Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (1): 187-198.doi: 10.3724/SP.J.1006.2024.34046

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Mechanism of cyclanilide enhanced the defoliation efficiency of thidiazuron in cotton by regulating endogenous hormones under low temperature stress

SUN Shang-Wen1,2(), SHU Hong-Mei2, YANG Chang-Qin2, ZHANG Guo-Wei2, WANG Xiao-Jing2, MENG Ya-Li1, WANG You-Hua1, LIU Rui-Xian2,*()   

  1. 1College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
    2Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Cotton and Rapeseed in the Lower Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing 210014, Jiangsu, China
  • Received:2023-03-08 Accepted:2023-06-29 Online:2024-01-12 Published:2023-07-19
  • Contact: *E-mail: liuruixian2008@163.com
  • Supported by:
    National Natural Science Foundation of China(32071968);Jiangsu Agricultural Science and Technology Innovation Fund(CX(22)2015);Jiangsu Collaborative Center for Modern Crop Production(JCIC-MCP)

Abstract:

The technology of cotton leaf removal is an important prerequisite for realizing the mechanical harvesting of cotton, but low temperature affect the efficiency of TDZ-induced leaf abscission, which cannot meet the requirements of mechanized harvesting. In our laboratory, we found that cyclanilide (CYC) could improve the defoliation efficiency of TDZ at low temperature, but the mechanism of CYC promoting chemical defoliation (TDZ) under low temperature is unknown. Therefore, the content of plant hormones and the relative expression level of related genes in the abscission zone of cotton leaves were analyzed using Zhongmian 425 as the experimental material, setting two temperature levels (25℃ and 15℃) and three treatments [water (CK), single TDZ (T), and the compound of TDZ+CYC (TC)]. At 240 h after treatment under low temperature (15℃), the abscission rate of cotton leaves treated by T was only 53.0%, while the start time of cotton leaves abscission treated by TC was 24 h ahead of that treated by T and the abscission rate of cotton leaves treated by TC increased to 79.6%. At low temperature, compared with T, the relative expression level of auxin (IAA) transport genes (LAX2, PIN1), IAA response genes (IAA9, ARF3) and the content of IAA in the abscission zone of cotton leaves treated with TC were reduced significantly; the relative expression level of ethylene (ET) synthesis genes (ACS, ACO), and the content of ET synthesis precursor ACC were increased, the relative expression level of ET downstream signal gene(ERF1B) was up-regulated significantly in the abscission zone treated with TC. The jasmonate acid (JA) synthesis-related gene (AOC4) was up-regulated, and the content of JA was increased in abscission zone treated by TC. The inhibition of the IAA transport and signal transduction and the promotion of ET and JA synthesis and ET signal transduction caused by TC treatment in the abscission zones of cotton leaves could be the key reason that CYC could promote cotton leaves abscission effect of TDZ at low temperature.

Key words: cotton defoliation, low temperature, thiadiazuron, cyclanilide, plant hormone content, gene relative expression

Table 1

Primers and their sequences"

基因
Gene name
上游引物
Forward primer sequence (5°-3°)
下游引物
Reverse primer sequence (5°-3°)
IAA9(Gh_A05G3764) CCAGAAGGTGGTAAAGGAC AAACGATCTAATAGGAGGC
ARF3(Gh_A05G1337) TGTCCTCACCGTCTTCAGT GCTTCCTAGATACCTCCTAC
LAX2(Gh_A01G1955) GCCTTCAACTGTACTTTCC TAGGTCCATGTCCTCTTGT
PIN1(Gh_D12G2556) GCCATAAACAGACCAAGAC TCAGGTGGAATGTGGAAAT
ACS(Gh_D12G2746) GGGTGATTGAGGTATGGGAGA TGCATAAGCACAACGAGGC
ACO(Gh_D11G1565) CCACCAGCATCTGTATGAG CTGCGAGAATCTTGGACTA
ERF1B(Gh_Sca115107G01) GGGAAATTCAGGATAGCGG GGAGATAAGGGATTCAACGAG
CYP707A4(Gh_D02G2083) CGGAAATGAACTGGCGAAGC TTGTTGAGGCACTGGGAAT
PP2C77(Gh_A08G2192) ATTGACCGTGCTCCGTATA ACATCGTCCTCACCTCCTT
AOC4(Gh_A08G0314) GCCAGACCCACCAGTAATA TTTGGAGAAACGGATAGGA
TIFY9(Gh_D01G0196) TTCCGAGGTATTCAAGGTG AAATCGTCAACGGTGCTGT

Fig. 1

Abscission rate of cotton leaves under different treatments (a) cotton leaves defoliation; (b) abscission rate of cotton leaf. CK: control treatment; T: TDZ treatment; TC: TDZ+CYC treatment; N: normal temperature; L: low temperature."

Fig. 2

Changes of IAA content in the abscission zone of cotton leaves under different treatments (a) IAA content in cotton leaf abscission zone at normal temperature; (b) IAA content in cotton leaf abscission zone at low temperature. Different lowercase letters in the same time point indicate significant difference at the 0.05 probability level. Treatments are the same as those given in Fig. 1."

Fig. 3

Changes of ACC content in the abscission zone of cotton leaves under different treatments (a) ACC content in cotton leaf abscission zone at normal temperature; (b) ACC content in cotton leaf abscission zone at low temperature. Different lowercase letters in the same time point indicate significant difference at the 0.05 probability level; ns: no significant difference. Treatments are the same as those given in Fig. 1."

Fig. 4

Changes of ABA content in the abscission zone of cotton leaves under different treatments (a) ABA content in cotton leaf abscission zone at normal temperature; (b) ABA content in cotton leaf abscission zone at low temperature. Different lowercase letters in the same time point indicate significant differences at the 0.05 probability level. Treatments are the same as those given in Fig. 1."

Fig. 5

Changes of JA content in the abscission zone of cotton leaves under different treatments (a) JA content in cotton leaf abscission zone at normal temperature; (b) JA content in cotton leaf abscission zone at low temperature. Different lowercase letters in the same time point indicate significant differences at the 0.05 probability level; ns: no significant difference. Treatments are the same as those given in Fig. 1."

Fig. 6

Expression level of IAA-related genes in cotton leaves abscission zone under different treatments (a) the relative expression level of IAA-related genes in cotton leaf abscission zone at normal temperature; (b) the relative expression level of IAA-related genes in the abscission zone at low temperature. Different lowercase letters in the same time point indicate significant differences at the 0.05 probability level. Treatments are the same as those given in Fig. 1."

Fig. 7

Relative expression level of ET-related genes in cotton leaves abscission zone under different treatments (a) the relative expression level of ET-related genes in the abscission zone at normal temperature; (b) the relative expression level of ET-related genes in the abscission zone at low temperature. Different lowercase letters in the same time point indicate significant differences at the 0.05 probability level; ns: no significant difference. Treatments are the same as those given in Fig. 1."

Fig. 8

Expression level of ABA-related genes in cotton leaves abscission zone under different treatments (a) the relative expression level of ABA-related genes in the abscission zone at normal temperature; (b) the relative expression level of ABA-related genes in the abscission zone at low temperature. Different lowercase letters in the same time point indicate significant differences at the 0.05 probability level; ns: no significant difference. Treatments are the same as those given in Fig. 1."

Fig. 9

Expression level of JA-related genes in cotton leaves abscission zone under different treatments (a) the relative expression level of JA related genes in the abscission zone at normal temperature; (b) the relative expression level of JA related genes in the abscission zone at low temperature. Different lowercase letters in the same time point indicate significant differences at the 0.05 probability level; ns: no significant difference. Treatments are the same as those given in Fig. 1."

[1] Brar Z R, Sekhon K S, Deol J S. Effect of defoliants on growth and yield of timely and late sown cotton (Gossypium hirustum L.). J Cotton Res Dev, 1995, 9: 227-230.
[2] 过兴先, 曾伟. 新疆棉区的气温和棉铃发育关系的研究. 作物学报, 1989, 15: 202-212.
Guo X X, Zeng W. A study on relationship between temperature and cotton boll development in Xinjiang. Acta Agron Sin, 1989, 15: 202-212. (in Chinese with English abstract)
[3] DB65/T 3980-2017. 机采棉脱叶剂喷施技术规范. 新疆维吾尔自治区, 新疆维吾尔自治区质量技术监督局, 2017-03-20.
DB65/T 3980-2017. Technical specification for application of machine-picked cotton defoliant. Xinjiang Uygur Autonomous Region, Xinjiang Uygur Autonomous Region Bureau of Quality and Technical Supervision, 2017-03-20. (in Chinese)
[4] 王桂盛, 田中午, 陈发. 机采棉化学脱叶催熟技术的应用研究. 中国棉花, 1997, 24(10): 25-26.
Wang G S, Tian Z W, Chen F. Study on the application of chemical defoliation and ripening technology for mechanically harvested cotton. China Cotton, 1997, 24(10): 25-26. (in Chinese with English abstract)
[5] Tucker M L, Kim J. Abscission research: what we know and what we still need to study. S Postharvest Rev, 2015, 2: 1.
[6] Shu H M, Sun S W, Wang X J, Zhang G W, Yang C Q, Meng Y L, Wang Y H, Hu W, Liu R X. Low temperature inhibits the defoliation efficiency of thidiazuron in cotton by regulating plant hormone synthesis and the signaling pathway. Int J Mol Sci, 2022, 23: 14208.
doi: 10.3390/ijms232214208
[7] Meir S, Hunter D A, Chen J C, Halaly V, Reid M S. Molecular changes occurring during acquisition of abscission competence following auxin depletion in Mirabilis jalapa. Plant Physiol, 2006, 141: 1604-1616.
[8] Li F, Wu Q, Liao B, Yu K K, Huo Y N, Meng L, Wang S M, Wang B M, Du M W, Tian X L, Li Z H. Thidiazuron promotes leaf abscission by regulating the crosstalk complexities between ethylene, auxin, and cytokinin in cotton. Int J Mol Sci, 2022, 23: 2696.
doi: 10.3390/ijms23052696
[9] 高丽丽, 李淦, 康正华, 李健伟, 王蜜蜂, 马云珍, 张巨松. 脱叶剂对棉花抗氧化酶及内源激素的影响. 农药学学报, 2016, 18: 439-446.
Gao L L, Li G, Kang Z H, Li J W, Wang M F, Ma Y Z, Zhang J S. Effect of defoliants on antioxidative enzyme activity and endogenous hormone contents of cotton. Chin J Pestic Sci, 2016, 18: 439-446. (in Chinese with English abstract)
[10] Meir S, Philosoph-Hadas S, Sundaresan S, Selvaraj V, Burd S, Ophir R, Kochanek B, Reid M S, Jiang C J, Lers A. Microarray analysis of the abscission-related transcriptome in the tomato flower abscission zone in response to auxin depletion. Plant Physiol, 2010, 154: 1929-1956.
doi: 10.1104/pp.110.160697 pmid: 20947671
[11] 靳丁沙.噻苯隆调控棉花叶片脱落的机制研究. 华中农业大学博士学位论文, 湖北武汉, 2021.
Jin D S.The Mechanism of Thidiazuron Regulating Cotton Leaf Abscission. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2021 (in Chinese with English abstract).
[12] Wang R, Li R, Cheng L, Wang X Y, Fu X, Dong X F, Qi M F, Jiang C Z, Xu T, Li T L. SlERF52 regulates SlTIP1;1 expression to accelerate tomato pedicel abscission. Plant Physiol, 2021, 185: 1829-1846.
doi: 10.1093/plphys/kiab026
[13] 高欣欣, 刘少春, 张跃彬, 邓军, 樊仙, 夏红明, 刀静梅. 植物器官脱落相关激素和酶的研究进展. 中国农学通报, 2013, 29(33): 17-21.
Gao X X, Liu S C, Zhang Y B, Deng J, Fan X, Xia H M, Dao J M. Progress in researches on the mechanism of abscission of plant organs. Chin Agric Sci Bull, 2013, 29(33): 17-21. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.2012-3528
[14] Gao Y, Liu Y, Liang Y, Lu L J, Jiang C Y, Fei Z J, Jiang C Z, Ma C, Gao J P. Rose hybrida RhERF1and RhERF4 mediate ethylene- and auxin-regulated petal abscission by influencing pectin degradation. Plant J, 2019, 99: 1159-1171.
doi: 10.1111/tpj.v99.6
[15] Lee Y, Do V G, Kim S, Kweon H, McGhie T K. Cold stress triggers premature fruit abscission through ABA-dependent signal transduction in early developing apple. PLoS One, 2021, 16: e0249975.
doi: 10.1371/journal.pone.0249975
[16] Kućko A, Florkiewicz A B, Wolska M, Miętki J, Kapusta M, Domagalski K, Wilmowicz E. Jasmonate-dependent response of the flower abscission zone cells to drought in yellow lupine. Plants, 2022, 11: 527.
doi: 10.3390/plants11040527
[17] Elfving D C, Visser D B. Cyclanilide induces lateral branching in sweet cherry trees. HortScience, 2006, 41: 149-153.
doi: 10.21273/HORTSCI.41.1.149
[18] Pedersen M K, Burton J D, Coble H D. Effect of cyclanilide, ethephon, auxin transport inhibitors, and temperature on whole plant defoliation. Crop Sci, 2006, 46: 1666-1672.
doi: 10.2135/cropsci2005.07-0189
[19] 刘瑞显, 张国伟, 杨长琴, 王晓婧.一种用于脱叶的组合物、棉花脱叶剂及其制备方法. 中国专利: 201910383480. 7, 2021-06-08.
Liu R X, Zhang G W, Yang C Q, Wang X J.A composition for defoliation, cotton defoliating agent, and the preparation methods. Chinese Patent: 201910383480. 7, 2021-06-08. (in Chinese)
[20] 史自航.生长素运输载体SlPIN在调控番茄花柄脱落中的作用机制. 沈阳农业大学博士学位论文, 辽宁沈阳, 2018.
Shi Z H.Effects of Auxin Transport Facilitator SlPIN on Tomato Pedicel Abscission. PhD Dissertation of Shenyang Agricultural University, Shenyang, Liaoning, China, 2018. (in Chinese with English abstract)
[21] Dong X F, Ma C, Xu T, Reid M S, Jiang C J, Li T L. Auxin response and transport during induction of pedicel abscission in tomato. Hortic Res, 2021, 8: 192-201.
doi: 10.1038/s41438-021-00626-8
[22] Zažímalová E, Murphy A S, Yang H, Hoyerová K, Hošek P. Auxin transporters: why so many? Cold Spring Harb Perspect Biol, 2010, 2: a001552.
[23] Kühn N, Serrano A, Abello C, Arce A, Espinoza C, Gouthu S, Deluc L, Arce-Johnson P. Regulation of polar auxin transport in grapevine fruitlets (Vitis vinifera L.) and the proposed role of auxin homeostasis during fruit abscission. BMC Plant Biol, 2016, 16: 234.
doi: 10.1186/s12870-016-0914-1
[24] Shi Z, Jiang Y, Han X, Liu X, Cao R S, Qi M F, Xu T, Li T L. SlPIN1 regulates auxin efflux to affect flower abscission process. Sci Rep, 2017, 7: 1-13.
doi: 10.1038/s41598-016-0028-x
[25] Kućko A, Wilmowicz E, Pokora W, Alché J. Disruption of the auxin gradient in the abscission zone area evokes asymmetrical changes leading to flower separation in yellow lupine. Int J Mol Sci, 2020, 21: 3815.
doi: 10.3390/ijms21113815
[26] Gao Y, Liu C, Li X, Xu H Q, Liang Y, Ma N, Fei Z J, Gao J P, Jiang C Z, Ma C. Transcriptome profiling of petal abscission zone and functional analysis of an Aux/IAA family gene RhIAA16 involved in petal shedding in rose. Front Plant Sci, 2016, 7: 1375.
[27] Guilfoyle T J, Hagen G. Auxin response factors. Curr Opin Plant Biol, 2007, 10: 453-460.
doi: 10.1016/j.pbi.2007.08.014 pmid: 17900969
[28] Ellis C M, Nagpal P, Young J C, Hagen G, Guilfoyle T J, Reed J.AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development, 2005, 132: 4563-4574.
[29] Burton J D, Pedersen M K, Coble H D. Effect of cyclanilide on auxin activity. J Plant Growth Regul, 2008, 27: 342-352.
doi: 10.1007/s00344-008-9062-7
[30] Adams D O, Yang S F. Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci USA, 1979, 76: 170-174.
doi: 10.1073/pnas.76.1.170 pmid: 16592605
[31] Oñate-Sánchez L, Anderson J P, Young J, Singh K B. AtERF14, a member of the ERF family of transcription factors, plays a nonredundant role in plant defense. Plant Physiol, 2007, 143: 400-409.
doi: 10.1104/pp.106.086637 pmid: 17114278
[32] 高瑜, 徐娇, 张冰, 孙伟男, 杨细燕. 机采棉化学脱叶伴随着剧烈的乙烯及细胞分裂素信号响应. 棉花学报, 2020, 32: 491-500.
Gao Y, Xu J, Zhang B, Sun W N, Yang X Y. Chemical defoliation of machine-harvested cotton was accompanied by intense ethylene and cytokinin signal responses. Cotton Sci, 2020, 32: 491-500. (in Chinese with English abstract)
[33] Liu D, Li J, Li Z, Pei Y. Hydrogen sulfide inhibits ethylene-induced petiole abscission in tomato (Solanum lycopersicum L.). Hortic Res, 2020, 7: 14.
doi: 10.1038/s41438-019-0237-0
[34] Nakano T, Fujisawa M, Shima Y, Ito Y. The AP2/ERF transcription factor SlERF52 functions in flower pedicel abscission in tomato. J Exp Bot, 2014, 65: 3111-3119.
doi: 10.1093/jxb/eru154
[35] 王烁. MdERF1B介导乙烯和茉莉酸促进苹果花青苷合成的分子机制. 山东农业大学硕士学位论文, 山东泰安, 2022.
Wang S. Molecular Mechanism of MdERF1B Mediating Ethylene and Jasmonic Acid to Promote Apple Anthocyanin Synthesis. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2022. (in Chinese with English abstract)
[36] Mishra A, Khare S, Trivedi P K, Nath P. Effect of ethylene, 1-MCP, ABA and IAA on break strength, cellulase and polygalacturonase activities during cotton leaf abscission. South Afr J Bot, 2008, 74: 282-287.
doi: 10.1016/j.sajb.2007.12.001
[37] Wilmowicz E, Frankowski K, Kućko A, Świdziński M, Alché J, Nowakowska A, Kopcewicz J. The influence of abscisic acid on the ethylene biosynthesis pathway in the functioning of the flower abscission zone in Lupinus luteus. J Plant Physiol, 2016, 206: 49-58.
[38] 李思嘉. 温度影响棉花化学脱叶的生理机制及其应用研究. 扬州大学硕士学位论文, 江苏扬州, 2020.
Li S J. Physiology Mechanism of Temperature Affecting Chemical Defoliation and its Application in Cotton. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2020. (in Chinese with English abstract)
[39] Saika H, Okamoto M, Miyoshi K, Kushiro T, Shinoda S, Jikumaru Y, Fujimoto M, Arikawa T, Takahashi H, Ando M, Arimura S, Miyao A, Hirochika H, Kamiya Y, Tsutsumi N, Nambara E, Nakazono M. Ethylene promotes submergence-induced expression of OsABA8ox1, a gene that encodes ABA 8’-hydroxylase in rice. Plant Cell Physiol, 2007, 48: 287-298.
doi: 10.1093/pcp/pcm003
[40] Tosetti R, Waters A, Chope G A, Cools K, Alamar M C, McWilliam S, Thompson A J, Terry L A. New insights into the effects of ethylene on ABA catabolism, sweetening and dormancy in stored potato tubers. Postharv Biol Technol, 2021, 173: 111420.
doi: 10.1016/j.postharvbio.2020.111420
[41] Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol, 2005, 56: 165-185.
pmid: 15862093
[42] Kamiya Y. Plant hormones: versatile regulators of plant growth and development. Annu Rev Plant Biol, 2010, 60: 1-2.
doi: 10.1146/arplant.2009.60.issue-1
[43] Ueda J, Miyamoto K, Hashimoto M. Jasmonates promote abscission in bean petiole expiants: its relationship to the metabolism of cell wall polysaccharides and cellulase activity. J Plant Grow Regul, 1996, 15: 189-189.
[44] Fidelibus M W, Petracek P, McArtney S. Jasmonic acid activates the fruit-pedicel abscission zone of ‘Thompson seedless’ grapes, especially with co-application of 1-aminocyclopropane-1- carboxylic acid. Plants, 2022, 11: 1245.
doi: 10.3390/plants11091245
[45] Wang Y, Mostafa S, Zeng W, Jin B. Function and mechanism of jasmonic acid in plant responses to abiotic and biotic stresses. Int J Mol Sci, 2021, 22: 8568.
doi: 10.3390/ijms22168568
[46] 周婷婷.脱落酸和噻苯隆复配调控棉花叶片脱落的形态学研究和转录组分析. 石河子大学硕士学位论文, 新疆石河子, 2021.
Zhou T T. Morphological Study and Transcriptome Analysis of Abscisic Acid and Thidiazuron on Regulating Cotton Defoliation. MS Thesis of Shihezi University, Shihezi, Xinjiang, China, 2021. (in Chinese with English abstract)
[47] 罗冬梅.菠萝乙烯催花处理及AcTIFY 10c-like基因的功能鉴定. 南京农业大学硕士学位论文, 江苏南京, 2019.
Luo D M. Ethylene on Flower Forcing andFunctional Identification of AcTIFY 10c-like Gene. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2019. (in Chinese with English abstract)
[48] Song S, Huang H, Gao H, Wang J J, Wu D W, Liu X L, Yang S H, Zhai Q Z, Li C Y, Qi T C, Xie D X. Interaction between MYC2 and ETHYLENE INSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis. Plant Cell, 2014, 26: 263-279.
doi: 10.1105/tpc.113.120394
[1] LI Ling-Yu, ZHOU Qi-Rui, LI Yang, ZHANG An-Min, WANG Bei-Bei, MA Shang-Yu, FAN Yong-Hui, HUANG Zheng-Lai, ZHANG Wen-Jing. Transcriptome analysis of exogenous 6-BA in regulating young spike development of wheat after low temperature at booting stage [J]. Acta Agronomica Sinica, 2023, 49(7): 1808-1817.
[2] ZHU Chun-Quan, WEI Qian-Qian, XIANG Xing-Jia, HU Wen-Jun, XU Qing-Shan, CAO Xiao-Chuang, ZHU Lian-Feng, KONG Ya-Li, LIU Jia, JIN Qian-Yu, ZHANG Jun-Hua. Regulation effects of seedling raising by melatonin and methyl jasmonate substrate on low temperature stress tolerance in rice [J]. Acta Agronomica Sinica, 2022, 48(8): 2016-2027.
[3] LI Jie-Ya, LI Hong-Yan, YE Guang-Ji, SU Wang, SUN Hai-Hong, WANG Jian. Changes of anthocyanins and expression analysis of synthesis-related genes in potato during storage period [J]. Acta Agronomica Sinica, 2022, 48(7): 1669-1682.
[4] WANG Juan, LIU Yi, YAO Dan-Yu, ZOU Jing-Wei, XIAO Shi-He, SUN Guo-Zhong. Identification on sensitivity of wheat to low temperature at reproductive stages [J]. Acta Agronomica Sinica, 2022, 48(7): 1721-1729.
[5] FENG Ya, ZHU Xi, LUO Hong-Yu, LI Shi-Gui, ZHANG Ning, SI Huai-Jun. Functional analysis of StMAPK4 in response to low temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(4): 896-907.
[6] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[7] XIE Pan, LIU Wei, KANG Yu, HUA Wei, QIAN Lun-Wen, GUAN Chun-Yun, HE Xin. Identification and relative expression analysis of CBF gene family in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2394-2406.
[8] ZHANG Rui-Dong,XIAO Meng-Ying,XU Xiao-Xue,JIANG Bing,XING Yi-Fan,CHEN Xiao-Fei,LI Bang,AI Xue-Ying,ZHOU Yu-Fei,HUANG Rui-Dong. Responses of sorghum hybrids to germination temperatures and identification of low temperature resistance [J]. Acta Agronomica Sinica, 2020, 46(6): 889-901.
[9] ZHANG Cheng-Xin,GUO Bao-Wei,TANG Jian,XU Fang-Fu,XU Ke,HU Ya-Jie,XING Zhi-Peng,ZHANG Hong-Cheng,DAI Qi-Gen,HUO Zhong-Yang,WEI Hai-Yan,HUANG Li-Fen,LU Yang,TANG Chuang,DAI Qi-Xing,ZHOU Miao,SUN Jun-Yi. Combined effects of low temperature and weak light at grain-filling stage on rice grain quality [J]. Acta Agronomica Sinica, 2019, 45(8): 1208-1220.
[10] Xiao-Han MA,Jie ZHANG,Huan-Wei ZHANG,Biao CHEN,Xin-Yi WEN,Zi-Cheng XU. Exogenous MeJA improves cold tolerance of tobacco by inhibiting H2O2 accumulation [J]. Acta Agronomica Sinica, 2019, 45(3): 411-418.
[11] Rui-Xia WANG, Chang-Sheng YAN, Xiu-Ying ZHANG, Guo-Zhong SUN, Zhao-Guo QIAN, Xiao-Lei QI, Qiu-Huan MOU, Shi-He XIAO. Effect of Low Temperature in Spring on Yield and Photosynthetic Characteristics of Wheat [J]. Acta Agronomica Sinica, 2018, 44(02): 288-296.
[12] XIAO Fei,YANG Yan-Long,WANG Ya-Ting,MA Hui,ZHANG Wang-Feng. Effects of Low Temperature on PSI and PSII Photoinhibition in Cotton Leaf at Boll Stage [J]. Acta Agron Sin, 2017, 43(09): 1401-1409.
[13] YANG Hui-Ju,GUO Hua-Chun*. Digital Gene Expression Profiling Analysis of Potato Under Low Temperature Stress [J]. Acta Agron Sin, 2017, 43(03): 454-463.
[14] XU Yao-Zhao,ZENG Xiu-Cun,ZHANG Fen-Qin,SUN Jia,SUN Wan-Cang,WU Jun-Yan,FANG Yan,LIU Zi-Gang,SUN Bo-Lin. Response of Leaf Anatomical Structure and Photosynthetic Characteristics of Winter Turnip Rape (B. rapa L.) to Low Temperature before Winter [J]. Acta Agron Sin, 2017, 43(03): 432-441.
[15] ZENG Yan-Hua,ZHANG Yu-Ping,PAN Xiao-Hua,ZHU De-Feng,XIANG Jing,CHEN Hui-Zhe,ZHANG Yi-Kai. Effect of Low Temperature after Flowering on Grain Filling and Plant Hormones Contents in Rice [J]. Acta Agron Sin, 2016, 42(10): 1551-1559.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .