Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (1): 172-186.doi: 10.3724/SP.J.1006.2024.33019

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Identification of heat tolerance of waxy maizes at flowering stage and screening of evaluation indexes in the middle and lower reaches of Yangtze River region

SONG Xu-Dong1(), ZHU Guang-Long3(), ZHANG Shu-Yu1, ZHANG Hui-Min1, ZHOU Guang-Fei1, ZHANG Zhen-Liang1, MAO Yu-Xiang1, LU Hu-Hua1, CHEN Guo-Qing1,2, SHI Ming-Liang1, XUE Lin1,2, ZHOU Gui-Sheng3, HAO De-Rong1,*()   

  1. 1Yanjiang Institute of Agricultural Sciences, Nantong 226541, Jiangsu, China
    2Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, Jiangsu, China
    3Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University / Co-Innovation Center for Modern Production Technology in Grain Crops of Jiangsu Province, Yangzhou 225009, Jiangsu, China
  • Received:2023-03-27 Accepted:2023-06-29 Online:2024-01-12 Published:2023-07-27
  • Contact: *E-mail: drhao2008@163.com
  • About author:**Contributed equally to this study
  • Supported by:
    Open Competition Project of Seed Industry Revitalization of Jiangsu Province(JBGS[2021]054);Jiangsu Province Key Research and Development Project(BE2021317);Scientific and Technological Project of Nantong City, China(JC12022088);Jiangsu Agriculture Science and Technology Innovation Fund(CX(20)1002);Earmarked Fund for Jiangsu Agricultural Research System

Abstract:

Heat stress has acknowledged as one of the major threats to waxy maize production as a result of global warming gradually seriously. Heat resistance identification and indices screening could provide the theoretical basis in breeding heat-resistant cultivars. In the present study, 13 heat-related parameters of 10 waxy maize cultivars from the middle and lower reaches of Yangtze River area were measured under normal temperature treatment (CK) and two heat stress treatments (artificial warming treatment and delayed sowing treatment). Principal component analysis, membership function method, cluster analysis, and stepwise regression analysis were used to comprehensively evaluate the heat resistance of waxy maize at flowering stage. The results showed that most indices under heat stress decreased significantly compared with CK, except for chlorophyll a and PS II primary light energy conversion efficiency. Three independent comprehensive components were obtained from 13 single traits using a principal component analysis, and their contribution rates respectively were 64.46%, 15.06%, and 7.76%, which represented 87.28% information of the original data. Ten testing cultivars were divided into three heat-tolerance types that were heat tolerance category, medium heat tolerance category, and high temperature sensitive category based on comprehensive heat tolerance values (D) calculating by membership function methods. SYN2, ZN2, and SYN901 were identified as the heat-resistant cultivars, and planting these cultivars could partly alleviate the negative effects of heat stress on waxy maize production. Finally, stepwise regression method was used to establish a predictive equation to evaluate heat tolerance, which indicating that predictive values (PV) calculated by the predictive equation were basically consistent with D value. The results showed that yield, Fv/Fm, leaf area index, and pollen viability could be used to identify heat-resistant cultivars of waxy maize. The heat tolerant cultivars and identification index selected in the study could serve as a basis for subsequent breeding heat tolerant cultivars of waxy maize.

Key words: waxy maize, heat-tolerance at flowering stage, comprehensive assessment, evaluation indexes

Fig. 1

Sowing date of different waxy maizes under different treatments A: CK and Artificial warming treatment; B: Delayed sowing treatment. SYN802: Suyunuo 802; ZN2: Zhongnuo 2; SYN2: Suyunuo 2; SYN11: Suyunuo 11; SYN901: Suyunuo 901; SYN639: Suyunuo 639; JDN517: Jiaodiannuo 517; SYN1803: Suyunuo 1803; SYN1502: Suyunuo 1502; SYN1704: Suyunuo 1704."

Fig. 2

Maximum temperature under artificial warming method (H1), delayed sowing method (H2) and control (CK), and the dotted line represented the average temperature under different treatments"

Fig. 3

Effects of different treatments on main agronomic traits of waxy maize at flowering stages LAI: leaf area index (cm2 m-2); DB: dry matter of plants (g m-2); ERN: ear row number; KNR: kernel number per row; SR: setting rate (%); Fv/Fm: PS II primary light energy conversion efficiency; Fv/Fo: PSII latency activity; Chl a: chlorophyll a (mg g-1); Chl b: chlorophyll b (mg g-1); Chl (a+b): chlorophyll (a+b) ( mg g-1); PV: pollen viability; Yield: yield (kg hm-2); ETB: ear tip-barrenness (cm). * and ** are significant correlations at the 0.05 and 0.01 probability levels, respectively; ns: no significant."

Table S1

The performance of 10 waxy maizes for 13 traits under different treatments"

品种
Cultivar
LAI DB ERN KNR SR
CK H1 H2 CK H1 H2 CK H1 H2 CK H1 H2 CK H1 H2
苏玉糯639 SYN639 4.47 3.80 4.04 932.4 843.7 860.5 15.1 12.9 13.3 29.67 23.61 25.08 89.65 72.51 74.28
苏玉糯2号 SYN2 3.56 3.22 3.35 892.5 827.1 860.8 14.0 12.8 12.9 27.33 25.01 25.31 90.48 82.15 84.50
苏玉糯11 SYN11 5.17 4.23 4.61 995.9 885.2 917.7 13.9 11.7 11.9 32.67 26.84 27.24 86.91 68.88 69.90
中糯2号ZN2 4.28 3.91 4.03 878.9 789.7 853.2 13.3 12.5 12.4 27.81 25.74 26.24 92.33 84.37 86.20
苏玉糯1803 SYN1803 4.40 3.89 3.99 949.0 831.4 895.2 14.0 12.8 12.7 34.48 29.26 30.48 90.20 73.20 74.80
焦点糯517 JDN517 5.38 4.43 4.97 1090.4 974.1 1045.5 15.6 13.2 13.2 35.67 28.53 29.87 87.08 69.61 70.99
苏玉糯1502 SYN1502 4.62 4.19 4.21 1154.5 998.1 1035.3 15.6 13.3 13.7 29.33 25.39 26.27 88.08 78.59 79.98
苏玉糯1704 SYN1704 4.54 4.13 4.30 903.5 794.9 821.3 13.8 11.5 11.7 33.33 29.33 30.45 85.60 73.11 76.20
苏玉糯901 SYN901 4.37 4.01 4.11 1096.7 1021.2 1032.7 15.0 12.9 13.1 30.67 28.2 28.74 89.35 79.38 81.50
苏玉糯802 SYN802 5.69 5.09 5.37 1143.7 1016.7 1072.9 14.6 13.2 13.2 30.63 26.67 26.84 87.70 75.25 76.10
品种
Cultivar
Fv/Fm Fv/Fo Chl a Chl b Chl a+b
CK H1 H2 CK H1 H2 CK H1 H2 CK H1 H2 CK H1 H2
苏玉糯639 SYN639 0.75 0.68 0.68 2.94 2.60 2.64 0.76 0.69 0.71 1.33 1.14 1.13 2.11 1.79 1.81
苏玉糯2号 SYN2 0.76 0.71 0.73 3.20 2.82 2.97 0.76 0.70 0.70 1.35 1.24 1.25 2.18 2.03 2.01
苏玉糯11 SYN11 0.74 0.67 0.70 3.05 2.56 2.8 0.75 0.65 0.66 1.26 1.07 1.09 2.02 1.77 1.74
中糯2号ZN2 0.76 0.70 0.73 3.21 2.86 2.93 0.73 0.69 0.67 1.28 1.15 1.19 2.04 1.81 1.95
苏玉糯1803 SYN1803 0.76 0.70 0.71 3.12 2.70 2.67 0.76 0.70 0.71 1.45 1.32 1.24 2.17 1.89 1.91
焦点糯517 JDN517 0.78 0.71 0.73 3.50 2.98 3.00 0.77 0.70 0.70 1.37 1.16 1.17 2.15 1.86 1.9
苏玉糯1502 SYN1502 0.75 0.69 0.70 3.19 2.73 2.70 0.76 0.71 0.72 1.21 1.10 1.06 2.05 1.88 1.91
苏玉糯1704 SYN1704 0.78 0.71 0.73 3.48 2.99 3.15 0.78 0.72 0.73 1.12 0.95 1.00 1.99 1.79 1.82
苏玉糯901 SYN901 0.76 0.71 0.72 3.25 2.72 2.97 0.72 0.66 0.68 1.43 1.29 1.30 2.14 1.96 2.03
苏玉糯802 SYN802 0.77 0.68 0.69 3.31 2.82 2.94 0.7 0.63 0.64 1.48 1.31 1.31 2.2 1.94 1.99
品种
Cultivar
PV ETB Yield
CK H1 H2 CK H1 H2 CK H1 H2
苏玉糯639 SYN639 CK H1 H2 CK H1 H2 10030.5 8158.5 8462.9
苏玉糯2号 SYN2 90.3 71.5 74.1 1.54 2.30 2.40 9518.0 8649.5 8779.5
苏玉糯11 SYN11 88.8 76.3 80.5 1.10 1.29 1.21 10627.5 8382.0 8801.5
中糯2号ZN2 87.2 64.7 71.5 1.67 2.90 2.68 9432.0 8527.5 8911.5
苏玉糯1803 SYN1803 91.2 80.1 82.4 0.73 0.81 0.78 10519.5 8896.5 9021.0
焦点糯517 JDN517 90.3 75.5 77.2 1.10 1.53 1.49 10631.0 8469.0 8736.0
苏玉糯1502 SYN1502 91.1 71.9 74.5 1.43 2.72 2.23 9679.5 8163.5 8371.5
苏玉糯1704 SYN1704 89.5 71.6 77.2 1.50 2.45 2.32 10773.0 9064.5 9360.5
苏玉糯901 SYN901 87.1 70.8 73.3 1.33 2.07 2.00 10242.0 9001.0 9191.0
苏玉糯802 SYN802 91.1 76.9 79.7 1.27 2.09 2.14 10123.5 8542.0 8763.0

Table 1

Heat tolerance coefficient (HTC) of each single index of different waxy maize cultivars"

品种 Cultivar X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13
苏玉糯639 SYN639 0.877 0.914 0.870 0.821 0.819 0.913 0.892 0.908 0.852 0.855 0.806 0.829 1.500
苏玉糯2号 SYN2 0.922 0.946 0.924 0.921 0.921 0.943 0.905 0.928 0.919 0.918 0.880 0.917 1.138
苏玉糯11 SYN11 0.856 0.906 0.855 0.828 0.799 0.927 0.879 0.882 0.868 0.869 0.781 0.808 1.676
中糯2号 ZN2 0.928 0.940 0.931 0.935 0.924 0.936 0.903 0.927 0.915 0.923 0.891 0.925 1.089
苏玉糯1803 SYN1803 0.906 0.920 0.910 0.870 0.821 0.929 0.861 0.926 0.884 0.872 0.846 0.842 1.379
焦点糯517 JDN517 0.874 0.930 0.847 0.819 0.808 0.925 0.853 0.905 0.855 0.877 0.804 0.809 1.728
苏玉糯1502 SYN1502 0.909 0.886 0.867 0.881 0.906 0.925 0.851 0.938 0.895 0.922 0.831 0.850 1.593
苏玉糯1704 SYN1704 0.928 0.895 0.842 0.900 0.873 0.921 0.880 0.923 0.869 0.909 0.827 0.854 1.529
苏玉糯901 SYN901 0.930 0.937 0.870 0.929 0.904 0.941 0.878 0.936 0.903 0.932 0.859 0.881 1.676
苏玉糯802 SYN802 0.918 0.916 0.905 0.887 0.864 0.893 0.871 0.905 0.881 0.884 0.839 0.855 1.627
平均值 Mean 0.905 0.919 0.882 0.879 0.864 0.925 0.877 0.918 0.884 0.896 0.836 0.857 1.494
标准差 SD 0.027 0.020 0.033 0.044 0.049 0.014 0.019 0.017 0.024 0.027 0.034 0.040 0.225
变异系数 CV (%) 2.935 2.125 3.698 5.028 5.680 1.563 2.168 1.900 2.673 3.062 4.112 4.700 15.038

Table 2

Correlations of heat resistance coefficients of all indices in tested waxy maize verities"

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13
X1 1.000
X2 0.142 1.000
X3 0.435 0.498 1.000
X4 0.896** 0.065 0.304 1.000
X5 0.862** 0.199 0.579* 0.903** 1.000
X6 0.010 0.448 0.307 0.282 0.275 1.000
X7 0.344 0.631* 0.603* 0.205 0.313 0.341 1.000
X8 0.678* 0.296 0.256 0.859** 0.737* 0.614* 0.484 1.000
X9 0.743* 0.459 0.317 0.841** 0.795** 0.460 0.556 0.942** 1.000
X10 0.717* 0.270 0.373 0.889** 0.834** 0.560* 0.360 0.912** 0.881** 1.000
X11 0.867** 0.344 0.536 0.902** 0.869** 0.485 0.559 0.912** 0.896** 0.884** 1.000
X12 0.861** 0.238 0.530 0.884** 0.914** 0.316 0.581 0.861** 0.895** 0.873** 0.936** 1.000
X13 -0.412 0.002 -0.372 -0.424 -0.501 -0.220 -0.659* -0.568 -0.543 -0.383 -0.573* -0.700* 1.000

Table 3

Eigenvectors and percentage of accumulated contribution of principal components"

主成分 Principle factor CI1 CI2 CI3
特征值 Eigen value 8.38 1.96 1.01
贡献率 Contribution ratio 64.46 15.06 7.76
累计贡献率 Cumulative contribution ratio (%) 64.46 79.52 87.28
特征向量 Eigen vector X1 0.84 0.36 -0.03
X2 0.53 -0.59 0.28
X3 0.71 -0.49 -0.34
X4 0.94 0.21 -0.09
X5 0.91 0.29 -0.07
X6 0.55 -0.05 0.81
X7 0.55 -0.61 0.00
X8 0.75 0.49 0.06
X9 0.94 0.03 0.07
X10 0.82 0.49 0.19
X11 0.97 -0.07 -0.11
X12 0.98 -0.12 -0.06
X13 -0.75 0.49 0.09

Table 4

The value of each variety’s comprehensive index (CI), index weight, u(Xj), D value and comprehensive valuation"

品种
Cultivar
CI(1) CI(2) CI(3) u(X1) u(X2) u(X3) D
D-value
排序
Rank
综合评价
Comprehensive valuation
苏玉糯639 SYN639 2.42 0.46 0.59 0.22 0.61 0.41 0.303 8 高温敏感型 Heat sensitive type
苏玉糯2号 SYN2 2.71 0.36 0.55 0.91 1.00 1.00 0.932 2 耐热型 Heat tolerance type
苏玉糯11 SYN11 2.34 0.53 0.63 0.13 0.43 0.67 0.228 10 高温敏感型 Heat sensitive type
中糯2号 ZN2 2.74 0.35 0.53 0.95 0.98 0.86 0.950 1 耐热型 Heat tolerance type
苏玉糯1803 SYN1803 2.52 0.44 0.57 0.52 0.38 0.72 0.512 6 中等耐热型Medium heat tolerance type
焦点糯517 JDN517 2.34 0.56 0.64 0.20 0.39 0.63 0.269 9 高温敏感型 Heat sensitive type
苏玉糯1502 SYN1502 2.49 0.59 0.59 0.63 0.00 0.64 0.523 5 中等耐热型Medium heat tolerance type
苏玉糯1704 SYN1704 2.50 0.55 0.59 0.57 0.35 0.57 0.533 4 中等耐热型Medium heat tolerance type
苏玉糯901 SYN901 2.54 0.60 0.61 0.79 0.67 0.95 0.787 3 耐热型 Heat tolerance type
苏玉糯802 SYN802 2.47 0.54 0.55 0.43 0.44 0.00 0.393 7 中等耐热型Medium heat tolerance type
权重Weight 0.739 0.173 0.089

Fig. 4

Fuzzy clustering dendrogram of heat resistance in tested maize cultivars based on D-value Abbreviations are the same as those given in Fig. 1."

Table 5

Analysis of evaluation accuracy of equation"

品种
Cultivar
预测值
Predicted value
原始值
Primary value
差值
Difference
估计精度
Evaluation accuracy (%)
苏玉糯639 SYN639 0.299 0.303 -0.004 98.68
苏玉糯2号 SYN2 0.935 0.932 0.003 99.68
苏玉糯11 SYN11 0.228 0.228 0.000 100.00
中糯2号 ZN2 0.951 0.950 0.001 99.89
苏玉糯1803 SYN1803 0.516 0.512 0.004 99.22
焦点糯517 JDN517 0.272 0.269 0.003 98.88
苏玉糯1502 SYN1502 0.512 0.523 -0.011 97.90
苏玉糯1704 SYN1704 0.542 0.533 0.000 100.00
苏玉糯901 SYN901 0.778 0.787 0.009 98.31
苏玉糯802 SYN802 0.392 0.393 -0.009 98.86

Fig. 5

Description of different waxy maize types to high temperature tolerance in hierarchical cluster result * and ** indicate significant differences at the 0.05 and 0.01 probability levels, respectively. ns: no significant difference."

Table 6

Effects of high temperature on yield of waxy maize in different heat tolerance"

耐热类型
Tolerance type
品种
Cultivar
对照产量
Control yield
(kg hm-2)
高温产量
High temperature yield (kg hm-2)
产量下降比例
Relative yield reduction (%)
H1 H2 平均值Mean H1 H2 平均值Mean
耐热型
Heat resistance
中糯2号 ZN2 628.8 568.5 594.1 581.3 9.59 5.52 7.55
苏玉糯2号 SYN2 634.5 576.6 585.3 581.0 9.12 7.76 8.44
苏玉糯901 SYN901 682.8 600.1 612.7 606.4 12.12 10.26 11.19
高温敏感型
Heat sensitive
苏玉糯639 SYN639 668.7 543.9 564.2 554.0 18.66 15.63 17.15
焦点糯517 JDN517 708.7 564.6 582.4 573.5 20.34 17.83 19.08
苏玉糯11 SYN11 708.5 558.8 586.8 572.8 21.13 17.18 19.16
中等耐热型
Medium resistance
苏玉糯1803 SYN1803 701.3 593.1 601.4 597.3 15.43 14.24 14.84
苏玉糯1502 SYN1502 645.3 544.2 558.1 551.2 15.66 13.51 14.59
苏玉糯1704 SYN1704 718.2 604.3 624.0 614.2 15.86 13.11 14.49
苏玉糯802 SYN802 674.9 569.5 584.2 576.8 15.62 13.44 14.53
[1] 赵久然, 卢柏山, 史亚兴, 徐丽. 我国糯玉米育种及产业发展动态. 玉米科学, 2016, 24(4): 67-71.
Zhao J R, Lu B S, Shi Y X, Xu L. Development trends of waxy corn breeding and industry in China. J Maize Sci, 2016, 24(4): 67-71. (in Chinese with English abstract)
[2] 瞿玲玲, 严旖旎, 李广浩, 杨欢, 陆卫平, 陆大雷. 105个鲜食糯玉米品种籽粒糊化特性的评价. 扬州大学学报(农业与生命科学版), 2022, 43(1): 82-87.
Qu L L, Yan Y N, Li G H, Yang H, Lu W P, Lu D L. Evaluation of pasting properties of 105 fresh waxy maize hybrids. J Yangzhou Univ (Agric Life Sci Edn), 2022, 43(1): 82-87. (in Chinese with English abstract)
[3] 史亚兴, 徐丽, 赵久然, 卢柏山, 樊艳丽. 中国糯玉米产业优势及在“一带一路”发展中的机遇. 作物杂志, 2019, (2): 15-19.
Shi Y X, Xu L, Zhao J R, Lu B S, Fan Y L. Waxy maize industry advantages in China and opportunities in the development of the belt and road. Crops, 2019, (2): 15-19. (in Chinese with English abstract)
[4] Intergovernmental Panel on Climate Change. IPCC-SR15, Global Warming of 1.5℃. [2021-03-03]. http://www.ipcc.ch/report/sr15/.
[5] 中国气象局气候变化中心. 中国气候变化蓝皮书 (2021). 北京: 科学出版社, 2021. pp 11-12.
Climate Change Center of China Meteorological Administration. China Blue Book on Climate Change (2021). Beijing: Science Press, 2021. pp 11-12. (in Chinese)
[6] 第三次气候变化国家评估报告编写委员会. 第三次气候变化国家评估报告. 北京: 科学出版社, 2015. pp 10-18.
Preparation Committee for the Third National Assessment Report on Climate Change. The Third National Assessment of Climate Change. Beijing: Science Press, 2015. pp 10-18. (in Chinese)
[7] 中国气象局气候变化中心. 中国气候变化蓝皮书 (2022). 北京: 科学出版社, 2022. pp 12-14.
Climate Change Center of China Meteorological Administration. China Blue Book on Climate Change (2022). Beijing: Science Press, 2022. pp 12-14. (in Chinese)
[8] 赵丽晓, 张萍, 王若男, 王璞, 陶洪斌. 花后前期高温对玉米强弱势籽粒生长发育的影响. 作物学报, 2014, 40: 1839-1845.
doi: 10.3724/SP.J.1006.2014.01839
Zhao L X, Zhang P, Wang R N, Wang P, Tao H W. Effect of high temperature after flowering on growth and development of superior and inferior maize kernels. Acta Agron Sin, 2014, 40: 1839-1845. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01839
[9] Liu M Y, Dong X, Zhang Y J, Gu M Q, Yu Y H, Xie H J, Yang H, Yu X Y, Huang S B. Heat stress on maize with contrasting genetic background: differences in flowering and yield formation. Agric For Meter, 2022, 319: 108934.
[10] Gabaldón-Leal H, Webber M E, Otegui G A, Slafer R A, Ordóñez T, Gaiser I J, Lorite M, Ruiz-Ramos F. Modelling the impact of heat stress on maize yield formation. Fie Crops Res, 2016, 198: 226-237.
[11] 徐欣莹, 邵长秀, 孙志刚, 龙步菊, 董宛麟. 高温胁迫对玉米关键生育期生理特性和产量的影响研究进展. 玉米科学, 2021, 29(2): 81-88.
Xu X Y, Shao C X, Sun Z G, Long B J, Dong W L. Research progress on the effect of heat stress on physiological characteristics of maize at key growth stage and the yield. J Maize Sci, 2021, 29(2): 81-88. (in Chinese with English abstract)
[12] 张川, 刘栋, 王洪章, 任昊, 赵斌, 张吉旺, 任佰朝, 刘存辉, 刘鹏. 不同时期高温胁迫对夏玉米物质生产性能及籽粒产量的影响. 中国农业科学, 2022, 55: 3710-3722.
doi: 10.3864/j.issn.0578-1752.2022.19.003
Zhang C, Liu D, Wang H Z, Ren H, Zhao B, Zhang J W, Ren B Z, Liu C H, Liu P. Effects of high temperature stress in different periods on dry matter production and grain yield of summer maize. Sci Agric Sin, 2022, 55: 3710-3722.
doi: 10.3864/j.issn.0578-1752.2022.19.003
[13] Teng L I, Zhang X P, Qing L, Liu J, Chen Y Q, Sui P. Yield penalty of maize (Zea mays L.) under heat stress in different growth stages: A review. J Inter Agric, 2022, 21: 2465-2476.
[14] 任仰涛, 金彦刚, 李辉晖, 李珍富, 杨永乐, 赵其兵, 常东伟, 满锡玉, 宋红芳, 夏中华. 江苏淮北地区29个玉米新品种耐高温胁迫筛选. 中国种业, 2019, (6): 38-42.
Ren Y T, Jin Y G, Li H H, Li Z F, Yang Y L, Zhao Q B, Chang D W, Man X Y, Song H F, Xia Z H. Screening of 29 new maize breeds with high temperature tolerance in Huaibei area of Jiangsu province. China Seed Ind, 2019, (6): 38-42. (in Chinese with English abstract)
[15] 于康珂. 玉米穗发育对高温胁迫的响应. 河南农业大学硕士学位论文, 河南郑州, 2016.
Yu K K. The Response of Heat Stress on Ear Development of Maize. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2016. (in Chinese with English abstract)
[16] 李小凡. 高温、干旱及其复合胁迫对夏玉米产量形成的影响. 山东农业大学硕士学位论文, 山东泰安, 2022.
Li X F. Effects of High Temperature, Drought and Their Combined Stress on Yield Formation of Summer Maize. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2022. (in Chinese with English abstract)
[17] Wang X L, Yan Y, Xu C C, Wang X Y, Luo N, Wei D, Meng Q F, Wang P. Mitigating heat impacts in maize (Zea mays L.) during the reproductive stage through biochar soil amendment. Agric Ecosys Environ, 2021, 311: 107321.
doi: 10.1016/j.agee.2021.107321
[18] Ordóñez R A, Savin R, Cossani C M, Slafer G A. Yield response to heat stress as affected by nitrogen availability in maize. Field Crop Res, 2015, 183: 184-203.
doi: 10.1016/j.fcr.2015.07.010
[19] 张萍, 陈冠英, 耿鹏, 高雅, 郑雷, 张沙沙, 王璞. 子粒灌浆期高温对不同耐热型玉米品种强弱势粒发育的影响. 中国农业科学, 2017, 50: 2061-2070.
doi: 10.3864/j.issn.0578-1752.2017.11.012
Zhang P, Chen G Y, Geng P, Gao Y, Zheng L, Zhang S S, Wang P. Effects of high temperature during grain filling period on superior and inferior kernels’ development of different heat sensitive maize varieties. Sci Agric Sin, 2017, 50: 2061-2070. (in Chinese with English abstract)
[20] 杨欢, 沈鑫, 陆大雷, 陆卫平. 籽粒建成期高温胁迫持续时间对糯玉米籽粒产量和淀粉品质的影响. 中国农业科学, 2017, 50: 2071-2082.
doi: 10.3864/j.issn.0578-1752.2017.11.013
Yang H, Shen X, Lu D L, Lu W P. Effects of heat stress durations at grain formation stage on grain yield and starch quality of waxy maize. Sci Agric Sin, 2017, 50: 2071-2082. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2017.11.013
[21] Gu X T, Zhang X Y, Lu W P, Lu D L. Starch structural and functional properties of waxy maize under different temperature regimes at grain formation stage. Food Chem: X, 2022, 16: 100463.
doi: 10.1016/j.fochx.2022.100463
[22] Tiwari Y K, Yadav S K. High temperature stress tolerance in maize (Zea mays L.): physiological and molecular mechanisms. J Plant Biol, 2019, 62: 93-102.
doi: 10.1007/s12374-018-0350-x
[23] El-Sappah A H, Rather S A, Wani S H, Elrys A S, Bilal M, Huang Q, Dar Z A, Elashtokhy M M A, Soaud N, Koul M, Mir R R, Yan K, Li J, El-Tarabily K A, Abbas M. Heat stress-mediated constraints in maize (Zea mays. L) production: challenges and solutions. Front Plant Sci, 2022, 13: 879366.
doi: 10.3389/fpls.2022.879366
[24] 李敏, 苏慧, 李阳阳, 李金鹏, 李金才, 朱玉磊, 宋有洪. 黄淮海麦区小麦耐热性分析及其鉴定指标的筛选. 中国农业科学, 2021, 54: 3381-3393.
doi: 10.3864/j.issn.0578-1752.2021.16.002
Li M, Su H, Li Y Y, Li J P, Li J C, Zhu Y L, Song Y H. Analysis of heat tolerance of wheat with different genotypes and screening of identification indexes in Huang-Huai-Hai Region. Sci Agric Sin, 2021, 54: 3381-3393. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2021.16.002
[25] 朱亚迪, 王慧琴, 王洪章, 任昊, 吕建华, 赵斌, 张吉旺, 任佰朝, 殷复伟, 刘鹏. 不同夏玉米品种大喇叭口期耐热性评价和鉴定指标筛选. 作物学报, 2022, 48: 3130-3143.
doi: 10.3724/SP.J.1006.2022.13079
Zhu Y D, Wang H Q, Wang H Z, Ren H, Lyu J H, Zhao B, Zhang J W, Ren B Z, Yin F W, Liu P. Evaluation and identification index of heat tolerance in different summer maize varieties at V12 stage. Acta Agron Sin, 2022, 48: 3130-3143. (in Chinese with English abstract)
[26] 于康珂, 刘源, 李亚明, 孙宁宁, 詹静, 尤东玲, 牛丽, 李潮海, 刘天学. 玉米花期耐高温品种的筛选与综合评价. 玉米科学, 2016, 24(2): 62-71.
Yu K K, Liu Y, Li Y M, Sun N N, Zhan J, You D L, Niu L, Li C H, Liu T X. Screening and comprehensive evaluation of heat- tolerance of maize hybrids in flowering stage. J Maize Sci, 2016, 24(2): 62-71. (in Chinese with English abstract)
[27] 商蒙非, 石晓宇, 赵炯超, 李硕, 褚庆全. 气候变化背景下中国不同区域玉米生育期高温胁迫时空变化特征. 作物学报, 2023, 49: 167-176.
doi: 10.3724/SP.J.1006.2023.23007
Shang M F, Shi X Y, Zhao J C, Li S, Chu Q Q. Spatiotemporal variation of high temperature stress in different regions of China under climate change. Acta Agron Sin, 2023, 49: 167-176. (in Chinese with English abstract)
[28] Gu X, Huang T, Ding M, Lu W, Lu D. Effects of short-term heat stress at the grain formation stage on physicochemical properties of waxy maize starch. J Sci Food Agric, 2018, 98: 1008-1015.
doi: 10.1002/jsfa.2018.98.issue-3
[29] Yan Y N, Wang L F, Lu D L. Effects of spraying exogenous cytokinin or spermine on the starch physicochemical properties of waxy maize exposed to post-silking high temperature. J Cerel Sci, 2020, 95: 103040.
[30] Wang J, Fu P, Lu W, Lu D. Application of moderate nitrogen levels alleviates yield loss and grain quality deterioration caused by post-silking heat stress in fresh waxy maize. Crop J, 2020, 8: 1081-1092.
doi: 10.1016/j.cj.2019.11.007
[31] 侯昕芳, 王媛媛, 黄收兵, 董昕, 陶洪斌, 王璞. 花期前后高温对玉米花粉发育及结实率的影响. 中国农业大学学报, 2020, 25(3): 10-16.
Hou X F, Wang Y Y, Huang S B, Dong X, Tao H B, Wang P. Effects of high temperature during flowering on pollen development and seed setting rate of maize (Zea mays L.). J China Agric Univ, 2020, 25(3): 10-16. (in Chinese with English abstract)
[32] 宋旭东, 章慧敏, 张振良, 周广飞, 冒宇翔, 陆虎华, 陈国清, 石明亮, 黄小兰, 薛林, 郝德荣. 外源水杨酸和氯化钙对糯玉米花期高温胁迫下光合特性及产量的调控效应. 江苏农业科学, 2022, 50(7): 87-94.
Song X D, Zhang H M, Zhang Z L, Zhou G F, Mao Y X, Lu H H, Chen G Q, Shi M L, Huang X L, Xue L, Hao D R. The effects of exogenous salicylic acid and calcium chloride on photosynthetic productivity and yield of waxy maize under heat stress. Jiangsu Agric Sci, 2022, 50(7): 87-94. (in Chinese with English abstract)
[33] 翟大帅. 高温胁迫下化控剂对夏玉米生理特性及产量的影响. 河北农业大学硕士学位论文, 河北保定, 2019.
Zhai D S. Effects of Chemical Control Agents on Physiological Characteristics and Yield of Summer Maize under High Temperature Stress. MS Thesis of Hebei Agricultural University, Baoding, Hebei, China, 2019 (in Chinese with English abstract).
[34] 高英波, 张慧, 单晶, 薛艳芳, 钱欣, 代红翠, 刘开昌, 李宗新. 吐丝前高温胁迫对不同耐热型夏玉米产量及穗发育特征的影响. 中国农业科学, 2020, 53: 3954-3963.
doi: 10.3864/j.issn.0578-1752.2020.19.009
Gao Y B, Zhang H, Shan J, Xue Y F, Qian X, Dai H C, Liu K C, Li Z X. Effects of pre-silking high temperature stress on yield and ear development characteristics of different heat-resistant summer maize cultivars. Sci Agric Sin, 2020, 53: 3954-3963. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.19.009
[35] 文廷刚, 杜小凤, 刘京宝, 杨文飞, 顾大路, 罗玉明, 王伟中. 玉米花期耐热性评价指标及防御技术研究. 南京农业大学学报, 2021, 44(2): 232-240.
Wen T G, Du X F, Liu J B, Yang W F, Gu D L, Luo Y M, Wang W Z. Study on heat tolerance evaluation index and defense technology of maize at flowering stage. J Nanjing Agric Univ, 2021, 44(2): 232-240. (in Chinese with English abstract)
[36] 杨琴, 陈艺博, 赵文龙, 苗正言, 王晶晶, 贾绪存, 宋睿, 王群. 增温对玉米冠根形态、生长发育和产量的影响. 玉米科学, 2022, 30(6): 67-77.
Yang Q, Chen Y B, Zhao W L, Miao Z Y, Wang J J, Jia X C. Song R, Wang Q. Effects of elevated temperature on maize crown root morphological traits, growth and yield. J Maize Sci, 2022, 30(6): 67-77. (in Chinese with English abstract)
[37] Zheng Y P, Xu M, Shen R C, Qiu S. Effects of artificial warming on the structural, physiological, and biochemical changes of maize (Zea mays L.) leaves in northern China. Acta Physiol Plant, 2013, 35: 2891-2904.
doi: 10.1007/s11738-013-1320-z
[38] 穆心愿, 马智艳, 张兰薰, 付景, 刘天学, 丁勇, 夏来坤, 张凤启, 张君, 齐建双, 赵霞, 唐保军. 不同耐/感玉米品种的叶片光合荧光特性、授粉结实和产量构成因素对花期高温的反应. 中国生态农业学报, 2022, 30: 57-71.
Mu X Y, Ma Z Y, Zhang L X, Fu J, Liu T X, Ding Y, Xia L K, Zhang F Q, Zhang J, Qi J S, Zhao X, Tang B J. Responses of photosynthetic fluorescence characteristics, pollination, and yield components of maize cultivars to high temperature during flowering. Chin Eco-Agric, 2022, 30: 57-71. (in Chinese with English abstract)
[39] 关媛, 党冬冬, 王慧, Rani D R, 潘广磊, Paul J D, 阮燕晔, 郑洪建. 甜、糯玉米自交系耐热性鉴定研究. 上海农业学报, 2020, 36(6): 28-32.
Guan Y, Dang D D, Wang H, Rani D R, Pan G L, Paul J D, Ruan Y Y, Zheng H J. Study on the identification of heat tolerance of inbred lines in sweet corn and waxy corn. Acta Agric Shanghai, 2020, 36(6): 28-32. (in Chinese with English abstract)
[40] Wang Y, Tao H, Tian B, Sheng D, Xu C, Zhou H, Huang S, Wang P. Flowering dynamics, pollen, and pistil contribution to grain yield in response to high temperature during maize flowering. Environ Exp Bot, 2019, 158: 80-88.
doi: 10.1016/j.envexpbot.2018.11.007
[1] ZHAO Peng, CHEN Guang-Xia, ZHANG Yan-Ping, YANG Xiao-Hui, LIU Fang, DONG Dao-Feng. Alkaline tolerance identification method of potato seedlings and comprehensive assessment of alkaline tolerance of 86 kinds of potato germplasms [J]. Acta Agronomica Sinica, 2023, 49(11): 2923-2934.
[2] BAI Dong-Mei, XUE Yun-Yun, HUANG Li, HUAI Dong-Xin, TIAN Yue-Xia, WANG Peng-Dong, ZHANG Xin, ZHANG Hui-Qi, LI Na, JIANG Hui-Fang, LIAO Bo-Shou. Assessment of cold tolerance of different peanut varieties and screening of evaluation indexes at germination stage [J]. Acta Agronomica Sinica, 2022, 48(8): 2066-2079.
[3] Hai-Yan ZHANG,Bei-Tao XIE,Bao-Qing WANG,Shun-Xu DONG,Wen-Xue DUAN,Li-Ming ZHANG. Evaluation of drought tolerance and screening for drought-tolerant indicators in sweetpotato cultivars [J]. Acta Agronomica Sinica, 2019, 45(3): 419-430.
[4] Yuan LU,Wei-Da AI,Qing HAN,Yi-Fa WANG,Hong-Yang LI,Yu-Ji QU,Biao SHI,Xue-Fang SHEN. Genetic diversity and population structure analysis by SSR markers in waxy maize [J]. Acta Agronomica Sinica, 2019, 45(2): 214-224.
[5] Wen-Xue DUAN,Hai-Yan ZHANG,Bei-Tao XIE,Bao-Qing WANG,Li-Ming ZHANG. Identification of Salt Tolerance and Screening for Its Indicators in Sweet Potato Varieties during Seedling Stage [J]. Acta Agronomica Sinica, 2018, 44(8): 1237-1247.
[6] Long-Jian SHI,Zhang-Rong WEN,Shi-Bo ZHANG,Jue WANG,Wei-Ping LU,Da-Lei LU. Effects of Water Deficit at Flowering Stage on Yield and Quality of Fresh Waxy Maize [J]. Acta Agronomica Sinica, 2018, 44(8): 1205-1211.
[7] YU Bin, YANG Hong-Yu,WANG Li,LIU Yu-Hui, BAI Jing-Pin, WANG Di, ZHANG Jun-Lian. Genetic Diversity Analysis and Comprehensive Assessment of Phenotypic Traits in Introduced Potato Germplasm Resources in Arid and Semi-arid Area [J]. Acta Agron Sin, 2018, 44(01): 63-74.
[8] ZHANG Xiao-Xing, ZHU Hui, ZHANG Dong-Min, SONG Li-Ya, ZHANG De-Gui, WENG Jian-Feng, HAO Zhuan-Fang,LI Ming-Shun. Construction of Waxy Maize opaque2 Near-isogenic Lines [J]. Acta Agron Sin, 2017, 43(12): 1760-1766.
[9] LU Da-Lei,SUN Xu-Li,WANG Xin,YAN Fa-Bao,LU Wei-Ping. Effects of Basic Fertilizer and Nitrogen Topdressing Treatments at Jointing Stage on Grain Textural Characteristics of Fresh Waxy Maize [J]. Acta Agron Sin, 2013, 39(03): 557-562.
[10] HU Biao-Lin,WAN Yong,LI Xia,LEI Jian-Guo,LUO Xiang-Dong,YAN Wen-Gui,XIE Jian-Kun. Analysis on Genetic Diversity of Phenotypic Traits in Rice (Oryza sativa) Core Collection and Its Comprehensive Assessment [J]. Acta Agron Sin, 2012, 38(05): 829-839.
[11] LIU Da-Lei, GUO Huan-Fen, DONG Ce, LIU Wei-Peng. Differences of Physicochemical Properties for Waxy Maize Flour at Fresh and Maturity Stages [J]. Acta Agron Sin, 2010, 36(12): 2170-2178.
[12] LU Da-Lei, GUO Huan-Fen, DONG Ce, LU Wei-Peng. Starch Granule Size Distribution and Thermal Properties in Eight Waxy Maize Cultivars Grown in Spring and Autumn [J]. Acta Agron Sin, 2010, 36(11): 1998-2003.
[13] LU Da-Lei,WANG De-Cheng,JING Li-Quan,HAN Qing,GUO Huan-Fen, et al.. Starch Gelatinization and Retrogradation Properties under different Basic Fertilizer Regimes and Nitrogen Topdressing at Jointing Stage of Waxy Maize [J]. Acta Agron Sin, 2009, 35(5): 867-874.
[14] LU Da-Lei;LU Wei-Ping;ZHAO Jiu-Ran;WANG De-Cheng. Effects of Basic Fertilizer Treatments and Nitrogen Topdressing at Joint-ing Stage on Starch RVA Characteristics of Waxy Maize [J]. Acta Agron Sin, 2008, 34(07): 1253-1258.
[15] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China [J]. Acta Agron Sin, 2008, 34(05): 729-736.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .