Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (1): 149-160.doi: 10.3724/SP.J.1006.2024.24265

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Analysis of genotype × environment interaction and stability of yield components in faba bean lines

SHAO Yang1(), GUO Yan-Ping1, ZHOU Bing-Yue2, ZHANG Feng3,4, ZHANG Xin-Ming2, WANG Yu-Ping2,4,*()   

  1. 1Gansu Linxia Hui Autonomous Prefecture Academy of Agricultural Sciences, Linxia 731100, Gansu, China
    2College of Horticulture, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    3College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    4Gansu Agricultural University / Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Lanzhou 730070, Gansu, China
  • Received:2022-11-30 Accepted:2023-04-17 Online:2024-01-12 Published:2023-12-16
  • Contact: *E-mail: wangyp@gsau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31760351);China Agriculture Research System of MOF and MARA(CARS-08)

Abstract:

The objective of this study is to evaluate the productivity components, stability, and adaptability of faba bean yield traits of advance lines in different pilots and select excellent lines adapted to different mage-environments. The representativeness and discriminating ability of each test-environment pilots were also evaluated, providing a basis for the selection of test-pilots. To measure plant height, grains of per plant, pods of per plant, the number of branches, 100-grain weight, and yield of per plot, a total of five advance lines [0215-1-4 (L1), 0208-3-1 (L2), 0208-3-2 (L3), 0323-2-1 (L4), and 0161-1 (L5)] and one control variety Henzheng ga candou (L6) were planted in 2017 and 2018 in Gansu province insix pilots including Countries of Hezheng, Kangle, Jishishan, Weiyuan, Linxia, and Zhang. The genotype and genotype with environment interactions of yield were analyzed by the combined analysis of variance and GGE biplot. The plot yield and plant height had no significant difference in genotype and environment interactions effect, all the other yield components had significant differences (P<0.01) in genotype effect, environmental effect, and genotype and environment interaction effect. There were very significant differences between genotype and year interaction on the number of branches, pods of per plant, grains per plant, and 100-weight grain (P<0.01) while there was no significant difference between plant height and grains of per plant. The correlation analysis showed that yield of per plot was significantly at P < 0.05 and positively correlated with pods of per plant, but negatively correlated with 100-grain weight. The GGE analysis demonstrated that the adaptability, yield, and stability of varieties (lines), as well as the ability of discrimination and the representativeness of pilots all had high GGE variation values, ranging from 78.54% to 97.38%. According to the adaptability analysis of faba bean varieties (lines), L3 had the highest yield adaptability in Kangle county, Jishishan county, Weiyuan county, Linxia county, and Hezheng county in 2018. According to the stability analysis, the varieties (lines) with the high yield in order were L3 > L2 > L6 > L4, and the varieties (lines) with the high stability in order were L4 > L1 > L5 > L3. The discriminating ability of the pilot was Kangle county in 2017, followed by Jishishan county in 2017 and 2018, and the representativeness of the pilot was Weiyuan county in 2017, followed by Kangle county in 2018 and Jishishan county in 2018. The lines with stable and high yield were L3 and L4. Combined with the ability of distinguishing and representativeness of the pilot, the most ideal mage-environment was Jishishan county. Based on GGE biplot data, faba bean with superior yield-trait components were identified in Gansu province and provided a reference base for comprehensive evaluation of faba bean varieties.

Key words: faba bean, GGE biplot, multi-years and sites, yield component traits, pilot evaluation

Table 1

Advanced lines and domestic main variety of faba bean"

品种(系)编号
Variety (line) number
品种(系)
Variety (line)
试验年份
Year
L1 0215-1-4 2017-2018
L2 0208-3-1 2017-2018
L3 0208-3-2 2017-2018
L4 0323-2-1 2017-2018
L5 0161-1 2017-2018
L6 (Control) 和政尕蚕豆Hezhengga candou 2017-2018

Table 2

Characteristics of the tested locations used in this study"

地点
Location
海拔
Altitude
(m)
年降雨量
Annual
precipitation
(mm)
年日照时数
Annual
sunshine
(h)
年均温度
Mean annual temperature (℃)
无霜期
Frostless period (d)
土壤类型
Soil type
土壤质地
Soil texture
和政县
Hezheng county
2340 628 2504.9 5.1 130 山地黑麻土
Montane black hemp soil
中壤土
Medium loam
康乐县
Kangle county
2200 600 2510.0 6.1 140 山地黑麻土
Montane black hemp soil
中壤土
Medium loam
积石山县
Jishishan county
2600 728 2504.9 5.0 126 山地黑麻土
Montane black hemp soil
中壤土
Medium loam
渭源县
Weiyuan county
2240 580 2421.0 5.7 131 山地黑麻土
Montane black hemp soil
中壤土
Medium loam
临夏县
Linxia county
2035 450 2323.5 7.2 155 黄土
Loess
中壤土
Medium loam
漳县
Zhang county
2600 640 2214.9 4.4 101 山地黑麻土
Montane black hemp soil
中壤土
Medium loam

Fig. 1

Agronomic characters in different pilots HZ: Hezheng county; KL: Kangle county; JSS: Jishishan county; WY: Weiyuan county; LX: Linxia county; ZX: Zhang county."

Table 3

Analysis of variance for agronomic traits in faba bean"

性状
Trait
变异来源
Source of
variations
自由度
DF
平方和
Sum of square
均值
Mean value
F检验
F-test
显著性
Significance
小区产量
Plot yield
基因型G 5 17,215.189 3443.038 0.656 0.659
环境E 5 19,281.128 3856.226 0.735 0.602
互作G×E 25 5298.575 211.943 0.040 1.000
残差Residual 36 188,859.429 5246.095
总变异Total 71 230,654.322
株高
Plant height
基因型G 5 1478.344 295.669 5.443 0.001
环境E 5 2430.911 486.182 8.949 < 0.001
互作G×E 25 858.839 34.354 0.632 0.883
残差Residual 36 1955.730 54.326
总变异Total 71 6723.824
分枝数
Branch number
基因型G 5 22.934 4.587 256.008 < 0.001
环境E 5 0.296 0.059 3.301 0.015
互作G×E 25 2.032 0.081 4.536 < 0.001
残差Residual 36 0.645 0.018
总变异Total 71 25.907
株荚数
Pod number per plant
基因型G 5 977.703 195.541 118.430 < 0.001
环境E 5 11.863 2.373 1.437 0.235
互作G×E 25 157.559 6.302 3.817 < 0.001
残差Residual 36 59.440 1.651
总变异Total 71 1206.564
株粒数
Grain number per plant
基因型G 5 5924.452 1184.890 238.315 < 0.001
环境E 5 131.253 26.251 5.280 0.001
互作G×E 25 694.860 27.794 5.590 < 0.001
残差Residual 36 178.990 4.972
总变异Total 71 6929.555
百粒重
Hundred-
grain weight
基因型G 5 6539.353 1307.871 69,835.871 < 0.001
环境E 5 117.487 23.497 1254.678 < 0.001
互作G×E 25 624.980 24.999 1334.873 < 0.001
残差Residual 36 0.674 0.019
总变异Total 71 7282.494

Fig. 2

Agronomic traits adaptability by the GGE biplot A: plot yield; B: plant height; C: branches number; D: pods number per plant; E: grains number per plant; F: 100-grain weight. HZ: Hezheng county; KL: Kangle county; JSS: Jishishan county; WY: Weiyuan county; LX: Linxia county; ZX: Zhang county."

Fig. 3

Agronomic traits stability by the GGE biplot A: plot yield; B: plant height; C: branches number; D: pods number per plant; E: grains number per plant; F: 100-grain weight. HZ: Hezheng county; KL: Kangle county; JSS: Jishishan county; WY: Weiyuan county; LX: Linxia county; ZX: Zhang county."

Fig. 4

Discriminative and representativeness of pilot by the GGE biplot A: plot yield; B: plant height; C: branches number; D: pods number per plant; E: grains number per plant; F: 100-grain weight. HZ: Hezheng county; KL: Kangle county; JSS: Jishishan county; WY: Weiyuan county; LX: Linxia county; ZX: Zhang county."

Fig. 5

Pearson correlations heatmap between traits across evaluated genotypes of faba bean MC: plot yield; ZG: plant height; FZ: branch number; ZJS: pod number per plant; ZLS: grain number per plant; BLZ: 100-grain weight. *: P < 0.05; **: P < 0.01."

[1] 张红岩, 郭兴莲, 杨涛, 刘荣, 黄宇宁, 季一山, 王栋, 宗绪晓. 利用SSR标记分析蚕豆品种(品系)与优异种质的遗传多样性. 中国蔬菜, 2018, (2): 34-41.
Zhang H Y, Guo X L, Yang T, Liu R, Huang Y N, Ji Y S, Wang D, Zong X X. Genetic diversity of faba bean varities (lines) and elite collections by SSR markers. China Veget, 2018, (2): 34-41. (in Chinese with English abstract)
[2] 李萍, 张雁霞, 刘玉皎. PEG胁迫下西北不同蚕豆种子萌发期的抗寒性鉴定. 四川农业大学学报, 2015, 33: 251-257.
Li P, Zhang Y X, Liu Y J. Drought tolerance of different faba beans during the germination stage under PEG stress in the northwest China. J Sichuan Agric Univ, 2015, 33: 251-257. (in Chinese with English abstract)
[3] Rakshit S, Ganapathy K N, Gomashe S S, Rathore A, Ghorade R B, Nagesh Kumar M V, Ganesmurthy K, Jain S K, Kamtar M Y, Sachan J S, Ambekar S S, Ranwa B R, Kanawade M, Balusamy D G, Kadam D, Sarkar A, Tonapi V A, Patil J V. GGE biplot analysis to evaluate genotype, environment, and their interactions in sorghum multi-location data. Euphytica, 2012, 185: 465-479.
doi: 10.1007/s10681-012-0648-6
[4] Cooper M, DeLacy I H. Relationships among analytical methods used to study genotypic variation and genotype-by-environment interaction in plant breeding multi-environment experiments. Theor Appl Genet, 1994, 88: 561-572.
doi: 10.1007/BF01240919 pmid: 24186111
[5] Crossa J, Cornelius P L, Sayre K, Iván Ortiz-Monasterio R J. A shifted multiplicative model fusion method for grouping environments without cultivar rank change. Crop Sci, 1995, 35: 54-62.
doi: 10.2135/cropsci1995.0011183X003500010010x
[6] 叶夕苗, 程鑫, 安聪聪, 袁剑龙, 余斌, 文国宏, 李高峰, 程李香, 王玉萍, 张峰. 马铃薯产量组分的基因型与环境互作及稳定性. 作物学报, 2020, 46: 354-364.
doi: 10.3724/SP.J.1006.2020.94089
Ye X M, Cheng X, An C C, Yuan J L, Yu B, Wen G H, Li G F, Cheng L X, Wang Y P, Zhang F. Genotype × environment interaction and stability of yield components for potato lines. Acta Agron Sin, 2020, 46: 354-364. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94089
[7] Aastveit A H, Martens H. ANOVA interactions interpreted by partial least squares regression. Biometrics, 1986, 42: 829-844.
doi: 10.2307/2530697
[8] Finlay K W, Wilkinson G N. The analysis of adaptation in a plant-breeding programmer. Aust J Agric Res, 1963, 14: 742-754.
doi: 10.1071/AR9630742
[9] Blouin D C, Webster E P, Bond J A. On the analysis of combined experiments. Weed Technol, 2015, 25: 165-169.
doi: 10.1614/WT-D-10-00047.1
[10] Wang R, Hu D, Zheng H, Shu Y, Wei R. Genotype × environmental interaction by AMMI and GGE biplot analysis for the provenances of michelia chapensis in south China. J For Res, 2016, 27: 659-664.
doi: 10.1007/s11676-015-0181-2
[11] Hugh G, Gauch J R. Statistical analysis of yield trials by AMMI and GGE. Crop Sci, 2006, 46: 1488-1500.
doi: 10.2135/cropsci2005.07-0193
[12] Yan W K, Kang M S, Ma B L, Woods S, Cornelius P L. GGE Biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci, 2007, 47: 641-653.
[13] Nzuve F, Githiri S, Mulunya D M, Gethi J. Analysis of genotype × environment interaction for grain yield in maize hybrids. J Agric Sci, 2013, 5: 75-85.
doi: 10.1002/jsfa.v5:2
[14] Bednarz C W, Bridges D C, Brown S M. Analysis of cotton yield stability across population densities. Agron J, 2000, 92: 128-135.
doi: 10.2134/agronj2000.921128x
[15] Yan W K, Rajcan I. Biplot analysis of test sites and trait relations of soybean in Ontario. Crop Sci, 2002, 42: 11-20.
pmid: 11756248
[16] 崔顺立, 何美敬, 侯名语, 杨鑫雷, 穆国俊, 刘立峰. 利用GGE双标图分析花生品质性状的基因型-环境互作. 中国油料作物学报, 2021, 43: 617-626.
Cui S L, He J M, Hou M Y, Yang X L, Mu G J, Liu L F. Genotype × environment interactions for the quality traits of peanut varieties based on GGE biplot analysis. Chin J Oil Crop Sci, 2021, 43: 617-626. (in Chinese with English abstract)
doi: 10.19802/j.issn.1007-9084.2021039
[17] Frankham R. Introduction to quantitative genetics (4th edn). Trends Genet, 1996, 12: 280-280.
doi: 10.1016/0168-9525(96)81458-2
[18] Burgueño J, de los Campos G, Weigel K, Crossa J. Genomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers. Crop Sci, 2012, 52: 707-719.
doi: 10.2135/cropsci2011.06.0299
[19] Phuke R M, Anuradha K, Radhika K, Jabeen F, Anuradha G, Ramesh T, Hariprasanna K, Mehtre S P, Deshpande S P, Anil G, Das R R, Rathore A, Hash T, Reddy B V S, Kumar A A. Genetic variability, genotype × environment interaction, correlation, and GGE biplot analysis for grain iron and zinc concentration and other agronomic traits in RIL population of sorghum (Sorghum bicolor L. Moench). Front Plant Sci, 2017, 8: 712.
doi: 10.3389/fpls.2017.00712
[20] Shahriari Z, Heidari B, Dadkhodaie A, Chen Z H. Dissection of genotype × environment interactions for mucilage and seed yield in planta go species: application of AMMI and GGE biplot analyses. PLoS One, 2018, 13: e0196095.
doi: 10.1371/journal.pone.0196095
[21] 陆宏园, 张林杰, 李梅, 胡伟民, 关亚静, 胡晋. 蚕豆栽培品种综合性状的比较与分析. 浙江农业科学, 2015, 56: 993-997.
Lu H Y, Zhang L J, Li M, Hu W M, Guan Y J, Hu J. Comparison and analysis of comprehensive characters of faba bean cultivars. Zhengjiang Agric Sci, 2015, 56: 993-997. (in Chinese with English abstract)
[22] 严威凯. 农作物品种试验数据管理与分析. 北京: 中国农业科学技术出版社, 2015. pp 28-137.
Yan W K. Crop Variety Test Data Management and Analysis. Beijing: China Agricultural Science and Technology Press, 2015. pp 28-137. (in Chinese)
[23] 严威凯. 双标图分析在农作物品种多点试验中的应用. 作物学报, 2010, 36: 1805-1819.
doi: 10.3724/SP.J.1006.2010.01805
Yan W K. Application of biplot analysis in multi-point experiment of crop varieties. Acta Agron Sin, 2010, 36: 1805-1819. (in Chinese with English abstract)
[24] Des Marais D L, Hernandez K M, Juenger T E. Genotype-by-environment interaction and plasticity: exploring genomic responses of plants to the abiotic environment. Annu Rev Ecol Evol Syst, 2013, 44: 5-29.
doi: 10.1146/ecolsys.2013.44.issue-1
[25] 李本贵, 阎俊, 何中虎, 李仲来. 用AMMI模型分析作物区域试验中的地点鉴别力. 作物学报, 2004, 30: 593-596.
Li B G, Yan J, He Z H, Li Z L. The AMMI model was used to analyze site discrimination in crop regional experiments. Acta Agron Sin, 2004, 30: 593-596 (in Chinese with English abstract).
[26] 李艳花, 陈红, 王萍, 杜成章, 张继君. 蚕豆高代材料单株产量与农艺性状的相关和通径分析. 江苏农业科学, 2018, 46(20): 79-81.
Li Y H, Chen H, Wang P, Du C Z, Zhang J J. Correlation and path analysis between yield per plant and agronomic traits of faba bean high-generation material. Jiangsu Agric Sci, 2018, 46(20): 79-81. (in Chinese with English abstract)
[1] LIU Yu-Ling, ZHANG Hong-Yan, TENG Chang-Cai, ZHOU Xian-Li, HOU Wan-Wei. Genetic diversity and its association analysis of SSR markers with starch content in faba bean (Vicia faba L.) [J]. Acta Agronomica Sinica, 2022, 48(11): 2786-2796.
[2] Xi-Miao YE,Xin CHENG,Cong-Cong AN,Jian-Long YUAN,Bin YU,Guo-Hong WEN,Gao-Feng LI,Li-Xiang CHENG,Yu-Ping WANG,Feng ZHANG. Genotype × environment interaction and stability of yield components for potato lines [J]. Acta Agronomica Sinica, 2020, 46(3): 354-364.
[3] Ping LI,Wan-Wei HOU,Yu-Jiao LIU. Proteomic analysis of drought stress response on drought resistance for Vicia faba L. variety ‘Qinghai 13’ in Qinghai Plateau of China [J]. Acta Agronomica Sinica, 2019, 45(2): 267-275.
[4] XU Nai-Yin,LI Jian. Identification of Ideal Test Environments for Multiple Traits Selection in Cotton Regional Trials [J]. Acta Agron Sin, 2014, 40(11): 1936-1945.
[5] JIANG Jun-Ye,YANG Tao,WANG Fang,FANG Li,ZHONG Wei-Wen,GUAN Jian-Ping,ZONG Xu-Xiao. Genetic Diversity Analysis of Germplasm Resources and Construction of Mini-core Collections for Vicia faba L. at Home and Abroad [J]. Acta Agron Sin, 2014, 40(07): 1311-1319.
[6] XU Nai-Yin,LI Jian. Ecological Regionalization of Cotton Fiber Quality Based on GGE Biplot in Yangtze River Valley [J]. Acta Agron Sin, 2014, 40(05): 891-898.
[7] LUO Jun,ZHANG Hua,DENG Zu-Hu,XU Li-Ping,XU Liang-Nian,YUAN Zhao-Nian,QUE You-Xiong. Analysis of Yield and Quality Traits in Sugarcane Varieties (Lines) with GGE-Biplot [J]. Acta Agron Sin, 2013, 39(01): 142-152.
[8] XU Nai-Yin,ZHANG Guo-Wei,LI Jian,ZHOU Zhi-Guo. Evaluation of Cotton Regional Trial Environments Based on HA-GGE Biplot in the Yangtze River Valley [J]. Acta Agron Sin, 2012, 38(12): 2229-2236.
[9] WANG Hai-Fei, GUAN Jian-Ping, MA Yu, SUN Xue-Lian, ZONG Xu-Xiao. Genetic Diversity of Chinese Faba Bean (Vcia faba L.) Germplasm Revealed by ISSR Markers [J]. Acta Agron Sin, 2011, 37(04): 595-602.
[10] ZHANG Zhi-Fen, FU Xiao-Feng, LIU Jun-Qing, YANG Hai-Shun. Yield Stability and Testing-Site Representativeness in National Regional Trials for Oat Varieties Based on GGE-Biplot Analysis [J]. Acta Agron Sin, 2010, 36(08): 1377-1385.
[11] YE Shao-Ping; ZHANG Qi-Jun; LI Jie-Qin; ZHAO Bing; LI Ping. Identification of Quantitative Traits Loci for Yield Component Traits Using (Pei’ai64s/Nipponbare) F2 Population [J]. Acta Agron Sin, 2005, 31(12): 1620-1627.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .