Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (1): 138-148.doi: 10.3724/SP.J.1006.2024.34041

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Analysis of mutants developed by CRISPR/Cas9-based GhbHLH71 gene editing in cotton

SHANG-GUAN Xiao-Xia*(), YANG Qin-Li, LI Huan-Li   

  1. Cotton Research Institute, Shanxi Agricultural University, Yuncheng 044000, Shanxi, China
  • Received:2023-03-01 Accepted:2023-05-24 Online:2024-01-12 Published:2023-06-16
  • Contact: *E-mail: sgxx74@126.com
  • Supported by:
    Basic Research Program of Shanxi Province(20210302123409);Doctoral Talent Introduction Scientific Research Initiation Project of Shanxi Agricultural University(2022BQ08)

Abstract:

The basic/helix-loop-helix (bHLH) transcription factors play important regulatory roles in plant growth and development, secondary metabolism, signal transduction, and stress responses. The cDNA of cotton GhbHLH71 gene is 996 bp in length, encoding 331 amino acid residues. Protein sequence of GhbHLH71 contains a conserved bHLH structural domain, which is a member of the bHLH transcription factor family. The qRT-PCR showed that GhbHLH71 gene was relatively highly expressed at 3-12 DPA (days post anthesis, DPA) at rapid elongation stage in cotton fiber, implying that it mainly played a role in cotton fiber development. A CRISPR/Cas9 gene editing vector of GhbHLH71 gene was constructed, and then was transferred into upland cotton (Gossypium hirsutum L.). Six T0 mutant plants were obtained after PCR detection of Cas9 gene and mutation detection of target loci. The phenotypic traits of different T1 GhbHLH71 gene mutant plants were not significantly different from the control during cotton growth and development, but the fiber length of T1 mutants was significantly shorter compared with the control, and T2 generation mutant lines stably inherited the shortened fiber phenotype of T1 generation lines. The shortened fiber lengths of the 4# and 8# mutant lines in two consecutive generations were more than 20% shorter compared with the control, indicating that the mutation of GhbHLH71 gene mainly affected the elongation of cotton fiber cells. This study provides some insight into the biological functions of bHLH transcription factors in cotton and the molecular mechanism of cotton fiber development.

Key words: cotton, bHLH transcription factor, GhbHLH71 gene, fiber development, CRIPSR/Cas9 gene editing system

Fig. 1

Sketch image of gene editing vector in cotton"

Table 1

Primers used in this study"

引物
Primer name
引物序列
Primer sequences (5°-3°)
功能
Function
His3-RT-F GAAGCCTCATCGATACCGTC Real-time RT-PCR检测 Real-time RT-PCR analysis
His3-RT-R CTACCACTACCATCATGG Real-time RT-PCR检测 Real-time RT-PCR analysis
bHLH71-RT-F ATGCTAGAAAGCGGTTTAGTCT Real-time RT-PCR检测 Real-time RT-PCR analysis
bHLH71-RT-R TCCAATGGTGACTCCTCCACA Real-time RT-PCR检测 Real-time RT-PCR analysis
bHLH71-1-F ATGCTAGAAAGCGGTTTAGTCT 基因克隆 Gene cloning
bHLH71-2172-R TCAACATAAGGCAGTGGCATCT 基因克隆 Gene cloning
CRS25-F ATGCTAGAAAGCGGTTTAGTCT 编辑位点突变检测 Edit site mutation detection
CRS25-R CCCTCAATCAGTCCAGTTTTC 编辑位点突变检测 Edit site mutation detection
CRS25-Hi-F ggagtgagtacggtgtgcCTCAATGGAAGAACAATCTACT Hi-TOM编辑位点突变检测
Hi-TOM edit site mutation detection
CRS25-Hi-R gagttggatgctggatggTTGAGTCTCGGCCTCTTCTTT 编辑位点突变检测 Edit site mutation detection
Cas9-787-F AATCTGATCGCCCAGCTGCCC 阳性植株鉴定 Positive plants detection
Cas9-1550-R GAAGTTCCAGGGGGTGATGGT 阳性植株鉴定 Positive plants detection

Fig. 2

Amino acid sequence and conserved domain of GhbHLH71 protein A: amino acid sequence of GhbHLH71 protein. The conserve bHLH domain was underlined, putative DNA binding site was marked by red letters. B: protein domain prediction of GhbHLH71 protein."

Fig. 3

Relative expression pattern of GhbHLH71 gene in different cotton tissue DPA: days post anthesis."

Fig. 4

Cas9 PCR amplification assay of different T0 regeneration plants M: DNA molecular marker; +: the plasmid amplification as positive control; 1-11: different T0 regeneration plants."

Fig. 5

CRISPR/Cas9 editing effect of GhbHLH71 gene in different T0 regeneration lines A: the editing results of different T0 regeneration lines. Blue letters indicate sgRNA1 and sgRNA2 sequence, bold and underline letters indicate PAM site, red letters indicate the different base in A and D genome of GHbHLH71 gene, the deletions indicated by blue dash, the insertions and mutants marked by yellow letters. B: the sequencing peaks image of different T0 regeneration lines of GHbHLH71 gene. Underline indicates the position of different sgRNA, arrow indicates the mutant site."

Fig. 6

Fiber phenotype of different GhbHLH71 T1 and T2 gene editing lines A: the fiber phenotype and statistical analysis of fiber length of different T1 gene editing lines. n > 10, **: P < 0.01. B: the fiber phenotype and statistical analysis of fiber length of different T2 gene editing lines. n > 10, **: P < 0.01."

Fig. 7

CRISPR/Cas9 editing effect of GhbHLH71 gene in 4# and 8# T2generation plants The yellow markers in the figure are the unmutated sgRNA1or sgRNA2 sequences, A and D represent the A and D genomes of GhbHLH71 gene, respectively. Plant from 8-1 to 8-5 represent the five different plant of Line 8#, plant from 4-1 to 4-5 represent five different plant of Line 4#, and the following numbers represent the monoclonal assay samples. CRS25-F is the primer for sequencing. Blue markers are insertions or mutated bases, and dashes indicate base deletions."

Table 2

Hi-TOM editing mutations detection in T2 generation lines"

株系
Line
突变编号
Mutation number
Reads读数
Reads
number
突变比率
Mutation
ratio (%)
左侧突变类型
Left variation type
右侧突变类型
Right variation type
左侧突变信息
Left variation
右侧突变序列
Right variation
8#-1 1 2434 43.06 SNP SNP C->T, A->G A->G, G->T
2 1656 29.29 SNP SNP G->A G->A
3 718 12.70 1D, SNP 1D, SNP C->T, G, A->G G, A->G, G->T
4 436 7.71 1I, SNP 1I, SNP A, G->A A, G->A
5 409 7.24 1I, SNP 1I, SNP T, G->A T, G->A
8#-2 1 1676 33.58 1I, SNP 1I, SNP A, G->A A, G->A
2 1582 31.70 SNP SNP C->T, A->G A->G, G->T
3 937 18.77 1I, SNP 1I, SNP A, G->A A, G->A, G->T
4 796 15.95 SNP SNP C->T, A->G A->G
8#-3 1 1258 31.53 SNP SNP G->A G->A
2 827 20.73 1D, SNP 1D, SNP C->T, G, A->G G, A->G, G->T
3 735 18.42 SNP SNP G->A G->A, G->T
4 648 16.24 SNP SNP C->T, A->G A->G, G->T
5 522 13.08 1D, SNP 1D, SNP C->T, G, A->G G, A->G
4#-1 1 1352 22.47 1D, SNP 1D, SNP C->T, G, A->G G, A->G, G->T
2 1192 19.81 1I, SNP 1I, SNP A, G->A A, G->A
3 1096 18.22 1I, SNP 1I, SNP C->T, T, G->A T, G->A
4 1081 17.97 3D, SNP 3D, SNP C->T, CAA, A->G AAC, A->G, G->T
5 464 7.71 3D, SNP 3D, SNP C->T, CAA, A->G AAC, A->G
6 426 7.08 1D, SNP 1D, SNP C->T, G, A->G G, A->G
7 406 6.75 1I, SNP 1I, SNP T, G->A T, G->A, G->T
4#-2 1 2493 40.96 1D, SNP 1D, SNP C->T, G, A->G G, A->G, G->T
2 1087 17.86 1I, SNP 1I, SNP C, G->A C, G->A
3 1079 17.73 3D, SNP 3D, SNP CAG, G->A GCA, G->A
4 987 16.22 1D, SNP 1D, SNP C->T, G, A->G G, A->G
5 440 7.23 1I, SNP 1I, SNP C, G->A C, G->A, G->T
4#-3 1 2984 50.10 3D, SNP 3D, SNP CAG, G->A GCA, G->A
2 2162 31.26 1I, SNP 1I, SNP C->T, A, A->G A, A->G, G->T
4 644 10.81 3D, SNP 3D, SNP CAG, G->A GCA, G->A, G->T
5 466 7.82 1I, SNP 1I, SNP C->T, A, A->G A, A->G
[1] Hao Y, Zong X, Ren P, Qian Y, Fu A. Basic helix-loop-helix (bHLH) transcription factors regulate a wide range of functions in Arabidopsis. Int J Mol Sci, 2021, 22: 7152.
doi: 10.3390/ijms22137152
[2] 张全琪, 朱家红, 倪燕妹, 张治礼. 植物bHLH转录因子的结构特点及其生物学功能. 热带亚热带植物学报, 2011, 19(1): 84-90.
Zhang Q Q, Zhu J H, Ni Y M, Zhang Z L. The structure and function of plant bHLH transcription factors. J Trop Subtrop Bot, 2011, 19(1): 84-90. (in Chinese with English abstract)
[3] Zhang L Y, Bai M Y, Wu J, Zhu J Y, Wang H, Zhang Z. Antagonistic HLH/ bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis. Plant Cell, 2009, 21: 3767-3780.
doi: 10.1105/tpc.109.070441
[4] 李欣, 李影, 曲子越, 孙璐, 王思瑶, 詹亚光, 尹静. bHLH转录因子在茉莉酸信号诱导植物次生产物合成中的作用及分子机制. 植物生理学报, 2017, 53: 1-8.
Li X, Li Y, Qu Z Y, Sun L, Wang S Y, Zhan Y G, Yin J. The molecular mechanism and the function of bHLH regulating jasmonic acid mediated secondary metabolites synthesis. Plant Physiol J, 2017, 53: 1-8. (in Chinese with English abstract)
[5] Guo J, Sun B, He H, Zhang Y, Tian H, Wang B. Current understanding of bHLH transcription factors in plant abiotic stress tolerance. Int J Mol Sci, 2021, 22: 4921.
doi: 10.3390/ijms22094921
[6] Sun X, Wang Y, Sui N. Transcriptional regulation of bHLH during plant response to stress. Biochem Biophys Res Commun, 2018, 503: 397-401.
doi: 10.1016/j.bbrc.2018.07.123
[7] 赵安娜, 罗光明, 罗扬婧, 宋丹丹, 夏鸿东, 任洪曼, 张攀. bHLH转录因子在植物缺铁调控网络中的作用机制. 农业生物技术学报, 2021, 29: 2427-2435.
Zhao A N, Luo G M, Luo Y J, Song D D, Xia H D, Ren H M, Zhang P. Mechanism of bHLH transcription factors in the regulatory network of plant iron deficiency. J Agric Biotechnol, 2021, 29: 2427-2435. (in Chinese with English abstract)
[8] 王翠, 兰海燕. 植物bHLH转录因子在非生物胁迫中的功能研究进展. 生命科学研究, 2016, 20: 358-364.
Wang C, Lan H Y. Research progresses on functions of plant bHLH transcription factors involved in abiotic stresses. Life Sci Res, 2016, 20: 358-364. (in Chinese with English abstract)
[9] Feller A, Machemer K, Braun E L, Grotewold E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J, 2011, 66: 94-116.
doi: 10.1111/tpj.2011.66.issue-1
[10] Liu B, Guan X, Liang W, Chen J, Fang L, Hu Y, Guo W, Rong J, Xu G, Zhang T. Divergence and evolution of cotton bHLH proteins from diploid to allotetraploid. BMC Genomics, 2018, 19: 162.
doi: 10.1186/s12864-018-4543-y pmid: 29471803
[11] 丁冬, 李嘉欣, 魏玉磊, 吕尤, 赵训超, 刘梦, 邵文静, 盖胜男, 张今杰, 徐晶宇. 拟南芥和玉米中膜结合bHLH转录因子的鉴定与分析. 植物生理学报, 2020, 56: 700-710.
Ding D, Li J X, Wei Y L, Lyu Y, Zhao X C, Liu M, Shao W J, Gai S N, Zhang J J, Xu J Y. Identification and analysis of membrane-bound bHLH transcription factors in Arabidopsis thaliana and maize. Plant Physiol J, 2020, 56: 700-710. (in Chinese with English abstract)
[12] Lu R, Zhang J, Liu D, Wei Y L, Wang Y, Li X B. Characterization of bHLH/HLH genes that are involved in brassinosteroid (BR) signaling in fiber development of cotton (Gossypium hirsutum). BMC Plant Biol, 2018, 18: 304.
doi: 10.1186/s12870-018-1523-y
[13] Shang-Guan X X, Yang C Q, Zhang X F, Wang L J. Functional characterization of a basic helix-loop-helix (bHLH) transcription factor GhDEL65 from cotton (Gossypium hirsutum). Physiol Plant, 2016, 158: 200-212.
doi: 10.1111/ppl.12450 pmid: 27080593
[14] Zhao B, Cao J F, Hu G J, Chen Z W, Wang L Y, Shangguan X X, Wang L J, Mao Y B, Zhang T Z, Wendel J F, Chen X Y. Core cis-element variation confers subgenome-biased expression of a transcription factor that functions in cotton fiber elongation. New Phytol, 2018, 218: 1061-1075.
doi: 10.1111/nph.15063 pmid: 29465754
[15] Gao Z, Sun W, Wang J, Zhao C, Zuo K. GhbHLH18 negatively regulates fiber strength and length by enhancing lignin biosynthesis in cotton fibers. Plant Sci, 2019, 286: 7-16.
doi: S0168-9452(19)30265-1 pmid: 31300144
[16] Liu Z H, Chen Y, Wang N N, Chen Y H, Wei N, Lu R, Li Y, Li X B. A basic helix-loop-helix protein (GhFP1) promotes fibre elongation of cotton (Gossypium hirsutum) by modulating brassinosteroid biosynthesis and signalling. New Phytol, 2020, 225: 2439-2452.
doi: 10.1111/nph.v225.6
[17] 上官小霞, 王凌健, 李燕娥, 梁运生, 吴霞. 对转蚕丝芯蛋白轻链基因棉花的分析. 作物学报, 2007, 33: 697-702.
Shang-Guan X X, Wang L J, Li Y E, Liang Y S, Wu X. Analysis of cotton (Gossypium hirsutum L.) plants transformed with a silkwormfibroin light chain gene. Acta Agron Sin, 2007, 33: 697-702. (in Chinese with English abstract)
[18] 李继洋, 雷建峰, 代培红, 姚瑞, 曲延英, 陈全家, 李月, 刘晓东. 基于棉花U6启动子的海岛棉CRISPR/Cas9基因组编辑体系的建立. 作物学报, 2018, 44: 227-235.
doi: 10.3724/SP.J.1006.2018.00227
Li J Y, Lei J F, Dai P H, Yao R, Qu Y Y, Chen Q J, Li Y, Liu X D. Establishment of CRISPR/Cas9 genome editing system based on GbU6 promoters in cotton (Gossypium barbadense L.). Acta Agron Sin, 2018, 44: 227-235. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00227
[19] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究. 作物学报, 2021, 47: 427-437.
doi: 10.3724/SP.J.1006.2021.04178
Zhou G T, Lei J F, Dai P H, Liu C, Li Y, Liu X D. Efficient screening system of effective sgRNA for cotton CRISPR/Cas9 gene editing. Acta Agron Sin, 2021, 47: 427-437. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04178
[20] Qin L, Li J, Wang Q, Xu Z, Sun L, Alariqi M, Manghwar H, Wang G, Li B, Ding X, Rui H, Huang H, Lu T, Lindsey K, Daniell H, Zhang X, Jin S. High-efficient and precise base editing of C•G to T•A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system. Plant Biotechnol J, 2020, 18: 45-56.
doi: 10.1111/pbi.13168 pmid: 31116473
[21] Long L, Guo D D, Gao W, Yang W W, Hou L P, Ma X N, Miao Y C, Botella J R, Song C P. Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression. Plant Methods, 2018, 14: 85.
doi: 10.1186/s13007-018-0353-0 pmid: 30305839
[22] Wang P, Zhang J, Sun L, Ma Y, Xu J, Liang S, Deng J, Tan J, Zhang Q, Tu L, Daniell H, Jin S, Zhang X. High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system. Plant Biotechnol J, 2018, 16: 137-150.
doi: 10.1111/pbi.12755 pmid: 28499063
[23] Chen Y, Fu M, Li H, Wang L, Liu R, Liu Z, Zhang X, Jin S. High-oleic acid content, nontransgenic allotetraploid cotton (Gossypium hirsutum L.) generated by knockout of GhFAD2 genes with CRISPR/Cas9 system. Plant Biotechnol J, 2021, 19: 424-426.
doi: 10.1111/pbi.v19.3
[24] Li B, Liang S, Alariqi M, Wang F, Wang G, Wang Q, Xu Z, Yu L, Naeem Zafar M, Sun L, Si H, Yuan D, Guo W, Wang Y, Lindsey K, Zhang X, Jin S. The application of temperature sensitivity CRISPR/LbCpf1 (LbCas12a) mediated genome editing in allotetraploid cotton (G. hirsutum) and creation of nontransgenic, gossypol-free cotton. Plant Biotechnol J, 2021, 19: 221-223.
doi: 10.1111/pbi.v19.2
[25] Huang G, Huang J Q, Chen X Y, Zhu Y X. Recent advances and future perspectives in cotton research. Annu Rev Plant Biol, 2021, 72: 437-462.
doi: 10.1146/annurev-arplant-080720-113241 pmid: 33428477
[26] Wang Z, Yang Z, Li F. Updates on molecular mechanisms in the development of branched trichome in Arabidopsis and nonbranched in cotton. Plant Biotechnol J, 2019, 17: 1706-1722.
doi: 10.1111/pbi.13167 pmid: 31111642
[27] Shan C M, Shangguan X X, Zhao B, Zhang X F, Chao L M, Yang C Q, Wang L J, Zhu H Y, Zeng Y D, Guo W Z, Zhou B L, Hu G J, Guan X Y, Chen Z J, Wendel J F, Zhang T Z, Chen X Y. Control of cotton fibre elongation by a homeodomain transcription factor GhHOX3. Nat Commun, 2014, 5: 5519.
doi: 10.1038/ncomms6519
[28] Walford S A, Wu Y, Llewellyn D J, Dennis E S. GhMYB25-like: a key factor in early cotton fibre development. Plant J, 2011, 65: 785-797.
doi: 10.1111/tpj.2011.65.issue-5
[29] Ma D, Hu Y, Yang C, Liu B, Fang L, Wan Q, Liang W, Mei G, Wang L, Wang H, Ding L, Dong C, Pan M, Chen J, Wang S, Chen S, Cai C, Zhu X, Guan X, Zhou B, Zhu S, Wang J, Guo W, Chen X, Zhang T. Genetic basis for glandular trichome formation in cotton. Nat Commun, 2016, 7: 10456.
doi: 10.1038/ncomms10456 pmid: 26795254
[30] Meng C M, Zhang T Z, Guo W Z. Molecular cloning and characterization of a novel Gossypium hirsutum L. bHLH gene in response to ABA and drought stresses. Plant Mol Biol Rep, 2009, 27: 381-387.
doi: 10.1007/s11105-009-0112-5
[31] 光杨其, 宋桂成, 张金凤, 王晓楠, 唐灿明. 1个新棉花bHLH类基因GhbHLH130的克隆及表达分析. 棉花学报, 2014, 26: 363-370.
Guang Y Q, Song G C, Zhang J F, Wang X N, Tang C M. Molecular cloning and expression analysis of GhbHLH130, encoding a novel bHLH transcription factor in upland cotton (Gossypium hirsutum L.). Cotton Sci, 2014, 26: 363-370. (in Chinese with English abstract)
[32] Chen E, Wang X, Gong Q, Butt H I, Chen Y, Zhang C, Yang Z, Wu Z, Ge X, Zhang X, Li F, Zhang X. A novel GhBEE1-Like gene of cotton causes anther indehiscence in transgenic Arabidopsis under uncontrolled transcription level. Gene, 2017, 627: 49-56.
doi: 10.1016/j.gene.2017.06.007
[33] He X, Zhu L, Wassan G M, Wang Y, Miao Y, Shaban M, Hu H, Sun H, Zhang X. GhJAZ2 attenuates cotton resistance to biotic stresses via the inhibition of the transcriptional activity of GhbHLH171. Mol Plant Pathol, 2018, 19: 896-908.
doi: 10.1111/mpp.2018.19.issue-4
[1] KE Hui-Feng, SU Hong-Mei, SUN Zheng-Wen, GU Qi-Shen, YANG Jun, WANG Guo-Ning, XU Dong-Yong, WANG Hong-Zhe, WU Li-Qiang, ZHANG Yan, ZHANG Gui-Yin, MA Zhi-Ying, WANG Xing-Fen. Identification for yield and fiber quality traits and evaluation of molecular markers in modern cotton varieties [J]. Acta Agronomica Sinica, 2024, 50(2): 280-293.
[2] LI Zhi-Kun, JIA Wen-Hua, ZHU Wei, LIU Wei, MA Zong-Bin. Effects of nitrogen fertilizer and DPC combined application on temporal distribution of cotton yield and fiber quality [J]. Acta Agronomica Sinica, 2024, 50(2): 514-528.
[3] GUO Jia-Xin, YE Yang, GUO Hui-Juan, MIN Wei. Effects and variability analysis of different salt and alkali stresses on the proteome of cotton leaves [J]. Acta Agronomica Sinica, 2024, 50(1): 219-236.
[4] XIAO Sheng-Hua, LU Yan, LI An-Zi, QIN Yao-Bin, LIAO Ming-Jing, BI Zhao-Fu, ZHUO Gan-Feng, ZHU Yong-Hong, ZHU Long-Fu. Function analysis of an AP2/ERF transcription factor GhTINY2 in cotton negatively regulating salt tolerance [J]. Acta Agronomica Sinica, 2024, 50(1): 126-137.
[5] TAN Zhi-Xin, XIE Liu-Wei, LI Hong-Ge, LI Fang-Jun, TIAN Xiao-Li, LI Zhao-Hu. Identification of cotton low potassium tolerance based on AHP-membership function method at cotyledonary stage [J]. Acta Agronomica Sinica, 2024, 50(1): 199-208.
[6] SUN Shang-Wen, SHU Hong-Mei, YANG Chang-Qin, ZHANG Guo-Wei, WANG Xiao-Jing, MENG Ya-Li, WANG You-Hua, LIU Rui-Xian. Mechanism of cyclanilide enhanced the defoliation efficiency of thidiazuron in cotton by regulating endogenous hormones under low temperature stress [J]. Acta Agronomica Sinica, 2024, 50(1): 187-198.
[7] LIU Tao-Fen, LUO Dan, ZHANG Qi-Peng, SUN Yuan-Yuan, LI Pei-Song, TIAN Jing-Shan, ZHANG Wang-Feng, XIANG Dao, ZHANG Ya-Li, YANG Ming-Feng, GOU Ling. Ethephon ripening affects boll weight and fiber quality of machine-harvested cotton [J]. Acta Agronomica Sinica, 2024, 50(1): 209-218.
[8] MO Guang-Ling, YU Chen-Jing, LIANG Yan-Lan, ZHOU Ding-Gang, LUO Jun, WANG Mo, QUE You-Xiong, HUANG Ning, LING Hui. RT-PCR cloning and functional analysis of ScbHLH13 in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(9): 2485-2497.
[9] LI Yi-Yang, LI Yuan, ZHAO Zi-Xu, ZHANG Ding-Shun, DU Jia-Ning, WU Shu-Juan, SUN Si-Qi, CHEN Yuan, ZHANG Xiang, CHEN De-Hua, LIU Zhen-Yu. Effects of increased nitrogen on Bt protein expression and nitrogen metabolism in the leaf subtending to cotton boll [J]. Acta Agronomica Sinica, 2023, 49(9): 2505-2516.
[10] XU Nai-Yin, WANG Yang, WANG Dan-Tao, NING He-Jia, YANG Xiao-Ni, QIAO Yin-Tao. Construction of cotton fiber quality index and weighted genotype by trait (WGT) biplot analysis [J]. Acta Agronomica Sinica, 2023, 49(5): 1262-1271.
[11] MENG Lu, DU Ming-Wei, LI Fang, QI Hai-Kun, LU Zheng-Ying, XU Dong-Yong, LI Cun-Dong, ZHANG Ming-Cai, TIAN Xiao-Li, LI Zhao-Hu. Relationship between cotton population, maturity, and the efficacy of harvest aids under high-density planting conditions in Central Hebei province, China [J]. Acta Agronomica Sinica, 2023, 49(4): 1028-1038.
[12] LEI Jian-Feng, LI Yue, DAI Pei-Hong, ZHAO Yi, YOU Yang-Zi, JIA Jian-Guo, ZHAO Shuai, QU Yan-Ying, LIU Xiao-Dong. Study on VIGE system mediated by different plant viruses in cotton [J]. Acta Agronomica Sinica, 2023, 49(4): 978-987.
[13] GUO Hong, YU Ji-Wen, PEI Wen-Feng, GUAN Yong-Hu, LI Hang, LI Chang-Xi, LIU Jin-Wei, WANG Wei, WANG Bao-Quan, MEI Yong-Jun. Genetic analysis of F2 generation of upland cotton hybrids and main effect clustering in Southern Xinjiang, China [J]. Acta Agronomica Sinica, 2023, 49(3): 608-621.
[14] LOU Shan-Wei, GAO Fei, WANG Chong, TIAN Xiao-Li, DU Ming-Wei, DUAN Liu-Sheng. Screening of different dropping formulations about mepiquat chloride and their effects on cotton growth and development [J]. Acta Agronomica Sinica, 2023, 49(2): 552-560.
[15] ZHU Ji-Jie, WANG Shi-Jie, ZHAO Hong-Xia, JIA Xiao-Yun, LI Miao, WANG Guo-Yin. Transcriptome analysis of different cotton varieties' leaves in response to chemical defoliant agent thidiazuron under field conditions [J]. Acta Agronomica Sinica, 2023, 49(10): 2705-2716.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .