Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (1): 126-137.doi: 10.3724/SP.J.1006.2024.34045

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Function analysis of an AP2/ERF transcription factor GhTINY2 in cotton negatively regulating salt tolerance

XIAO Sheng-Hua1,2,*(), LU Yan1(), LI An-Zi1, QIN Yao-Bin1, LIAO Ming-Jing1, BI Zhao-Fu1, ZHUO Gan-Feng1, ZHU Yong-Hong2, ZHU Long-Fu2,*()   

  1. 1State Key Laboratory of Conservation and Utilization of Agro-Biological Resources in Subtropical Region / College of Agriculture, Guangxi University, Nanning 530000, Guangxi, China
    2State Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430000, Hubei, China
  • Received:2023-03-06 Accepted:2023-06-29 Online:2024-01-12 Published:2023-07-21
  • Contact: *E-mail: shxiao@gxu.edu.cn; E-mail: lfzhu@mail.hzau.edu.cn
  • About author:**Contributed equally to this study
  • Supported by:
    Initial Scientific Research Fund of High-level Personnel in Guangxi University(A3310051044);Guangxi University Agricultural College Research Development Fund(EE101711)

Abstract:

Cotton is a relatively salt-tolerant crop, but high salt stress leads to a significant decline in cotton yield and fiber quality. Mining the genes involved in salt-tolerance and illuminating the molecular mechanisms that underlie this resistance is of great importance in cotton breeding programs. Here, we identified an AP2/ERF transcription factor GhTINY2 in the transcriptome database from cotton treated with salt, and the relative expression level of GhTINY2 was reduced by salt. Subsequently, the salt-resistant phenotype and physiological indicators of the GhTINY2-overexpression Arabidopsis were analyzed. The results revealed that the GhTINY2-overexpression Arabidopsis had a significant decrease in seed germination rate, the content of proline, soluble sugar, and chlorophyll under salt stress, leading to more severe leaf wilting compared with WT. RNA-seq data from GhTINY2-transgenic Arabidopsis revealed that differentially expressed genes (DEGs) were enriched in a series of biological processes, including chlorophyll metabolism and response to stimulus, and the relative expression level of these DEGs significantly was down-regulated. Moreover, the silence of GhTINY2 in cotton through Virus-induced gene silencing (VIGS) assay showed that TRV:GhTINY2 had a significant increase in chlorophyll and proline content, leading to improved salt tolerance compare with TRV:00. In conclusion, these findings suggest that GhTINY2 was an important gene in cotton that negatively regulated salt stress resistance, and it was expected to create salt-tolerant cotton materials using GhTINY2 gene by modern genetic engineering technology in the future.

Key words: cotton, GhTINY2, salt stress, transcription factor, transgenic

Table 1

Primers used for vector construction and RT-qPCR"

引物名称Primer name 引物序列Primer sequence (5°-3°)
GhUB7-F GAAGGCATTCCACCTGACCAAC
GhUB7-R CTTGACCTTCTTCTTCTTGTGCTTG
AtACTIN2-F AAATCACAGCACTTGCACCAAGC
AtACTIN2-R GGCCTTGGAGATCCACATCTGC
AtP5CS2-F ATGATCTTATTTATGTTCTGC
AtP5CS2-R CACTATCTTCCGTCACTAT
AtP5CS1-F ACCAGAAGCACGGTCATTC
AtP5CS1-R CCATCTGAGAATCTTGTG
AtProDH2-F AAGTGTCAGCATCACAAC
AtProDH2-R CACGAAGAAATCATCAC
AtRD20-F GATGGAATCGTCTATCCTTGGG
AtRD20-R ACTGGGACATACCTTCCTTCGG
AtRD22-F CCCATTCCCAACTCTCTCCAT
AtRD22-R GACCTTTTCCGCTGCCAAC
AtRD26-F ATGGGTCGTCATCGTCTTCTTC
AtRD26-R GAAACGCATCGTAACCACCG
TRV:GhTINY2-F GCGTGAGCTCGGTACCGGAGGAGCTGAGCCAGATAGTG
TRV:GhTINY2-R GCCTCCATGGGGATCCCTAGAAATTTTGACCTATCCATGCTA
GhTINY2-F CATCTTCATCGTTGTCGTCCTCA
GhTINY2-R CAGTTTTCTTCGTAATACCAAGGCAT

Fig. 1

Relative expression pattern of GhTINY2 induced by NaCl and ABA A: heat map of GhTINY2 induced by NaCl, red color represents high expression and white color represents low expression; B-C: the expression of GhTINY2 induced by NaCl (B) and ABA (C) through RT-qPCR assay. **, P < 0.01, Student’s t-test."

Fig. 2

Overexpression of GhTINY2 inhibited seed germination in Arabidopsis under salt stress A: the germination phenotypes of GhTINY2-overexpression Arabidopsis in 1/2 MS medium with or without NaCl. B-C: the germination rate of GhTINY2-overexpression seeds in 1/2 MS medium without NaCl (B) or with 0.12 mol L-1 NaCl (C). Bar: 1 cm, **, P < 0.01, Student’s t-test."

Fig. 3

Overexpression of GhTINY2 decreased resistance to NaCl in Arabidopsis A: the growth phenotypes of GhTINY2-overexpression Arabidopsis in nutrient soil with or without NaCl. B: the survival rate of GhTINY2- overexpression Arabidopsis under salt stress. C: the water loss rate of detached leaf of GhTINY2-overexpression Arabidopsis. **: P < 0.01, Student’s t-test."

Fig. 4

Determination of physiological indexes in GhTINY2-overexpression plants under salt stress A-D: determination of content of MDA (A), soluble sugar (B), proline (C), and chlorphyll (D) in GhTINY2-overexpression Arabidopsis under salt stress. **: P < 0.01, Student’s t-test."

Fig. 5

Analysis of RNA-seq in GhTINY2-overexpression Arabidopsis A: the volcano plot of differentially expressed genes (DEGs) in RNA-seq data from GhTINY2-overexpression Arabidopsis. B-C: KEGG (B) and GO (C) analysis of DEGs in RNA-seq data from GhTINY2-overexpression Arabidopsis."

Fig. 6

Heat map of differentially expressed genes in GhTINY2- overexpression Arabidopsis The numbers in the heat map represent the down regulation fold of differentially expressed genes in GhTINY2-OE compared to WT."

Fig. 7

Relative expression analysis of gene involved in salt stress response in GhTINY2-overexpression Arabidopsis A-B: the relative expression of salt stress marker genes (A) and proline synthesis/degradation genes (B) in WT and GhTINY2-overexpression Arabidopsis under normal condition and salt stress. *: P < 0.05, **: P < 0.01, Student’s t-test."

Fig. 8

Down-regulation of GhTINY2 increased salt tolerance in cotton A: the silence effect of GhTINY2 in cotton seedlings by RT-qPCR. TRV:00 represent the control cotton seedlings and TRV:GhTINY2 represent the cotton seedlings in which the expression of GhTINY2 is down-regulated. B: the phenotype of TRV:00 and TRV:GhTINY2 plant response to salt. C-D: the content of chlorophyll (C) and proline (D) in TRV:00 and TRV:GhTINY2 plant under salt stress. **: P < 0.01, Student’s t-test."

[1] 白静. 新疆棉花高产栽培与病虫害防治技术. 种子科技, 2022, 40(12): 22-24.
Bai J. High yield cultivation and pest control technology of cotton in Xinjiang. Seed Sci Technol, 2022, 40(12): 22-24. (in Chinese with English abstract)
[2] Sun K, Mehari T G, Fang H, Han J, Huo X, Zhang J, Chen Y, Wang D, Zhuang Z, Ditta A, Khan M K R, Zhang J, Wang K, Wang B. Transcriptome, proteome and functional characterization reveals salt stress tolerance mechanisms in upland cotton (Gossypium hirsutum L.). Front Plant Sci, 2023, 14: 1092616.
doi: 10.3389/fpls.2023.1092616
[3] 阿不都热依木·艾西热甫. 浅谈新疆土壤盐渍化的现状及形成原因. 建筑工程技术与设计, 2015, (19): 1661.
Aixirepu A. The present situation and causes of soil salinization in Xinjiang were discussed. Arch Eng Technol Design, 2015, (19): 1661. (in Chinese with English abstract)
[4] Guo J, Lu X, Tao Y, Guo H, Min W. Comparative ion omics and metabolic responses and adaptive strategies of cotton to salt and alkali stress. Front Plant Sci, 2022, 13: 871387.
doi: 10.3389/fpls.2022.871387
[5] 严青青, 张巨松, 李星星, 王燕提. 盐碱胁迫对海岛棉种子萌发及幼苗根系生长的影响. 作物学报, 2019, 45: 100-110.
doi: 10.3724/SP.J.1006.2019.84067
Yan Q Q, Zhang J S, Li X X, Wang Y T. Effects of salinity stress on seed germination and root growth of seedlings in island cotton. Acta Agron Sin, 2019, 45: 100-110. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.84067
[6] Franco-Zorrilla J M, López-Vidriero I, Carrasco J L, Godoy M, Vera P, Solano R. DNA-binding specificities of plant transcription factors and their potential to define target genes. Proc Natl Acad Sci USA, 2014, 111: 2367-2372.
doi: 10.1073/pnas.1316278111 pmid: 24477691
[7] Zhao Y Y, Yang Z E, Ding Y P, Liu L S, Han X, Zhan J J, Wei X, Diao Y Y, Qin W Q, Wang P, Liu P P, Sajjad M, Zhang X L, Ge X Y.Over-expression of an R2R3 MYB gene, GhMYB73, increases tolerance to salt stress in transgenic Arabidopsis. Plant Sci, 2019, 286: 28-36.
[8] Long L, Yang W W, Liao P, Guo Y W, Kumar A, Gao W. Transcriptome analysis reveals differentially expressed ERF transcription factors associated with salt response in cotton. Plant Sci, 2019, 281: 72-81.
doi: S0168-9452(18)31484-5 pmid: 30824063
[9] He X, Zhu L F, Xu L, Guo W F, Zhang X L. GhATAF1, a NAC transcription factor, confers abiotic and biotic stress responses by regulating phytohormonal signaling networks. Plant Cell Rep, 2016, 35: 2167-2179.
doi: 10.1007/s00299-016-2027-6 pmid: 27432176
[10] 何昕.棉花多逆境响应基因的挖掘和功能验证. 华中农业大学博士学位论文, 湖北武汉, 2016.
He X. Isolation and Characterization of Genes in Cotton Responsive to Multiple Stresses. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2016. (in Chinese with English abstract)
[11] Hao D, Ohme-Takagi M, Sarai A. Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. J Biol Chem, 1998, 273: 26857-26861.
doi: 10.1074/jbc.273.41.26857 pmid: 9756931
[12] Lee S Y, Hwang E Y, Seok H Y, Tarte V N, Jeong M S, Jang S B, Moon Y H. Arabidopsis AtERF71/HRE2 functions as transcriptional activator via cis-acting GCC box or DRE/CRT element and is involved in root development through regulation of root cell expansion. Plant Cell Rep, 2015, 34: 223-231.
doi: 10.1007/s00299-014-1701-9
[13] Zhuang J, Li M Y, Wu B, Liu Y J, Xiong A S. Arg156 in the AP2-domain exhibits the highest binding activity among the 20 Individuals to the GCC box in BnaERF-B3-hy15, a mutant ERF transcription factor from Brassica napus. Front Plant Sci, 2016, 7: 1603.
[14] Feng K, Hou X L, Xing G M, Liu J X, Duan A Q, Xu Z S, Li M Y, Zhuang J, Xiong A S. Advances in AP2/ERF super-family transcription factors in plant. Crit Rev Biotechnol, 2020, 40: 750-776.
doi: 10.1080/07388551.2020.1768509 pmid: 32522044
[15] Zhou Y, Xia H, Li X J, Hu R, Chen Y, Li X B. Overexpression of a cotton gene that encodes a putative transcription factor of AP2/EREBP family in Arabidopsis affects growth and development of transgenic plants. PLoS One, 2013, 8: e78635.
doi: 10.1371/journal.pone.0078635
[16] Hu Y, Wang Y, Liu X, Li J. Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development. Cell Res, 2004, 14: 8-15.
doi: 10.1038/sj.cr.7290197
[17] Agarwal P K, Gupta K, Lopato S, Agarwal P. Dehydration responsive element binding transcription factors and their applications for the engineering of stress tolerance. J Exp Bot, 2017, 68: 2135-2148.
doi: 10.1093/jxb/erx118 pmid: 28419345
[18] 朱永红. GhTINY2在棉花抗黄萎病及非生物逆境中的功能研究. 华中农业大学硕士学位论文, 湖北武汉, 2018.
Zhu Y H. Functional Characteriaztion of GhTINY2 in Cotton responsive to Verticillium dahliae and abiotic stress. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2018. (in Chinese with English abstract)
[19] 肖胜华.转录因子MYB4WRKY41TINY2调控棉花木质素代谢与免疫反应的功能解析. 华中农业大学博士学位论文, 湖北武汉, 2021.
Xiao S H.Functional Characterization of Transcription Factors MYB4, WRKY41 and TINY2 in Cotton Lignin Metabolism and Immune Responses. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2021. (in Chinese with English abstract)
[20] Gao W, Long L, Zhu L F, Xu L, Gao W H, Sun L Q, Liu L L, Zhang X L. Proteomic and virus-induced gene silencing (VIGS) analyses reveal that gossypol, brassinosteroids, and jasmonic acid contribute to the resistance of cotton to Verticillium dahliae. Mol Cell Proteomics, 2013, 12: 3690-3703.
[21] Heath R L, Packer L. Reprint of: photoperoxidation in isolated chloroplasts I. kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys, 2022, 726: 109248.
doi: 10.1016/j.abb.2022.109248
[22] Bates L S, Waldren R P, Teare I D. Rapid determination of free proline for water-stress studies. Plant Soil, 1973, 39: 205-207.
doi: 10.1007/BF00018060
[23] 王学奎, 黄见良. 植物生理生化实验原理和技术(第3版). 北京: 高等教育出版社, 2015. pp 1-324.
Wang X K, Huang J L. Principles and Techniques of Plant Physiological and Biochemical Experiments, 3rd edn. Beijing: Higher Education Press, 2015. pp 1-324. (in Chinese)
[24] 沈建霖.拟南芥丙酮酸转运体AtMPC1介导植物干旱胁迫响应机制研究. 山东大学博士学位论文, 山东泰安, 2018.
Shen J L.The Mechanism Investigation of Arabidopsis Mitochondrial Pyruvate Carrier 1 in Plant Drought Response. PhD Dissertation of Shandong University, Tai’an, Shandong, China, 2018. (in Chinese with English abstract)
[25] Singh M, Kumar J, Singh S, Singh V P, Prasad S M. Roles of Osmo protectants in improving salinity and drought tolerance in plants: a review. Rev Environ Sci Bio-Technol, 2015, 14: 407-426.
[26] Anderssen S, Naômé A, Jadot C, Brans A, Tocquin P, Rigali S. AURTHO: Autoregulation of transcription factors as facilitator of cis-acting element discovery. Biochim Biophys Acta Gene Regul Mech, 2022, 1865: 194847.
doi: 10.1016/j.bbagrm.2022.194847
[27] Xiao S H, Hu Q, Zhang X J, Si H, Liu S M, Chen L, Chen K, Berne S, Yuan D J, Lindsey K, Zhang X L, Zhu L F. Orchestration of plant development and defense by indirect crosstalk of salicylic acid and brassinosteorid signaling via transcription factor GhTINY2. J Exp Bot, 2021, 72: 4721-4743.
doi: 10.1093/jxb/erab186
[28] Tang Y, Liu K, Zhang J, Li X, Xu K, Zhang Y, Qi J, Yu D, Wang J, Li C. JcDREB2, a physic nut AP2/ERF gene, alters plant growth and salinity stress responses in transgenic rice. Front Plant Sci, 2017, 8: 306.
doi: 10.3389/fpls.2017.00306 pmid: 28321231
[29] Qu Y, Nong Q, Jian S, Lu H, Zhang M, Xia K. An AP2/ERF gene, HuERF1, from Pitaya (Hylocereus undatus) positively regulates salt tolerance. Int J Mol Sci, 2020, 21: 4586.
doi: 10.3390/ijms21134586
[30] Fang X, Ma J, Guo F, Qi D, Zhao M, Zhang C, Wang L, Song B, Liu S, He S, Liu Y, Wu J, Xu P, Zhang S. The AP2/ERF GmERF113 positively regulates the drought response by activating GmPR10-1 in soybean. Int J Mol Sci, 2022, 23: 8159.
doi: 10.3390/ijms23158159
[31] Zhang T, Tang Y, Luan Y, Cheng Z, Wang X, Tao J, Zhao D. Herbaceous peony AP2/ERF transcription factor binds the promoter of the tryptophan decarboxylase gene to enhance high- temperature stress tolerance. Plant Cell Environ, 2022, 45: 2729-2743.
doi: 10.1111/pce.v45.9
[32] Feng X, Feng P, Yu H L, Yu X Y, Sun Q, Liu S Y, Minh T N, Chen J, Wang D, Zhang Q, Cao L, Zhou C M, Li Q, Xiao J L, Zhong S H, Wang A X, Wang L J, Pan H Y, Ding X D. GsSnRK1 interplays with transcription factor GsERF7 from wild soybean to regulate soybean stress resistance. Plant Cell Environ, 2020, 43: 11921211.
[33] Schmidt R, Mieulet D, Hubberten H M, Obata T, Hoefgen R, Fernie A R, Fisahn J, Segundo B S, Guiderdoni E, Schippers J H, Mueller-Roeber B. Salt-responsive ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice. Plant Cell, 2013, 25: 2115-2131.
doi: 10.1105/tpc.113.113068
[34] Wang L Q, Qin L P, Liu W J, Zhang D Y, Wang Y C. A novel ethylene-responsive factor from Tamarix hispida, ThERF1, is a GCC-box- and DRE-motif binding protein that negatively modulates abiotic stress tolerance in Arabidopsis. Physiol Plant, 2014, 152: 84-97.
[35] Liu D F, Chen X J, Liu J Q, Ye J C, Guo Z J. The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. J Exp Bot, 2012, 63: 3899-3911.
doi: 10.1093/jxb/ers079
[36] Xiang Y, Tang N, Du H, Ye H Y, Xiong L Z. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol, 2008, 148: 1938-1952.
doi: 10.1104/pp.108.128199 pmid: 18931143
[37] Yu T F, Liu Y, Fu J D, Ma J, Fang Z W, Chen J, Zheng L, Lu Z W, Zhou Y B, Chen M, Xu Z S, Ma Y Z. The NF-Y-PYR module integrates the abscisic acid signal pathway to regulate plant stress tolerance. Plant Biotechnol J, 2021, 19: 2589-2605.
doi: 10.1111/pbi.v19.12
[38] Khan I U, Ali A, Khan H A, Baek D, Park J, Lim C J, Zareen S, Jan M, Lee S Y, Pardo J M, Kim W Y, Yun D J.PWR/HDA9/ ABI4 complex epigenetically regulates ABA dependent drought stress tolerance in Arabidopsis. Front Plant Sci, 2020, 11: 623.
[39] 甘甜甜.转录组和蛋白组联合分析解析杂交桑耐盐机制. 西北农林科技大学博士学位论文, 陕西杨凌, 2022.
Gan T T. Combined Transcriptome and Proteome Analysis Reveals the Salt Tolerance Mechanism of Hybrid Mulberry. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2022. (in Chinese with English abstract)
[40] Teige M, Scheikl E, Eulgem T, Dóczi R, Ichimura K, Shinozaki K, Dangl J L, Hirt H. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell, 2004, 15: 141-152.
[41] Tang Z Y, Cao X Y, Zhang Y P, Jiang J, Qiao D R, Xu H, Cao Y. Two splice variants of the DsMEK1 mitogen-activated protein kinase kinase (MAPKK) are involved in salt stress regulation in Dunaliella salina in different ways. Biotechnol Biof, 2020, 13: 147.
[42] Liang Y Q, Li X S, Yang R R, Gao B, Yao J X, Oliver M J, Zhang D Y. BaDBL1, a unique DREB gene from desiccation tolerant moss Bryum argenteum, confers osmotic and salt stress tolerances in transgenic Arabidopsis. Plant Sci, 2021, 313: 111047.
doi: 10.1016/j.plantsci.2021.111047
[43] Gallego-Giraldo L, Jikumaru Y, Kamiya Y, Tang Y, Dixon RA. Selective lignin downregulation leads to constitutive defense response expression in alfalfa (Medicago sativa L.). New Phytol, 2011, 190: 627-639.
doi: 10.1111/j.1469-8137.2010.03621.x pmid: 21251001
[44] Hu Q, Min L, Yang X Y, Jin S X, Zhang L, Li Y Y, Ma Y Z, Qi X W, Li D Q, Liu H B, Lindsey K, Zhu L F, Zhang X L. Laccase GhLac1 modulates broad-spectrum biotic stress tolerance via manipulating phenylpropanoid pathway and jasmonic acid synthesis. Plant Physiol, 2018, 176: 1808-1823.
doi: 10.1104/pp.17.01628 pmid: 29229698
[45] Xiao S H, Hu Q, Shen J L, Liu S M, Yang Z G, Chen K, Klosterman S J, Javornik B, Zhang X L, Zhu L F. GhMYB4 downregulates lignin biosynthesis and enhances cotton resistance to Verticillium dahliae. Plant Cell Rep, 2021, 40: 735-751.
doi: 10.1007/s00299-021-02672-x pmid: 33638657
[1] KE Hui-Feng, SU Hong-Mei, SUN Zheng-Wen, GU Qi-Shen, YANG Jun, WANG Guo-Ning, XU Dong-Yong, WANG Hong-Zhe, WU Li-Qiang, ZHANG Yan, ZHANG Gui-Yin, MA Zhi-Ying, WANG Xing-Fen. Identification for yield and fiber quality traits and evaluation of molecular markers in modern cotton varieties [J]. Acta Agronomica Sinica, 2024, 50(2): 280-293.
[2] LI Zhi-Kun, JIA Wen-Hua, ZHU Wei, LIU Wei, MA Zong-Bin. Effects of nitrogen fertilizer and DPC combined application on temporal distribution of cotton yield and fiber quality [J]. Acta Agronomica Sinica, 2024, 50(2): 514-528.
[3] LI Yan, FANG Yu-Hui, WANG Yong-Xia, PENG Chao-Jun, HUA Xia, QI Xue-Li, HU Lin, XU Wei-Gang. Transcriptomics profile of transgenic OsPHR2 wheat under different phosphorus stress [J]. Acta Agronomica Sinica, 2024, 50(2): 340-353.
[4] GUO Jia-Xin, YE Yang, GUO Hui-Juan, MIN Wei. Effects and variability analysis of different salt and alkali stresses on the proteome of cotton leaves [J]. Acta Agronomica Sinica, 2024, 50(1): 219-236.
[5] YANG Chuang, WANG Ling, QUAN Cheng-Tao, YU Liang-Qian, DAI Cheng, GUO Liang, FU Ting-Dong, MA Chao-Zhi. Relative expression profiles of genes response to salt stress and constructions of gene co-expression networks in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(1): 237-250.
[6] YUE Run-Qing, LI Wen-Lan, MENG Zhao-Dong. Acquisition and resistance analysis of transgenic Maize Inbred Line LG11 with insect and herbicide resistance [J]. Acta Agronomica Sinica, 2024, 50(1): 89-99.
[7] SHANG-GUAN Xiao-Xia, YANG Qin-Li, LI Huan-Li. Analysis of mutants developed by CRISPR/Cas9-based GhbHLH71 gene editing in cotton [J]. Acta Agronomica Sinica, 2024, 50(1): 138-148.
[8] TAN Zhi-Xin, XIE Liu-Wei, LI Hong-Ge, LI Fang-Jun, TIAN Xiao-Li, LI Zhao-Hu. Identification of cotton low potassium tolerance based on AHP-membership function method at cotyledonary stage [J]. Acta Agronomica Sinica, 2024, 50(1): 199-208.
[9] SUN Shang-Wen, SHU Hong-Mei, YANG Chang-Qin, ZHANG Guo-Wei, WANG Xiao-Jing, MENG Ya-Li, WANG You-Hua, LIU Rui-Xian. Mechanism of cyclanilide enhanced the defoliation efficiency of thidiazuron in cotton by regulating endogenous hormones under low temperature stress [J]. Acta Agronomica Sinica, 2024, 50(1): 187-198.
[10] LIU Tao-Fen, LUO Dan, ZHANG Qi-Peng, SUN Yuan-Yuan, LI Pei-Song, TIAN Jing-Shan, ZHANG Wang-Feng, XIANG Dao, ZHANG Ya-Li, YANG Ming-Feng, GOU Ling. Ethephon ripening affects boll weight and fiber quality of machine-harvested cotton [J]. Acta Agronomica Sinica, 2024, 50(1): 209-218.
[11] AI Rong, ZHANG Chun, YUE Man-Fang, ZOU Hua-Wen, WU Zhong-Yi. Response of maize transcriptional factor ZmEREB211 to abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(9): 2433-2445.
[12] MO Guang-Ling, YU Chen-Jing, LIANG Yan-Lan, ZHOU Ding-Gang, LUO Jun, WANG Mo, QUE You-Xiong, HUANG Ning, LING Hui. RT-PCR cloning and functional analysis of ScbHLH13 in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(9): 2485-2497.
[13] LI Yi-Yang, LI Yuan, ZHAO Zi-Xu, ZHANG Ding-Shun, DU Jia-Ning, WU Shu-Juan, SUN Si-Qi, CHEN Yuan, ZHANG Xiang, CHEN De-Hua, LIU Zhen-Yu. Effects of increased nitrogen on Bt protein expression and nitrogen metabolism in the leaf subtending to cotton boll [J]. Acta Agronomica Sinica, 2023, 49(9): 2505-2516.
[14] XU Yang, ZHANG Dai, KANG Tao, WEN Sai-Qun, ZHANG Guan-Chu, DING Hong, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of salt stress on ion dynamics and the relative expression level of salt tolerance genes in peanut seedlings [J]. Acta Agronomica Sinica, 2023, 49(9): 2373-2384.
[15] DAI Shu-Tao, ZHU Can-Can, MA Xiao-Qian, QIN Na, SONG Ying-Hui, WEI Xin, WANG Chun-Yi, LI Jun-Xia. Genome-wide identification of the HAK/KUP/KT potassium transporter family in foxtail millet and its response to K+ deficiency and high salt stress [J]. Acta Agronomica Sinica, 2023, 49(8): 2105-2121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .