦的产量及碳、氮分配效应的影响. 麦类作物学报, 2020, 40: 1364-1374.
Li L L, Ku X C, Li Y, Wang X Y. Effect of shading after anthesis on yield and distribution of carbon and nitrogen of rice stubble wheat in Jianghan plain. J Triticeae Crops, 2020, 40: 1364-1374. (in Chinese with English abstract)
[33] Carciochi W D, Schwalbert R, Andrade F H, Corassa G M, Carter P, Gaspar A P, Schmidt J, Ciampitti I A. Soybean seed yield response to plant density by yield environment in North America. Agron J, 2019, 111: 1923-1932.
doi: 10.2134/agronj2018.10.0635
[34] Echarte L, Maggiora A D, Cerrudo D, Gonzalez V H, Abbate P, Cerrudo A, Sadras V O, Calviño P. Yield response to plant density of maize and sunflower intercropped with soybean. Field Crops Res, 2011, 121: 423-429.
doi: 10.1016/j.fcr.2011.01.011
[35] Yang F, Wang X, Liao D, Lu F, Gao R, Liu W, Yong T, Wu X, Du J, Liu J, Yang W. Yield response to different planting geometries in maize soybean relay strip intercropping systems. Agron J, 2015, 107: 296-304.
doi: 10.2134/agronj14.0263
[36] 封亮, 黄国勤, 杨文亭, 黄天宝, 唐海鹰, 麻巧迎, 王淑彬. 江西红壤旱地玉米||大豆间作模式对作物产量及种间关系的影响. 中国生态农业学报, 2021, 29: 1127-1137.
Feng L, Huang G Q, Yang W T, Huang T B, Tang H Y, Ma Q Y, Wang S B. Yields and interspecific relationship of the maize- soybean intercropping system in the upland red soil of Jiangxi province. Chin J Eco-Agric, 2021, 29: 1127-1137. (in Chinese with English abstract)
[37] 舒泽兵, 罗万宇, 蒲甜, 陈国鹏, 梁冰, 杨文钰, 王小春. 基于高产与高效条件下鲜食玉米鲜食大豆带状间作田间配置技术优化. 作物学报, 2023, 49: 1140-1150.
doi: 10.3724/SP.J.1006.2023.23013
Shu Z B, Luo W Y, Pu T, Chen G P, Liang B, Yang W Y, Wang X C. Optimization of field configuration technology of strip intercropping of fresh corn and fresh soybean based on high yield and high efficiency. Acta Agron Sin, 2023, 49: 1140-1150. (in Chinese with English abstract)
[38] 于晓波, 梁建秋, 何泽民, 吴海英. 张明荣. 株行距配置对大豆农艺性状和产量的影响. 大豆科学, 2021, 40: 482-489.
Yu X B, Liang J Q, He Z M, Wu H Y, Zhang M R. Effects of different spacing configurations on soybean agronomic traits and yield. Soybean Sci, 2021, 40: 482-489. (in Chinese with English abstract)
[1] WU Hao, ZHANG Ying, WANG Chen, GU Han-Zhu, ZHOU Tian-Yang, ZHANG Wei-Yang, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang, ZHANG Hao. Effects of cultivation optimization on root characteristics and starch properties of rice at grain filling stage in the lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2024, 50(2): 478-492.
[2] KE Hui-Feng, SU Hong-Mei, SUN Zheng-Wen, GU Qi-Shen, YANG Jun, WANG Guo-Ning, XU Dong-Yong, WANG Hong-Zhe, WU Li-Qiang, ZHANG Yan, ZHANG Gui-Yin, MA Zhi-Ying, WANG Xing-Fen. Identification for yield and fiber quality traits and evaluation of molecular markers in modern cotton varieties [J]. Acta Agronomica Sinica, 2024, 50(2): 280-293.
[3] LI Zhi-Kun, JIA Wen-Hua, ZHU Wei, LIU Wei, MA Zong-Bin. Effects of nitrogen fertilizer and DPC combined application on temporal distribution of cotton yield and fiber quality [J]. Acta Agronomica Sinica, 2024, 50(2): 514-528.
[4] XU Ran, YANG Wen-Ye, ZHU Jun-Lin, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of different irrigation regimes on grain yield and water use efficiency in japonica-indica hybrid rice cultivar Yongyou 1540 [J]. Acta Agronomica Sinica, 2024, 50(2): 425-439.
[5] NIE Xiao-Yu, LI Zhen, WANG Tian-Yao, ZHOU Yuan-Wei, XU Zheng-Hua, WANG Jing, WANG Bo, KUAI Jie, ZHOU Guang-Sheng. Effect of planting density and weak light stress at pod-filling stage on seed oil accumulation in rapeseed [J]. Acta Agronomica Sinica, 2024, 50(2): 493-505.
[6] XIE Wei, HE Peng, MA Hong-Liang, LEI Fang, HUANG Xiu-Lan, FAN Gao-Qiong, YANG Hong-Kun. Effects of straw mulching from autumn fallow and phosphorus application on nitrogen uptake and utilization of winter wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 440-450.
[7] YANG Li-Da, REN Jun-Bo, PENG Xin-Yue, YANG Xue-Li, LUO Kai, CHEN Ping, YUAN Xiao-Ting, PU Tian, YONG Tai-Wen, YANG Wen-Yu. Crop growth characteristics and its effects on yield formation through nitrogen application and interspecific distance in soybean/maize strip relay intercropping [J]. Acta Agronomica Sinica, 2024, 50(1): 251-264.
[8] SHAO Yang, GUO Yan-Ping, ZHOU Bing-Yue, ZHANG Feng, ZHANG Xin-Ming, WANG Yu-Ping. Analysis of genotype × environment interaction and stability of yield components in faba bean lines [J]. Acta Agronomica Sinica, 2024, 50(1): 149-160.
[9] LI Yi-Yang, LI Yuan, ZHAO Zi-Xu, ZHANG Ding-Shun, DU Jia-Ning, WU Shu-Juan, SUN Si-Qi, CHEN Yuan, ZHANG Xiang, CHEN De-Hua, LIU Zhen-Yu. Effects of increased nitrogen on Bt protein expression and nitrogen metabolism in the leaf subtending to cotton boll [J]. Acta Agronomica Sinica, 2023, 49(9): 2505-2516.
[10] ZHANG Li-Hua, ZHANG Jing-Ting, DONG Zhi-Qiang, HOU Wan-Bin, ZHAI Li-Chao, YAO Yan-Rong, LYU Li-Hua, ZHAO Yi-An, JIA Xiu-Ling. Effect of water management on yield and its components of winter wheat in different precipitation years [J]. Acta Agronomica Sinica, 2023, 49(9): 2539-2551.
[11] ZHANG Diao-Liang, YANG Zhao, HU Fa-Long, YIN Wen, CHAI Qiang, FAN Zhi-Long. Effects of multiple cropping green manure on grain quality and yield of wheat with different irrigation levels [J]. Acta Agronomica Sinica, 2023, 49(9): 2572-2581.
[12] YANG Yi, HE Zhi-Qiang, LIN Jia-Hui, LI Yang, CHEN Fei, LYU Chang-Wen, TANG Dao-Bin, ZHOU Quan-Lu, WANG Ji-Chun. Effects of coconut bran application rate on soil physicochemical properties and sweet-potato yield [J]. Acta Agronomica Sinica, 2023, 49(9): 2517-2527.
[13] HU Yan-Juan, XUE Dan, GENG Di, ZHU Mo, WANG Tian-Qiong, WANG Xiao-Xue. Mutation effects of OsCDF1 gene and its genomic variations in rice [J]. Acta Agronomica Sinica, 2023, 49(9): 2362-2372.
[14] FANG Meng-Ying, REN Liang, LU Lin, DONG Xue-Rui, WU Zhi-Hai, YAN Peng, DONG Zhi-Qiang. Effect of ethylene-chlormequat-potassium on root morphological structure and grain yield in sorghum [J]. Acta Agronomica Sinica, 2023, 49(9): 2528-2538.
[15] CAO Yu-Jun, LIU Zhi-Ming, LAN Tian-Jiao, LIU Xiao-Dan, WEI Wen-Wen, YAO Fan-Yun, LYU Yan-Jie, WANG Li-Chun, WANG Yong-Jun. Responses of photosynthetic physiological characteristics of maize varieties released in different decades to nitrogen application rate in Jilin province [J]. Acta Agronomica Sinica, 2023, 49(8): 2183-2195.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .