Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (05): 829-839.doi: 10.3724/SP.J.1006.2012.00829

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Analysis on Genetic Diversity of Phenotypic Traits in Rice (Oryza sativa) Core Collection and Its Comprehensive Assessment

HU Biao-Lin1,2,4,WAN Yong1,4,LI Xia1,4,LEI Jian-Guo1,4,LUO Xiang-Dong2,YAN Wen-Gui3,XIE Jian-Kun2,*   

  1. 1 Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China; 2 College of Life Science, Jiangxi Normal University, Nanchang 330022, China; 3 USDA-ARS, Dale Bumpers National Rice Research Center, Stuttgart, Arkansas, 72160, USA?; 4 National Engineering Laboratory for Rice, Nanchang, Jiangxi 330200, China
  • Received:2011-09-09 Revised:2012-01-19 Online:2012-05-12 Published:2012-03-05
  • Contact: 谢建坤, E-mail: xiejiankun@yahoo.com, Tel: 0791-88120391

Abstract:

Germplasm resources are fundamental in rice breeding and dissecting complex traits; however, assessment of genetic diversity benefits the identification of optimal parental combinations to produce segregating offspring with maximum genetic variability, and facilitates the introgression of favorable genes from various germplasm into commercial cultivars. The USDA rice core collection (USDA-RCC) (1 579 rice accessions originated from six continents), was analyzed with 14 phenotypic traits to assess diversity and phenotypically superior rice germplasm. Themain results were summarized as follows: (1) Genetic distance of the germplasm from Asia and Africa to that of Oceania was larger. Rice germplasm from Asia, Africa and Oceania had accordingly greater phenotypic and genetic diversities, and genetic diversity of different traits was different among continents. Six traits including kernel length/width (KLW), alkali spreading value (ASC), plant height (PH), kernel width (KW), 1000-kernel weight (TKW) and amylose content (AC) had greater genetic diversity. (2) Comprehensive assessment of phenotypic traits was conducted using principal component analysis (392768 from Vietnam had the best comprehensive traits while the accession PI 281760 performed the worst comprehensive traits, and AC, HD, PH, lodging, BRC and HC would be suitable as comprehensive criteria for assessing USDA-RCC germplasm. We suggest these rice germplasm possessing great phenotypic diversity should be widely utilized in breeding programs, moreover, these rice germplasm with farther genetic distance and different comprehensive traits should be appropriately considered for the parental selection.PCA) and step regression analysis, demonstrating that the accession PI

Key words: Core collection, Phenotypic traits, Genetic diversity, Principal component analysis, Comprehensive assessment

[1]Zhao K Y, Tung C W, Eizenga G C, Wright M H, Ali L M, Price A H, Norton G J, Islam M R, Reynolds A, Mezey J, McClung A M, Bustamante C D, McCouch S R. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun, 2011, 2: 1-10



[2]Glaszmann J C, Kilian B, Upadhyaya H D, Varshne R K. Accessing genetic diversity for crop improvement. Curr Opin Plant Biol, 2010, 13: 1-7



[3]Hajjar R, Jarvis D I, Gemmill-Herren B. The utility of crop genetic diversity in maintaining ecosystem services. Agric Ecosyst Environ, 2008,123: 261-270



[4]Frankel O H, Brown A H D. Current plant genetic resources-a critical appraisal. In: Chopra V L, Joshi B C, Sharma R P, Bansal H C, eds. Genetics: New Frontiers, Vo1. IV. New Delhi: Oxford and IBH Publishing, 1984. pp 3-11



[5]Brown A H D. The case for core collections. In: Brown A H D, Frankel O H, Marshall D R, Williams J T, eds. The Use of Plant Genetic Resources. Cambridge, England: Cambridge University Press, 1989. pp 136-156



[6]Yan W G, Rutger J N, Bryant R J, Bockelman H E, Fjellstrom R G, Chen M H, Tai T H, McClung A M. Development and evaluation of a core subset of the USDA rice (Oryza sativa L.) germplasm collection. Crop Sci, 2007, 47: 869-878



[7]Hao C Y, Zhang X Y, Wang L F, Dong Y S, Shang X W, Jia J Z. Genetic diversity and core collection evaluations in common wheat germplasm from the northwestern spring wheat region in China. Mol Breed, 2006, 17: 69-77



[8]Igartua E, Gracia M P, Lasa J M, Medina B, Molina-Cano J L, Montoya J L, Romagosa I. The Spanish barley core collection. Genet Resour Crop Evol, 1998, 45: 475-481



[9]Qiu L-J(邱丽娟), Cao Y-S(曹永生), Chang R-Z(常汝镇), Zhou X-A(周新安), Wang G-X(王国勋), Sun J-Y(孙建英), Xie H(谢华), Zhang B(张博), Li X-H(李向华), Xu Z-Y(许占有), Liu L-H(刘立宏). Establishment of Chinese soybean (G. max) core collection: I. Sampling strategy. Sci Agric Sin (中国农业科学), 2003, 36(12): 1442-1449 (in Chinese with English abstract)



[10]Grenier C, Hamon P, Bramel-Cox P J. Core collection of sorghum: II. Comparison of three random campling strategies. Crop Sci, 2001, 41: 241-246



[11]Li Y, Shi Y S, Cao Y S, Wang T Y. Establishment of a core collection for maize germplasm preserved in Chinese National Genebank using geographic distribution and characterization data. Genet Resour Crop Evol, 2004, 51: 845-852



[12]Coimbra R R, Miranda G V, Cruz C D, Silva D J H, Vilela R A. Development of a Brazilian maize core collection. Genet Mol Biol, 2009, 32: 538-545



[13]Jiang H-F(姜慧芳), Ren X-P(任小平), Liao B-S(廖伯寿), Huang J-Q(黄家权), Lei Y(雷永), Chen B-Y(陈本银), Guo B Z, Holbrook C C, Uphdyaya H D. Peanut core collection established in China and compared with ICRISAT mini core collection. Acta Agron Sin (作物学报), 2008, 34 (1): 25-30 (in Chinese with English abstract)



[14]Yu J, Hu S N, Wang J, Wong G K S, Li S G, Liu B, Deng Y J, Dai L, Zhou Y, Zhang X Q, Cao M L, Liu J, Sun J D, Tang J B, Chen Y J, Huang X B, Lin W, Ye C, Tong W, Cong L J, Geng J N, Han Y J, Li L, Li W, Hu G Q, Huang X G, Li W J, Li J, Liu Z W, Li L, Liu J P, Qi Q H, Liu J S, Li L, Li T, Wang X G, Lu H, Wu T T, Zhu M, Ni P X, Han H, Dong W, Ren X Y, Feng X L, Cui P, Li X R, Wang H, Xu X, Zhai W X, Xu Z, Zhang J S, He S J, Zhang J G, Xu J C, Zhang K L, Zheng X W, Dong J H, Zeng W Y, Tao L, Ye J, Tan J, Ren X D, Chen X W, He J, Liu D F, Tian W, Tian C G, Xia H A, Bao Q Y, Li G, Gao H, Cao T, Wang J, Zhao W M, Li P, Chen W, Wang X D, Zhang Y, Hu J F, Wang J, Liu S, Yang J, Zhang G Y, Xiong Y Q, Li Z J, Mao L, Zhou C S, Zhu Z, Chen R S, Hao B L, Zheng W M, Chen S Y, Guo W, Li G J, Liu S Q, Tao M, Wang J, Zhu L H, Yuan L P, Yang H M. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 2002, 296: 79-92



[15]Negrao S, Oliveira M M, Jena K K, Mackill D. Integration of genomic tools to assist breeding in the japonica subspecies of rice. Mol Breed, 2008, 22: 159-168



[16]Xu K D, Shen G F. Promoting Chinese rice production through innovative science and technology. In: Mew T W, Brar D S, Peng S, Dawe D, Hardy B, eds. Rice Science: Innovations and Impact for Livelihood, Beijing: International Rice Research Institute, Chinese Academy of Engineering, and Chinese Academy of Agricultural Sciences, 2003. pp 11-18



[17]Chakravarthi B K, Naravaneni R. SSR marker based DNA fingerprinting and diversity study in rice (Oryza sativa L). Afr J Biotechnol, 2006, 5: 684-688



[18]Basnet B M S. Enviroment friendly technologies for increasing rice productivity. J Agric Environ, 2008, 9: 34-40



[19]Tester M, Langridge P. Breeding technologies to increase crop production in a changing world. Science, 2010, 327: 818-822



[20]Pervaiz Z H, Rabbani M A, Khaliq I, Pearce S R, Malik S A. Genetic diversity associated with agronomic traits using microsatellite markers in Pakistani rice landraces. Electron J Biotechnol, 2010, 13: 1-12



[21]Qi Y W, Zhang D L, Zhong H L, Wang M X, Sun J L, Wei X H, Qiu Z G, Tang S X, Cao Y S, Wang X K, Li Z C. Genetic diversity of rice cultivars (Oryza sativa L.) in China and the temporal trends in recent fifty years. Chin Sci Bull, 2006, 51: 681-688



[22]Carmanoa S, Alvarez J B, Caballero L. Genetic diversity for morphological traits and seed storage proteins in Spanish rivet wheat. Biol Plant, 2010, 54: 69-75



[23]Ali A J, Xu J L, Ismail A M, Fu B Y, Vijaykumar C H M, Gao Y M, Domingo J, Maghirang R, Yu S B, Gregorio G, Yanaghihara S, Cohen M, Carmen B, Mackill D, Li Z K. Hidden diversity for abiotic and biotic stress tolerances in the primary gene pool of rice revealed by a large backcross breeding program. Field Crops Res, 2006, 97: 66-76



[24]Chen Y J, Li C P, Huang H J, Jan J Y, Lin S F. Genetic diversity evaluation for glutinous rice germplasm based on agronomic traits. Crop Environ Bioinform, 2005, 2: 11-30



[25]Huang X H, Wei X H, Sang T, Zhao Q, Feng Q, Zhao Y, Li C Y, Zhu C R, Lu T T, Zhang Z W, Li M, Fan DL, Guo Y L, Wang A H, Wang L, Deng L W, Li W J, Lu Y Q, Weng Q J, Liu K Y, Huang T, Zhou T Y, Jing Y F, Li W, Lin Z, Buckler E S, Qian Q, Zhang Q F, Li J Y, Han B. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet, 2010, 43: 961-969



[26]Veasey E A, Silva E F da, Schammass E A, Oliveira G C X, Ando A. Morphoagronomic genetic diversity in American wild rice species. Braz Arch Biol Technol, 2008, 51: 95-104



[27]Li Z-C(李自超), Zhang H-L(张洪亮), Zeng Y-W(曾亚文), Shen S-Q(申时全), Sun C-Q(孙传清), Wang X-K(王象坤). Studies on phenotypic diversity of rice germplasm in Yunnan, China. Acta Agron Sin (作物学报), 2001, 27(6): 832-837 (in Chinese with English abstract)



[28]Hien N L, Sarhadi W A, Oikawa Y, Hirata Y. Genetic diversity of morphological responses and the relationships among Asia aromatic rice (Oryza sativa L.) cultivars. Tropics, 2007, 16: 343-355



[29]Agrama H A, Yan W G, Jia M, Fjellstrom R, McClung A M. Genetic structure associated with diversity and geographic distribution in the USDA rice world collection. Nat Sci, 2010, 2: 247-291



[30]IRRI (International Rice Research Institute) and IBPGR (International Board for Plant Genetic Resources). Characteristics for Rice (Oryza sativa L.) IBPGR-IRRI Rice Advisory Committee, Manila, the Philippines, 1980



[31]Nei M. Molecular Population Genetics and Evaluation. Amsterdam, Oxford: North-Holland Publishing Company, 1975



[32]Campbell D R. Using phenotypic manipulations to study multivariate selection of floral trait associations. Ann Bot, 2009, 103: 1557-1566



[33]Soleri D, Cleveland D A. Farmer selection and conservation of crop varieties. In: Goodman R M ed. Encyclopedia of Plant and Crop Science. Marcel Dekker, New York: Marcel Dekker Incorporated, 2004. pp 433-438



[34]Yan W G, Agrama H, Jia M, Fjellstrom R, McClung A. Geographic description of genetic diversity and relationships in the USDA rice world collection. Crop Sci, 2010, 50: 2406-2417



[35]Molina J, Sikora M, Garud N, Flowers J M, Rubinstein S, Reynolds A, Huang P, Jackson S, Schaal B A, Bustamante C D, Boyko A R, Purugganan M D. Molecular evidence for a single evolutionary origin of domesticated rice. Proc Natl Acad Sci USA, 2011, 108: 8351-8356



[36]Vaughan D A, Lu B R, Tomooka N. The evolving story of rice evolution. Plant Sci, 2008, 174: 394-408



[37]Purugganan M D. The evolution of rice: molecular vignettes on its origins and spread. Archaeol Anthropol Sci, 2010, 2: 61-68



[38]Cao Q J, Lu B R, Xia H, RJ, Sala F, Spada A, Grassi F. Genetic Diversity and origin of weedy rice (Oryza sativa f. spontanea) populations found in North-eastern China revealed by simple sequence repeat (SSR) markers. Ann Bot, 2006, 98: 1241-1252



[39]Yan W G, Dilday R H, Tai T H, Gibbons J W, McNew R W, Rutger J N. Differential response of rice germplasm to straighthead induced by arsenic. Crop Sci, 2005, 45:1223-1228



[40]Yan W G, Li Y, Agrama H A, Luo D, Gao F, Lu X, Ren G. Association mapping of stigma and spikelet characteristics. Mol Breed, 2009, 24: 277-292



[41]Jia L M, Yan W G, Agrama H A, Yeater K, Li X B, Hu B L, Moldenhauer K, McClung A, Wu D X. Searching for germplasm resistant to sheath blight from the USDA rice core collection. Crop Sci, 2011, 51: 1507-1517

[1] XIAO Ying-Ni, YU Yong-Tao, XIE Li-Hua, QI Xi-Tao, LI Chun-Yan, WEN Tian-Xiang, LI Gao-Ke, HU Jian-Guang. Genetic diversity analysis of Chinese fresh corn hybrids using SNP Chips [J]. Acta Agronomica Sinica, 2022, 48(6): 1301-1311.
[2] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[3] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
[4] LIU Shao-Rong, YANG Yang, TIAN Hong-Li, YI Hong-Mei, WANG Lu, KANG Ding-Ming, FANG Ya-Ming, REN Jie, JIANG Bin, GE Jian-Rong, CHENG Guang-Lei, WANG Feng-Ge. Genetic diversity analysis of silage corn varieties based on agronomic and quality traits and SSR markers [J]. Acta Agronomica Sinica, 2021, 47(12): 2362-2370.
[5] GUO Yan-Chun, ZHANG Li-Lan, CHEN Si-Yuan, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Lie-Mei, ZHANG Li-Wu. Establishment of DNA molecular fingerprint of applied core germplasm in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2021, 47(1): 80-93.
[6] SUN Qian, ZOU Mei-Ling, ZHANG Chen-Ji, JIANG Si-Rong, Eder Jorge de Oliveira, ZHANG Sheng-Kui, XIA Zhi-Qiang, WANG Wen-Quan, LI You-Zhi. Genetic diversity and population structure analysis by SNP and InDel markers of cassava in Brazil [J]. Acta Agronomica Sinica, 2021, 47(1): 42-49.
[7] Meng-Liang ZHAO,Li-Hui WANG,Yan-Jing REN,Xue-Mei SUN,Zhi-Qiang HOU,Shi-Peng YANG,Li LI,Qi-Wen ZHONG. Genetic diversity of phenotypic traits in 257 Jerusalem artichoke accessions [J]. Acta Agronomica Sinica, 2020, 46(5): 712-724.
[8] YAN Cai-Xia,WANG Juan,ZHANG Hao,LI Chun-Juan,SONG Xiu-Xia,SUN Quan-Xi,YUAN Cui-Ling,ZHAO Xiao-Bo,SHAN Shi-Hua. Developing the key germplasm of Chinese peanut landraces based on phenotypic traits [J]. Acta Agronomica Sinica, 2020, 46(4): 520-531.
[9] Hong-Yan ZHANG,Tao YANG,Rong LIU,Fang JIN,Li-Ke ZHANG,Hai-Tian YU,Jin-Guo HU,Feng YANG,Dong WANG,Yu-Hua HE,Xu-Xiao ZONG. Assessment of genetic diversity by using EST-SSR markers in Lupinus [J]. Acta Agronomica Sinica, 2020, 46(3): 330-340.
[10] MA Yan-Ming, FENG Zhi-Yu, WANG Wei, ZHANG Sheng-Jun, GUO Ying, NI Zhong-Fu, LIU Jie. Genetic diversity analysis of winter wheat landraces and modern bred varieties in Xinjiang based on agronomic traits [J]. Acta Agronomica Sinica, 2020, 46(12): 1997-2007.
[11] CHEN Er-Ying, WANG Run-Feng, QIN Ling, YANG Yan-Bing, LI Fei-Fei, ZHANG Hua-Wen, WANG Hai-Lian, LIU Bin, KONG Qing-Hua, GUAN Yan-An. Comprehensive identification and evaluation of foxtail millet for saline-alkaline tolerance during germination [J]. Acta Agronomica Sinica, 2020, 46(10): 1591-1604.
[12] MA Yan-Ming, LOU Hong-Yao, CHEN Zhao-Yan, XIAO Jing, XU Lin, NI Zhong-Fu, LIU Jie. Genetic diversity assessment of winter wheat landraces and cultivars in Xinjiang via SNP array analysis [J]. Acta Agronomica Sinica, 2020, 46(10): 1539-1556.
[13] LIU Yi-Ke,ZHU Zhan-Wang,CHEN Ling,ZOU Juan,TONG Han-Wen,ZHU Guang,HE Wei-Jie,ZHANG Yu-Qing,GAO Chun-Bao. Revealing the genetic diversity of wheat varieties (lines) in China based on SNP markers [J]. Acta Agronomica Sinica, 2020, 46(02): 307-314.
[14] YE Wei-Jun,CHEN Sheng-Nan,YANG Yong,ZHANG Li-Ya,TIAN Dong-Feng,ZHANG Lei,ZHOU Bin. Development of SSR markers and genetic diversity analysis in mung bean [J]. Acta Agronomica Sinica, 2019, 45(8): 1176-1188.
[15] JI Long,SHEN Hong-Fang,XU Chun-Chun,CHEN Zhong-Du,FANG Fu-Ping. Comprehensive evaluation of green super rice varieties based on nonlinear principal component analysis [J]. Acta Agronomica Sinica, 2019, 45(7): 982-992.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!