Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (12): 3215-3226.doi: 10.3724/SP.J.1006.2023.31005

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Detection and verification of QTL for plant height in Yangmai 4/Yanzhan 1 recombinant inbred lines population and their genetic effects on Fusarium head blight resistance

ZHAO Die1,2(), HU Wen-Jing2,3,*(), CHENG Xiao-Ming2, WANG Shu-Ping1, ZHANG Chun-Mei2, LI Dong-Sheng2, GAO De-Rong2,3,*()   

  1. 1College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
    2Lixiahe Institute of Agriculture Sciences / Key Laboratory of Wheat Biology and Genetic Improvement for Low and Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou 225007, Jiangsu, China
    3Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2023-01-10 Accepted:2023-05-24 Online:2023-12-12 Published:2023-06-15
  • Contact: * E-mail: huren2008@126.com; E-mail: gdr@wheat.org.cn
  • Supported by:
    National Natural Science Foundation of China(31901544);Taizhou Science and Technology Project(TN202117);Jiangsu Modern Agricultural Industry Single Technology Research and Development(CX(21)3063);National Key Research and Development Program of Jiangsu(BE2021335)

Abstract:

Plant height (PH) is associated with fusarium head blight (FHB) resistance in wheat. In this study, a recombinant inbred lines (RIL) population derived from the cross of Yangmai 4/Yanzhan 1 (YM4/YZ1) was used to mine the quantitative trait loci (QTL) of PH traits using 55K SNP (single-nucleotide polymorphism) chip data, combined with the PH data of RIL population and their parents in six environments for three continuous years. Soil surface inoculation method and single spikelet inoculation were used to identify the FHB resistance to infection (Type I) and spread (Type II), respectively. Seven QTLs related to PH were detected on chromosomes 2D, 4B, 4D, 5A, and 7D, and only QPh.yas-2D.2 may be a new QTL of PH after comparing with previous studies. The dwarfing effects of QPh.yas-2D.1, QPh.yas-2D.2, and QPh.yas-5A were derived from YM4, and the dwarfing effects of the other four QTLs were derived from YZ1. Both QPh.yas-4D and QPh.yas-5A could be detected in six environments, and phenotypic variation explained (PVE) rates ranged from 19.48%-44.11% and 10.48%-13.71%, respectively. The increasing alleles at the Rht-D1 and QPh.yas-7D.2 (YM4 allele) significantly reduced the average percentage of infected spikelets (PIS) by 34.97% and 19.09%, respectively. The dwarfing alleles at QPh.yas-2D.2 and QPh.yas-5A (YM4 allele) significantly reduced the average percentage of diseased spikelets (PDS) by 24.73% and 14.56%, respectively. The dwarfing allele of QPh.yas-5A was derived from Funo. Furthermore, we preliminary analyzed the genes within the physical interval of QPh.yas-5A using the reference genome information of wheat version 2.1. A total of 146 high-confidence annotated genes were detected in the target interval, which were mainly involved in the synthesis of cytochrome P450, dehydration response element-binding protein, ethylene response transcription factor, transcription factor MYC2, and cell wall receptor-associated kinases. The SNP marker closely linked to QPh.yas-5A was further converted into kompetitive allele-specific PCR marker KASP-5A, and its effect on plant height and FHB resistance was then verified in 126 wheat cultivars (lines). The results of this study could provide a solid foundation for future fine mapping QPh.yas-5A.

Key words: Triticum aestivum, plant height, fusarium head blight, QTL, QPh.yas-5A, candidate gene

Table 1

Phenotypic variation and heritability (h2) of PH for the parents and the YM4/YZ1 populations in different environments"

环境
Enviroment
亲本 Parents RIL群体 RIL population 遗传力
Heritability (h2)
YM4 YZ1 最小值
Min.
最大值
Max.
平均值
Mean
E1 99.47 74.89** 68.50 124.00 97.42 0.81
E2 100.00 73.38** 65.25 130.75 99.14
E3 99.38 75.72** 63.50 123.00 97.63
E4 98.73 80.32** 65.75 124.00 101.73
E5 92.65 70.47** 57.75 121.00 88.31
E6 97.00 76.50** 64.50 127.50 98.43
BLUE 98.40 75.21** 65.62 119.98 97.14

Fig. 1

Genetic linkage maps of QTL for plant height in Yangmai 4/Yanzhan 1 RIL population The marker name is on the right of the linkage group, the genetic position (cM) is on the left, and the black rectangle in the linkage group represents the QTL region. E1, E2, E3, E4, E5, and E6 indicate the environment of 2019JZ, 2019YZW, 2019YZE, 2020YZW, 2020YZE, and 2021YZE, respectively. BLUE represents the best linear unbiased prediction."

Table 2

QTL for plant height in YM4/YZ1 population"

连锁群
Linkage group
环境
Environment
位点
QTL
物理位置
Physical interval (Mb)
侧翼标记
Flanking markers
LOD 贡献率
PVE (%)
加性效应
Additive
2D E3, E4, BLUE QPh.yas-2D.1 18.40-20.42 AX 109242530-AX108988107 5.69-6.56 3.72-7.06 -3.6 to -2.07
E3, E4, BLUE QPh.yas-2D.2 511.67-515.21 AX110552619-GWM539 5.25-7.03 8.04-8.64 -2.30 to -2.04
4B E1, E2, E3, E6, BLUE QPh.yas-4B 589.85-590.54 AX111577080-AX108807261 4.36-9.43 3.16-10.76 2.22 to 3.69
4D E1, E2, E3, E4, E5, E6, BLUE QPh.yas-4D 19.19-19.59 Rht-D1_SNP-AX110572006 15.50-35.95 19.48-44.11 5.94 to 10.01
5A E1, E2, E3, E4, E5, E6, BLUE QPh.yas-5A 516.44-536.32 AX109341178-AX111618105 8.31-12.78 10.48-13.71 -4.84 to -3.73
7D E1, E3, E4, E5, E6, BLUE QPh.yas-7D.1 62.23-68.26 AX110468744-AX111061288 3.93-13.10 4.13-11.09 2.32 to 4.63
E1, E2, E5, E6, BLUE QPh.yas-7D.2 147.70-164.48 AX109847755-AX111460143 4.54-11.18 3.60-9.75 2.14 to 4.73

Fig. 2

Effects of QTL for plant height on FHB resistance in Yangmai 4/Yanzhan 1 RIL population PIS: the average percentage of infected spikelets, the measure of FHB resistance in soil surface inoculation; PDS: the average percentage of diseased spikelets, the measure of FHB resistance in point inoculation. ‘×’ in the data box indicates the mean value; the dots in the boxplots are the outliers; the horizontal line in the data box indicates the median. * and ** represent significant difference at P < 0.05 and P < 0.01 compared with Yanzhan 1, respectively."

Table S1

Distribution of target alleles of QTL related to plant height, PIS, and PDS in 126 cultivars/lines"

数目
Number
品种名称
Name
PISa PDSb 株高
Plant height (cm)
KASP_5Ac
1 鄂麦174 Emai 174 66.25 21.21 83.50 A
2 鄂麦12 Emai 12 61.86 17.18 87.00 A
3 鄂麦19 Emai 19 74.04 56.14 87.75 A
4 宁12046 Ning 12046 55.17 15.63 89.50 A
5 宁1529 Ning 1529 32.53 5.96 85.94 A
6 宁1616 Ning 1616 9.64 22.93 84.50 A
7 宁16399 Ning 16399 12.86 26.85 81.13 A
8 宁17097 Ning 17097 14.46 35.63 86.63 A
9 宁17320 Ning 17320 20.00 8.40 85.13 A
10 宁17329 Ning 17329 28.57 20.31 86.69 A
11 宁17342 Ning 17342 22.35 10.09 83.75 A
12 宁麦15 Ningmai 15 57.69 24.88 85.19 A
13 宁麦16 Ningmai 16 52.00 17.46 85.63 A
14 宁麦18 Ningmai 18 52.11 12.55 86.81 A
15 宁麦19 Ningmai 19 53.16 25.14 83.00 A
16 宁麦24 Ningmai 24 52.78 17.46 79.38 A
17 宁麦3号 Ningmai 3 57.58 33.55 93.25 A
18 宁麦9号 Ningmai 9 42.11 17.34 87.75 A
19 宁麦15318 Ningmai 15318 77.38 8.45 79.81 A
20 生选3号 Shengxuan 3 68.00 33.02 90.88 A
21 苏麦5号 Sumai 5 27.47 7.17 82.38 A
22 扬173046 Yang 173046 41.67 25.10 80.13 A
23 扬辐麦3048 Yangfumai 3048 15.05 5.34 81.81 A
24 扬辐麦4188 Yangfumai 4188 35.63 16.79 82.13 A
25 扬辐麦5242 Yangfumai 5242 18.75 36.67 85.50 A
26 扬辐麦2 Yangfumai 2 39.08 32.23 87.13 A
27 扬辐麦6 Yangfumai6 55.95 56.64 82.88 A
28 扬辐麦9 Yangfumai 9 26.60 5.45 81.06 A
29 扬麦12 Yangmai 12 54.22 15.68 87.13 A
30 扬麦158 Yangmai 158 56.00 25.32 89.88 A
31 扬麦18 Yangmai 18 27.17 7.69 85.25 A
32 扬麦20 Yangmai 20 44.94 19.68 84.50 A
33 扬麦21 Yangmai 21 37.97 11.21 84.50 A
34 扬麦3号 Yangmai 3 52.08 69.70 93.00 A
35 扬麦4号 Yangmai 4 35.00 22.77 90.38 A
36 扬麦5号 Yangmai 5 22.31 26.36 88.00 A
37 镇麦11 Zhenmai 11 72.94 13.38 84.38 A
38 镇麦12 Zhenmai 12 44.58 7.51 89.81 A
39 镇麦5号 Zhenmai 5 45.74 8.45 85.88 A
40 镇麦8号 Zhenmai 8 44.44 5.45 86.50 A
41 宁7840 Ning 7840 62.50 43.98 92.69 A
42 百农3217 Bainong 3217 57.53 64.60 82.50 A
43 宁麦7号 Ningmai 7 71.59 37.46 79.38 A
44 皖麦19 Wanmai 19 76.58 92.26 83.13 A
45 扬辐麦9311 Yangfumai 9311 52.22 32.78 81.31 A
46 扬麦13 Yangmai 13 48.15 38.01 83.99 A
47 豫麦18 Yumai 18 80.43 64.95 85.38 A
48 周麦30 Zhoumai 30 47.73 32.39 78.81 A
49 周麦32 Zhoumai 32 84.38 46.14 78.00 A
50 博爱7023 Boai 7023 51.25 79.81 90.88 B
51 鄂麦11 Emai 11 56.18 41.78 88.13 B
52 鄂麦17 Emai 17 40.43 20.43 88.50 B
53 鄂麦6号 Emai 6 61.05 40.38 118.13 B
54 淮麦22 Huaimai 22 63.64 50.45 90.19 B
55 淮麦302 Huaimai 302 13.54 62.89 83.94 B
56 淮麦33 Huaimai 33 56.52 24.09 81.25 B
57 济麦77248 Jimai 77248 25.00 4.98 96.75 B
58 宁12188 Ning 12188 42.17 9.77 88.00 B
59 宁15186 Ning 15186 26.47 13.77 86.13 B
60 宁1625 Ning 1625 16.67 25.84 89.38 B
61 宁17073 Ning 17073 75.49 15.24 88.38 B
62 生选6号 Shengxuan 6 35.44 13.20 86.13 B
63 苏麦6号 Sumai 6 42.67 48.90 87.88 B
64 皖麦31 Wanmai 31 38.04 46.67 101.63 B
65 皖麦32 Wanmai 32 44.71 28.44 91.25 B
66 万年2号 Wannian 2 27.27 46.15 119.69 B
67 西农511 Xinong 511 36.26 6.53 84.13 B
68 信阳12 Xinyang 12 42.72 55.61 93.00 B
69 徐麦31 Xumai 31 11.22 75.65 80.38 B
70 扬辐麦5059 Yangfumai 5059 9.52 6.25 83.38 B
71 扬辐麦6076 Yangfumai 6076 18.95 24.00 84.38 B
72 扬辐麦7291 Yangfumai 7291 27.85 5.17 80.69 B
73 扬麦1号 Yangmai 1 66.67 99.17 107.63 B
74 扬麦14 Yangmai 14 46.15 4.88 90.00 B
75 扬麦15 Yangmai 15 84.85 22.81 81.63 B
76 扬麦16 Yangmai 16 51.19 39.15 91.81 B
77 扬麦23 Yangmai 23 58.43 61.45 82.63 B
78 扬麦27 Yangmai 27 41.41 14.77 81.94 B
79 扬麦28 Yangmai 28 37.76 7.06 87.00 B
80 扬麦29 Yangmai 29 42.35 14.29 84.88 B
81 扬麦6号 Yangmai 6 24.73 21.94 81.25 B
82 扬麦9号 Yangmai 9 53.76 12.87 85.25 B
83 扬糯麦1号 Yangnuomai 1 62.79 9.35 87.75 B
84 镇13056 Zhen 13056 36.14 35.53 80.63 B
85 镇麦1 Zhenmai 1 50.00 48.28 93.00 B
86 镇麦10 Zhenmai 10 44.32 37.25 81.88 B
87 镇麦168 Zhenmai 168 56.99 12.54 87.38 B
88 矮抗58 Aikang 58 87.76 58.78 82.44 B
89 百农418 Bainong 418 79.38 26.91 84.13 B
90 百农4199 Bainong 4199 87.96 35.00 85.63 B
91 鄂麦133 Emai 133 61.63 10.06 84.31 B
92 鄂麦178 Emai 178 73.42 39.02 87.38 B
93 鄂麦15 Emai 15 28.21 60.68 86.50 B
94 鄂麦16 Emai 16 82.80 34.13 84.56 B
95 丰德存麦1 Fengdecunmai 1 92.13 64.36 85.88 B
96 淮麦18 Huaimai 18 55.56 12.54 80.94 B
97 淮麦20 Huaimai 20 42.00 30.98 83.13 B
98 淮麦25 Huaimai 25 28.05 61.86 87.63 B
99 济麦44 Jimai 44 72.73 87.09 89.25 B
100 济麦77231 Jimai 77231 22.62 49.50 90.13 B
101 皖麦33 Wanmai 33 43.33 55.56 83.75 B
102 伟隆169 Weilong 169 48.48 25.08 82.69 B
103 西农20 Xinong 20 45.56 27.96 84.00 B
104 西农979 Xinong 979 75.76 31.12 84.94 B
105 新乡197 Xinxiang 197 91.25 21.84 86.81 B
106 新乡280 Xinxiang 280 60.64 18.57 86.94 B
107 新乡289 Xinxiang 289 26.21 23.91 82.88 B
108 徐麦15098 Xumai 15098 29.29 93.92 83.38 B
109 徐麦16144 Xumai 16144 34.72 47.09 82.63 B
110 徐麦16196 Xumai 16196 17.91 27.76 82.75 B
111 徐麦17252 Xumai 17252 10.87 11.59 82.13 B
112 徐麦17258 Xumai 17258 27.63 21.84 81.75 B
113 徐麦178 Xumai 178 58.67 86.36 82.00 B
114 徐麦2023 Xumai 2023 35.06 42.44 83.25 B
115 徐麦32 Xumai 32 7.14 81.12 83.13 B
116 徐麦33 Xumai 33 12.07 31.12 82.50 B
117 徐农029 Xunong 029 13.10 33.91 84.50 B
118 烟农1212 Yannong 1212 71.74 95.63 85.75 B
119 烟农19 Yannong 19 37.74 83.77 86.50 B
120 郑1342 Zheng 1342 42.99 36.67 84.13 B
121 郑1860 Zheng 1860 43.56 31.29 83.13 B
122 郑9188 Zheng 9188 67.68 19.75 83.50 B
123 郑麦9023 Zhengmai 9023 56.00 36.84 85.75 B
124 镇麦6号 Zhenmai 6 45.16 9.58 84.31 B
125 周麦18 Zhoumai 18 66.34 53.96 85.75 B
126 周麦36 Zhoumai 36 60.82 72.15 83.38 B

Fig. 3

Verification of the effects of QPh.yas-5A on PH and FHB resistance in natural populations PH: plant height; PIS: the average percentage of infected spikelets, the measure of FHB resistance in soil surface inoculation; PDS: the average percentage of diseased spikelets, the measure of FHB resistance in point inoculation. ‘×’ in the data box indicates the mean value; the dots in the boxplots are the outliers; the horizontal line in the data box indicates the median. * and ** represent significant difference at P < 0.05 and P < 0.01 compared with Yanzhan 1, respectively."

Table S2

High-confidence genes within the genomic region of QPh.yas-5A"

基因ID (CS 2.1)
Gene ID (CS 2.1)
物理位置a
Physical location (Mb)a
功能
Function
水稻的同源基因
Homologous gene in Oryza sativa
拟南芥的同源基因
Homologous gene in Arabidopsis thaliana
TraesCS5A03G0745700 516.05 Transcription factor MYC2 [UniProtKB/Swiss-Prot:Q39204] Os09g0519100 NA
TraesCS5A03G0746000 517.21 Transcription factor MYC2 [UniProtKB/Swiss-Prot:Q39204] Os09g0519100 NA
TraesCS5A03G0746100 517.36 Transcription factor MYC2 [UniProtKB/Swiss-Prot:Q39204] Os09g0519100 NA
TraesCS5A03G0747200 519.16 Transcription factor MYC2 [UniProtKB/Swiss-Prot:Q39204] Os09g0519100 NA
TraesCS5A03G0748400 520.44 Transcription factor MYC2 [UniProtKB/Swiss-Prot:Q39204] Os09g0519100 NA
TraesCS5A03G0748500 520.60 DNA polymerase delta subunit 4 [UniProtKB/Swiss-Prot:Q3T0X9] Os09g0520100 NA
TraesCS5A03G0748600 520.63 Probable 1-acylglycerol-3-phosphate O-acyltransferase [UniProtKB/Swiss-Prot:Q0J0A4] Os09g0520200 AT4G24160
TraesCS5A03G0748700 520.64 Pentatricopeptide repeat-containing protein At2g36980, mitochondrial [UniProtKB/Swiss-Prot:Q9SJK9] Os09g0520300 NA
TraesCS5A03G0748800 520.64 Cell division cycle 5-like protein [UniProtKB/Swiss-Prot:P92948] Os04g0348300 AT1G09770
TraesCS5A03G0748900 520.65 Serine carboxypeptidase-like 18 [UniProtKB/Swiss-Prot:Q9C7Z9] Os10g0101200 NA
TraesCS5A03G0749000 520.69 NA Os11g0292050 NA
TraesCS5A03G0749700 520.84 Serine carboxypeptidase-like 18 [UniProtKB/Swiss-Prot:Q9C7Z9] Os09g0462875 NA
TraesCS5A03G0749800 520.86 Probable acyl-activating enzyme 5, peroxisomal [UniProtKB/Swiss-Prot:Q9FFE6] Os09g0555800 AT5G16370
TraesCS5A03G0750100 520.95 Premnaspirodiene oxygenase [UniProtKB/Swiss-Prot:A6YIH8] Os09g0447300 NA
TraesCS5A03G0750200 520.98 Cytochrome P450 87A3 [UniProtKB/Swiss-Prot:Q7XU38] Os09g0457100 NA
TraesCS5A03G0750300 521.12 NA Os09g0498700 NA
TraesCS5A03G0750400 521.18 NA NA NA
TraesCS5A03G0750800 521.27 Ethylene-responsive transcription factor 1B [UniProtKB/Swiss-Prot:Q8LDC8] Os09g0457900 NA
TraesCS5A03G0751000 521.40 NA NA NA
TraesCS5A03G0751100 521.42 RING-H2 finger protein ATL72 [UniProtKB/Swiss-Prot:Q9SG96] Os09g0468300 NA
TraesCS5A03G0751300 521.47 RING-H2 finger protein ATL72 [UniProtKB/Swiss-Prot:Q9SG96] Os09g0468300 NA
TraesCS5A03G0751600 521.74 Transcription factor RF2b [UniProtKB/Swiss-Prot:Q6S4P4] Os09g0520400 NA
TraesCS5A03G0751700 521.74 NA Os09g0520500 NA
TraesCS5A03G0751900 521.76 Ycf49-like protein [UniProtKB/Swiss-Prot:Q55720] Os04g0379400 AT4G22830
TraesCS5A03G0752000 521.76 Probable sodium/metabolite cotransporter BASS5, chloroplastic [UniProtKB/Swiss-Prot:Q650U0] Os09g0520600 AT4G22840
TraesCS5A03G0752100 521.83 Putative disease resistance protein RGA4 [UniProtKB/Swiss-Prot:Q7XA39] Os09g0479500 NA
TraesCS5A03G0752600 522.02 Alpha-L-fucosidase 1 [UniProtKB/Swiss-Prot:Q8GW72] Os09g0520800 NA
TraesCS5A03G0752700 522.03 DEAD-box ATP-dependent RNA helicase 7 [UniProtKB/Swiss-Prot:Q650T9] Os09g0520700 AT5G62190
TraesCS5A03G0752800 522.03 Alpha-L-fucosidase 1 [UniProtKB/Swiss-Prot:Q8GW72] Os09g0520800 NA
TraesCS5A03G0752900 522.09 3-ketoacyl-CoA synthase 4 [UniProtKB/Swiss-Prot:Q9LN49] Os09g0521100 NA
TraesCS5A03G0753100 522.43 3-ketoacyl-CoA synthase 4 [UniProtKB/Swiss-Prot:Q9LN49] Os09g0521100 NA
TraesCS5A03G0753200 522.48 Transcription factor PCF2 [UniProtKB/Swiss-Prot:Q6ZBH6] Os09g0521300 AT5G51910
TraesCS5A03G0753600 522.50 F-box protein At1g52495 [UniProtKB/Swiss-Prot:Q9SSQ2] Os09g0479100 NA
TraesCS5A03G0753700 522.59 NA Os09g0517800 NA
TraesCS5A03G0753800 522.66 NA Os09g0559500 NA
TraesCS5A03G0753900 522.66 ATPase GET3A [UniProtKB/Swiss-Prot:Q949M9] Os09g0521500 AT1G01910
TraesCS5A03G0754100 522.78 SPX domain-containing membrane protein OsI_32082 [UniProtKB/Swiss-Prot:B8BDK8] Os09g0521800 AT4G22990
TraesCS5A03G0754200 522.79 Flap endonuclease GEN-like 1 [UniProtKB/Swiss-Prot:Q64MA3] Os09g0521900 NA
TraesCS5A03G0754300 522.79 Dehydration-responsive element-binding protein 1A [UniProtKB/Swiss-Prot:A2Z389] Os09g0522200 AT5G51990
TraesCS5A03G0754400 522.81 Dehydration-responsive element-binding protein 1A [UniProtKB/Swiss-Prot:A2Z389] Os09g0522000 AT5G51990
TraesCS5A03G0754500 522.83 Dehydration-responsive element-binding protein 1B [UniProtKB/Swiss-Prot:Q3T5N4] Os09g0522000 AT5G51990
TraesCS5A03G0754700 522.84 NA NA NA
TraesCS5A03G0755100 522.85 Dehydration-responsive element-binding protein 1B [UniProtKB/Swiss-Prot:Q8GUW4] Os09g0522000 AT5G51990
TraesCS5A03G0755300 522.95 Dehydration-responsive element-binding protein 1B [UniProtKB/Swiss-Prot:Q3T5N4] Os09g0522000 AT5G51990
TraesCS5A03G0755500 523.08 Dehydration-responsive element-binding protein 1B [UniProtKB/Swiss-Prot:Q3T5N4] Os09g0522000 AT5G51990
TraesCS5A03G0755900 523.15 Dehydration-responsive element-binding protein 1B [UniProtKB/Swiss-Prot:Q3T5N4] Os09g0522000 AT5G51990
TraesCS5A03G0756000 523.33 Dehydration-responsive element-binding protein 1B [UniProtKB/Swiss-Prot:Q3T5N4] Os09g0522000 AT5G51990
TraesCS5A03G0756100 523.34 Dehydration-responsive element-binding protein 1A [UniProtKB/Swiss-Prot:A2Z389] Os09g0457900 AT5G51990
TraesCS5A03G0756400 523.58 Dehydration-responsive element-binding protein 1A [UniProtKB/Swiss-Prot:Q64MA1] Os09g0457900 AT5G51990
TraesCS5A03G0756500 523.59 Dehydration-responsive element-binding protein 1B [UniProtKB/Swiss-Prot:Q3T5N4] Os09g0522000 AT5G51990
TraesCS5A03G0756700 523.60 Dehydration-responsive element-binding protein 1H [UniProtKB/Swiss-Prot:Q0J090] Os09g0522100 AT5G51990
TraesCS5A03G0756900 523.67 Dehydration-responsive element-binding protein 1H [UniProtKB/Swiss-Prot:Q0J090] Os09g0522100 AT5G51990
TraesCS5A03G0757200 523.70 NA NA NA
TraesCS5A03G0757300 523.73 Dehydration-responsive element-binding protein 1B [UniProtKB/Swiss-Prot:Q8GUW4] Os09g0522200 AT5G51990
TraesCS5A03G0757600 523.79 NA NA NA
TraesCS5A03G0757800 523.85 Dehydration-responsive element-binding protein 1H [UniProtKB/Swiss-Prot:Q0J090] Os09g0522100 AT5G51990
TraesCS5A03G0758000 523.86 Dehydration-responsive element-binding protein 1A [UniProtKB/Swiss-Prot:Q64MA1] Os09g0522000 AT5G51990
TraesCS5A03G0758600 524.16 Dehydration-responsive element-binding protein 1H [UniProtKB/Swiss-Prot:Q0J090] Os09g0522100 AT5G51990
TraesCS5A03G0758700 524.28 NA NA NA
TraesCS5A03G0758800 524.30 Dehydration-responsive element-binding protein 1H [UniProtKB/Swiss-Prot:Q0J090] Os09g0522100 AT5G51990
TraesCS5A03G0759100 524.32 Dehydration-responsive element-binding protein 1A [UniProtKB/Swiss-Prot:Q64MA1] Os09g0522100 AT5G51990
TraesCS5A03G0759200 524.33 Dehydration-responsive element-binding protein 1A [UniProtKB/Swiss-Prot:A2Z389] Os09g0522200 AT5G51990
TraesCS5A03G0759500 524.45 NA NA NA
TraesCS5A03G0759600 524.53 Protein DETOXIFICATION 50 [UniProtKB/Swiss-Prot:Q9FJ87] Os09g0524300 AT5G52050
TraesCS5A03G0759800 524.57 NA NA NA
TraesCS5A03G0759900 524.59 Ethylene-responsive transcription factor RAP2-11 [UniProtKB/Swiss-Prot:Q6J9S1] Os09g0522200 AT5G52020
TraesCS5A03G0760100 524.72 BAG family molecular chaperone regulator 1 [UniProtKB/Swiss-Prot:Q0WUQ1] Os09g0524800 AT5G52060
TraesCS5A03G0760200 524.73 Ribosomal RNA processing protein 36 homolog [UniProtKB/Swiss-Prot:A7SL20] Os09g0525200 AT1G12650
TraesCS5A03G0760400 524.76 F-box protein PP2-A13 [UniProtKB/Swiss-Prot:Q9LEX0] Os09g0525300 AT5G52120
TraesCS5A03G0760500 524.76 E3 ubiquitin-protein ligase BIG BROTHER [UniProtKB/Swiss-Prot:Q8L649] Os09g0525400 AT5G52140
TraesCS5A03G0760800 524.92 Ethylene-responsive transcription factor ERF071 [UniProtKB/Swiss-Prot:O22259] NA AT5G52020
TraesCS5A03G0760900 524.93 Glucuronoxylan 4-O-methyltransferase 1 [UniProtKB/Swiss-Prot:Q6NMK1] Os12g0204500 AT1G09610
TraesCS5A03G0761400 524.95 Protein YY1 [UniProtKB/Swiss-Prot:O23810] Os09g0525500 AT5G52160
TraesCS5A03G0761600 524.95 Plant UBX domain-containing protein 8 [UniProtKB/Swiss-Prot:F4JPR7] Os09g0525600 NA
TraesCS5A03G0761700 525.02 Germin-like protein 9-3 [UniProtKB/Swiss-Prot:Q652P9] Os09g0568700 NA
TraesCS5A03G0761800 525.02 Protein HAPLESS 2 [UniProtKB/Swiss-Prot:F4JP36] Os09g0525700 AT4G11720
TraesCS5A03G0762400 525.10 Germin-like protein 9-3 [UniProtKB/Swiss-Prot:Q652P9] Os09g0568600 NA
TraesCS5A03G0762500 525.10 Protein HAPLESS 2 [UniProtKB/Swiss-Prot:F4JP36] Os09g0525700 AT4G11720
TraesCS5A03G0762700 525.11 Acyl transferase 1 [UniProtKB/Swiss-Prot:Q7G4G7] Os09g0543900 NA
TraesCS5A03G0762800 525.11 Acyl transferase 1 [UniProtKB/Swiss-Prot:Q7G4G7] Os09g0543900 NA
TraesCS5A03G0763100 525.37 RHOMBOID-like protein 2 [UniProtKB/Swiss-Prot:Q9CAN1] Os09g0525900 AT1G12750
TraesCS5A03G0763300 525.38 NA NA NA
TraesCS5A03G0763600 525.38 NA NA NA
TraesCS5A03G0763800 525.42 Protein ROOT PRIMORDIUM DEFECTIVE 1 [UniProtKB/Swiss-Prot:Q689D6] Os09g0526000 NA
TraesCS5A03G0764000 525.61 Homeobox-leucine zipper protein ROC6 [UniProtKB/Swiss-Prot:Q7Y0V7] Os09g0526300 AT5G52170
TraesCS5A03G0764300 525.68 NA Os09g0526500 NA
TraesCS5A03G0764400 525.73 Ethylene-responsive transcription factor ERF071 [UniProtKB/Swiss-Prot:O22259] Os09g0522200 AT1G12610
TraesCS5A03G0764500 525.78 Heat stress transcription factor B-2c [UniProtKB/Swiss-Prot:Q652B0] Os09g0526600 AT5G62020
TraesCS5A03G0764700 525.82 UDP-glucose 4-epimerase 3 [UniProtKB/Swiss-Prot:Q652A8] Os09g0526700 AT1G12780
TraesCS5A03G0764900 525.82 NA Os09g0526800 AT1G01225
TraesCS5A03G0765400 526.30 Probable polyamine transporter At3g13620 [UniProtKB/Swiss-Prot:Q9LHN7] Os03g0374900 AT3G13620
TraesCS5A03G0765500 526.40 Nuclear speckle RNA-binding protein A [UniProtKB/Swiss-Prot:A1A6K6] Os09g0527100 NA
TraesCS5A03G0765700 526.41 NA NA NA
TraesCS5A03G0765900 526.43 NA NA NA
TraesCS5A03G0766000 526.43 Probable serine/threonine-protein kinase WNK5 [UniProtKB/Swiss-Prot:Q0D541] Os07g0584100 NA
TraesCS5A03G0766100 526.44 NA Os09g0527500 NA
TraesCS5A03G0766400 526.62 Probable polyamine transporter At3g13620 [UniProtKB/Swiss-Prot:Q9LHN7] NA NA
TraesCS5A03G0766800 527.09 Ras-related protein RABA3 [UniProtKB/Swiss-Prot:Q9LNK1] Os09g0527600 AT1G01200
TraesCS5A03G0766900 527.09 Rhodanese-like domain-containing protein 14, chloroplastic [UniProtKB/Swiss-Prot:Q94A65] Os09g0530000 AT4G27700
TraesCS5A03G0767000 527.10 2-keto-3-deoxy-L-rhamnonate aldolase [UniProtKB/Swiss-Prot:B7NN63] Os09g0529900 AT4G10750
TraesCS5A03G0767200 527.23 Subtilisin-like protease SBT1.4 [UniProtKB/Swiss-Prot:Q9LVJ1] Os09g0530800 NA
TraesCS5A03G0767400 527.28 Vacuolar protein sorting-associated protein 22 homolog 1 [UniProtKB/Swiss-Prot:Q5M759] Os09g0529700 AT4G27040
TraesCS5A03G0767500 527.28 NA Os09g0529400 NA
TraesCS5A03G0767600 527.29 NA Os09g0529350 NA
TraesCS5A03G0767700 527.29 NA Os09g0529300 NA
TraesCS5A03G0768000 527.36 Rab GTPase-activating protein 22 [UniProtKB/Swiss-Prot:Q94BY9] Os09g0528800 AT5G41940
TraesCS5A03G0768200 528.19 Cytochrome P450 78A6 [UniProtKB/Swiss-Prot:Q9ZNR0] Os09g0528700 AT3G61880
TraesCS5A03G0768800 528.54 Mediator of RNA polymerase II transcription subunit 10b [UniProtKB/Swiss-Prot:F4HPA7] Os09g0528300 AT1G26665
TraesCS5A03G0768900 528.60 Homeobox-leucine zipper protein HOX6 [UniProtKB/Swiss-Prot:Q651Z5] Os09g0528200 NA
TraesCS5A03G0769100 528.61 30S ribosomal protein S31, mitochondrial [UniProtKB/Swiss-Prot:P47909] Os09g0528100 AT2G21290
TraesCS5A03G0769300 528.61 Kinesin-like protein KIN-7J [UniProtKB/Swiss-Prot:Q651Z7] Os09g0528000 NA
TraesCS5A03G0769500 528.81 B-box zinc finger protein 19 [UniProtKB/Swiss-Prot:C0SVM5] Os09g0527900 AT2G21320
TraesCS5A03G0769600 528.96 Auxin-responsive protein IAA26 [UniProtKB/Swiss-Prot:Q652A1] Os09g0527700 NA
TraesCS5A03G0769700 528.97 U-box domain-containing protein 73 [UniProtKB/Swiss-Prot:Q6K762] NA NA
TraesCS5A03G0769800 528.98 Endoglucanase 23 [UniProtKB/Swiss-Prot:Q69NF5] Os09g0530200 AT4G39010
TraesCS5A03G0769900 529.06 Cytochrome b561, DM13 and DOMON domain-containing protein At5g54830 [UniProtKB/Swiss-Prot:Q9FFU6] Os09g0557700 AT5G54830
TraesCS5A03G0770000 529.18 Cytochrome P450 71A1 [UniProtKB/Swiss-Prot:P24465] Os09g0530300 NA
TraesCS5A03G0770100 529.25 LRR receptor-like serine/threonine-protein kinase EFR [UniProtKB/Swiss-Prot:C0LGT6] Os09g0479200 NA
TraesCS5A03G0770200 529.27 Transcription initiation factor TFIID subunit 5 [UniProtKB/Swiss-Prot:Q6S7B0] Os06g0649500 AT5G25150
TraesCS5A03G0770400 529.30 NA NA NA
TraesCS5A03G0770800 529.58 Cytochrome P450 71A1 [UniProtKB/Swiss-Prot:P24465] Os09g0530300 NA
TraesCS5A03G0770900 529.60 Cytochrome P450 71A25 [UniProtKB/Swiss-Prot:Q9STK8] Os09g0530300 NA
TraesCS5A03G0771000 529.63 Zinc finger CCCH domain-containing protein 19 [UniProtKB/Swiss-Prot:Q9SIV5] Os09g0530500 NA
TraesCS5A03G0771400 529.77 7-deoxyloganetin glucosyltransferase [UniProtKB/Swiss-Prot:F8WKW1] Os02g0578300 AT1G22360
TraesCS5A03G0771500 529.78 Dolichol-phosphate mannosyltransferase subunit 1 [UniProtKB/Swiss-Prot:Q9LM93] Os03g0824400 AT1G20575
TraesCS5A03G0771600 529.78 NEDD8-activating enzyme E1 regulatory subunit AXR1 [UniProtKB/Swiss-Prot:P42744] Os03g0820100 AT1G05180
TraesCS5A03G0771700 529.99 NA NA NA
TraesCS5A03G0771800 530.00 NA Os09g0530700 NA
TraesCS5A03G0771900 530.06 Subtilisin-like protease SBT3.6 [UniProtKB/Swiss-Prot:Q8L7I2] Os09g0530800 AT1G32980
TraesCS5A03G0772000 530.06 NA Os09g0530900 NA
TraesCS5A03G0772100 530.13 Protein MEI2-like 6 [UniProtKB/Swiss-Prot:Q652K6] Os09g0531200 NA
TraesCS5A03G0773500 530.88 NA NA NA
TraesCS5A03G0773600 530.99 Protein SHORT INTERNODES [UniProtKB/Swiss-Prot:Q9XGX0] Os09g0531600 NA
TraesCS5A03G0773800 531.70 Xylanase inhibitor protein 1 [UniProtKB/Swiss-Prot:Q8L5C6] NA NA
TraesCS5A03G0773900 531.76 PTI1-like tyrosine-protein kinase At3g15890 [UniProtKB/Swiss-Prot:Q9LSC2] Os09g0531701 NA
TraesCS5A03G0774500 532.08 NA NA NA
TraesCS5A03G0774700 532.14 Haloacid dehalogenase-like hydrolase domain-containing protein At2g33255 [UniProtKB/Swiss-Prot:Q8RYE9] Os02g0816100 AT2G33255
TraesCS5A03G0776500 533.41 Uncharacterized protein L728 [UniProtKB/Swiss-Prot:Q5UNY4] Os09g0499500 AT5G13210
TraesCS5A03G0777400 533.69 Polygalacturonate 4-alpha-galacturonosyltransferase [UniProtKB/Swiss-Prot:Q9LE59] Os09g0531800 AT3G61130
TraesCS5A03G0777500 533.74 Protein STAY-GREEN, chloroplastic [UniProtKB/Swiss-Prot:Q652K1] Os09g0532000 AT4G22920
TraesCS5A03G0777600 533.75 7-deoxyloganetin glucosyltransferase [UniProtKB/Swiss-Prot:F8WKW1] NA NA
TraesCS5A03G0777800 533.95 60S ribosomal protein L36a [UniProtKB/Swiss-Prot:O23290] Os07g0523150 AT3G23390
TraesCS5A03G0777900 533.96 NDR1/HIN1-like protein 1 [UniProtKB/Swiss-Prot:Q9SRN0] Os09g0532200 NA
TraesCS5A03G0778000 533.96 Two-component response regulator-like PRR95 [UniProtKB/Swiss-Prot:Q689G6] Os09g0532400 NA
TraesCS5A03G0778100 534.01 Pentatricopeptide repeat-containing protein At4g01400, mitochondrial [UniProtKB/Swiss-Prot:Q8LDU5] Os09g0532800 NA
TraesCS5A03G0778300 534.15 NA Os09g0532700 NA
TraesCS5A03G0778700 534.22 Protein ODORANT1 [UniProtKB/Swiss-Prot:Q50EX6] Os09g0532900 NA
TraesCS5A03G0779300 534.61 Pantothenate kinase 2 [UniProtKB/Swiss-Prot:Q0J035] Os09g0533100 AT4G32180
TraesCS5A03G0779400 534.62 Glucan endo-1,3-beta-glucosidase, acidic isoform [UniProtKB/Swiss-Prot:P49237] Os09g0533200 NA
TraesCS5A03G0779500 534.63 NA NA NA
TraesCS5A03G0779800 534.66 NA NA NA
TraesCS5A03G0780000 534.68 Probable inactive purple acid phosphatase 29 [UniProtKB/Swiss-Prot:Q9FMK9] Os09g0533300 AT5G63140
TraesCS5A03G0780200 534.73 Probable inactive purple acid phosphatase 29 [UniProtKB/Swiss-Prot:Q9FMK9] Os09g0533300 NA
TraesCS5A03G0780600 534.78 Probable inactive purple acid phosphatase 29 [UniProtKB/Swiss-Prot:Q9FMK9] Os09g0533300 AT5G63140
TraesCS5A03G0780700 534.78 Chaperone protein ClpD1, chloroplastic [UniProtKB/Swiss-Prot:Q6H795] Os02g0526400 AT5G51070
TraesCS5A03G0781100 534.91 Probable serine/threonine-protein kinase WNK9 [UniProtKB/Swiss-Prot:Q2QXC6] Os09g0511000 NA
TraesCS5A03G0781200 534.91 Lon protease homolog 2, peroxisomal [UniProtKB/Swiss-Prot:B8BDV1] Os09g0533400 AT5G47040
TraesCS5A03G0781300 534.94 Succinate dehydrogenase subunit 8A, mitochondrial [UniProtKB/Swiss-Prot:Q0DF13] Os06g0124900 NA
TraesCS5A03G0781900 535.12 NA NA NA
TraesCS5A03G0782000 535.13 O-acyltransferase WSD1 [UniProtKB/Swiss-Prot:Q93ZR6] NA NA
TraesCS5A03G0782100 535.24 O-acyltransferase WSD1 [UniProtKB/Swiss-Prot:Q93ZR6] NA NA
TraesCS5A03G0782400 535.29 O-acyltransferase WSD1 [UniProtKB/Swiss-Prot:Q93ZR6] NA NA
TraesCS5A03G0782600 535.48 NA NA NA
TraesCS5A03G0782800 535.48 Probable serine/threonine-protein kinase PBL19 [UniProtKB/Swiss-Prot:Q9LTC0] Os09g0533600 NA
TraesCS5A03G0783700 535.65 Pectin acetylesterase 3 [UniProtKB/Swiss-Prot:O80731] NA AT2G46930
TraesCS5A03G0783800 535.68 Chlorophyll a-b binding protein, chloroplastic [UniProtKB/Swiss-Prot:Q10HD0] Os03g0592500 AT3G27690
TraesCS5A03G0783900 535.69 Putative HVA22-like protein g [UniProtKB/Swiss-Prot:Q9LR09] Os09g0533800 AT5G42560
TraesCS5A03G0784200 535.80 Endoglucanase 24 [UniProtKB/Swiss-Prot:Q69SG5] Os09g0533900 AT1G75680
TraesCS5A03G0784300 535.82 Putative cyclin-F1-2 [UniProtKB/Swiss-Prot:Q6K8S5] NA NA
TraesCS5A03G0784500 535.88 Seipin-2 [UniProtKB/Swiss-Prot:F4I340] Os09g0534000 NA
TraesCS5A03G0784600 535.88 NA NA NA
TraesCS5A03G0784700 535.90 NA NA NA
TraesCS5A03G0784800 535.90 Peroxidase 40 [UniProtKB/Swiss-Prot:O23474] Os08g0302000 AT4G16270
TraesCS5A03G0784900 535.90 Putative cyclin-F1-2 [UniProtKB/Swiss-Prot:Q6K8S5] Os09g0466100 NA
TraesCS5A03G0785000 536.01 ER lumen protein-retaining receptor erd-2.2 [UniProtKB/Swiss-Prot:Q09473] Os09g0534200 AT1G75760
TraesCS5A03G0785100 536.02 Transcription initiation factor IIB [UniProtKB/Swiss-Prot:Q8W0W3] Os09g0534800 AT3G10330
TraesCS5A03G0785300 536.11 Putative serpin-Z8 [UniProtKB/Swiss-Prot:Q53P09] NA NA
TraesCS5A03G0785400 536.16 NA NA NA
TraesCS5A03G0785600 536.18 Wall-associated receptor kinase 5 [UniProtKB/Swiss-Prot:Q9LMN7] Os09g0561450 NA
TraesCS5A03G0785700 536.19 Wall-associated receptor kinase 5 [UniProtKB/Swiss-Prot:Q9LMN7] Os09g0561450 NA
TraesCS5A03G0786000 536.21 Wall-associated receptor kinase 5 [UniProtKB/Swiss-Prot:Q9LMN7] Os09g0561000 NA
TraesCS5A03G0786100 536.22 NA Os11g0616200 NA
TraesCS5A03G0786200 536.23 Triosephosphate isomerase, chloroplastic [UniProtKB/Swiss-Prot:P46225] Os09g0535000 AT2G21170
TraesCS5A03G0786400 536.31 NA NA NA
TraesCS5A03G0786500 536.32 NA Os12g0182800 AT1G48170
TraesCS5A03G0786600 536.33 NA NA NA
TraesCS5A03G0787400 536.36 NA NA NA
TraesCS5A03G0787700 536.39 NA NA NA
TraesCS5A03G0789200 536.44 NA NA NA
TraesCS5A03G0789500 536.53 UDP-glycosyltransferase 91B1 [UniProtKB/Swiss-Prot:Q9LSM0] Os09g0518200 NA
TraesCS5A03G0789600 536.54 NA Os03g0566600 AT2G26680
[1] Liu T, Wu L, Gan X, Chen W, Liu B, Fedak G, Cao W, Chi D, Liu D, Zhang H, Zhang B. Mapping quantitative trait loci for 1000-grain weight in a double haploid population of common wheat. Int J Mol Sci, 2020, 21: 3960.
doi: 10.3390/ijms21113960
[2] Su Z, Jin S, Lu Y, Zhang G R, Chao S M, Bai G H. Single nucleotide polymorphism tightly linked to a major QTL on chromosome 7A for both kernel length and kernel weight in wheat. Mol Breed, 2016, 36: 1-11.
doi: 10.1007/s11032-015-0425-z
[3] Sakamoto T, Matsuoka M. Generating high-yielding varieties by genetic manipulation of plant architecture. Curr Opin Biotechnol, 2004, 15: 144-147.
doi: 10.1016/j.copbio.2004.02.003
[4] Peng J R, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature, 1999, 400: 256-261.
doi: 10.1038/22307
[5] Bellucci A, Torp A M, Bruun S, Magid J, Andersen S B, Rasmussen S K. Association mapping in Scandinavian winter wheat for yield, plant height, and traits important for second-generation bioethanol production. Front Plant Sci, 2015, 6: 1046.
doi: 10.3389/fpls.2015.01046 pmid: 26635859
[6] Cadalen T, Sourdille P, Charmet G, Tixier M H, Gay G, Boeuf C, Bernard S, Leroy P, Bernard M. Molecular markers linked to genes affecting plant height in wheat using a doubled-haploid population. Theor Appl Genet, 1998, 96: 933-940.
doi: 10.1007/s001220050823
[7] Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder S, Weber E. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet, 2002, 105: 921-936.
doi: 10.1007/s00122-002-0994-1 pmid: 12582918
[8] Borrell A K, Incoll L D, Dalling M J. The influence of the Rht1and Rht2 alleles on the growth of wheat stems and ears. Ann Bot, 1991, 67: 103-110.
doi: 10.1093/oxfordjournals.aob.a088108
[9] Tang N, Jiang Y, He B R, Hu Y G. The effects of dwarfing genes (Rht-B1b, Rht-D1b, and Rht8) with different sensitivity to GA (3) on the coleoptile length and plant height of wheat. Agric Sci China, 2009, 8: 1028-1038.
doi: 10.1016/S1671-2927(08)60310-7
[10] Akman H, Bruckner P. Marker assisted selection for Rht8 and Rht-D1b dwarfing genes in winter wheat breeding program. New Biotechnol, 2012, 29: 139.
doi: 10.1016/j.nbt.2011.08.007
[11] Rasheed A, Wen W E, Gao F M, Zhai S N, Jin H, Liu J D, Guo Q, Zhang Y J, Dreisigacker S, Xia X C, He Z H. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet, 2016, 129: 1843-1860.
doi: 10.1007/s00122-016-2743-x pmid: 27306516
[12] Korzun V, Roder M S, Ganal M W, Worland A J, Law C N. Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I: Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theor Appl Genet, 1998, 96: 1104-1109.
doi: 10.1007/s001220050845
[13] Chai L, Xin M, Dong C, Chen Z, Zhai H, Zhuang J, Cheng X, Wang N, Geng J, Wang X, Bian R, Yao Y, Guo W, Hu Z, Peng H, Bai G, Sun Q, Su Z, Liu J, Ni Z. A natural variation in Ribonuclease H-like gene underlies Rht8 to confer ‘Green Revolution’ trait in wheat. Mol Plant, 2022, 15: 377-380.
doi: 10.1016/j.molp.2022.01.013
[14] Xiong H C, Zhou C Y, Fu M Y, Guo H J, Xie Y D, Zhao L S, Gu J Y, Zhao S R, Ding Y P, Li Y T, Zhang J Z, Wang K, Li X J, Liu L X. Cloning and functional characterization of Rht8, a ‘Green Revolution’ replacement gene in wheat. Mol Plant, 2022, 15: 373-376.
doi: 10.1016/j.molp.2022.01.014
[15] 徐相波, 张爱民, 李新华, 孙永堂. 小麦矮源的利用和矮秆基因的研究进展. 核农学报, 2001, 15: 188-192.
Xu X B, Zhang A M, Li X H, Sun Y T. Utilization of dwarf source and research progress of dwarf gene in wheat. J Nuclear Agric Sci, 2001, 15: 188-192. (in Chinese with English abstract)
[16] Sun L, Yang W, Li Y, Shan Q, Ye X, Wang D, Yu K, Lu W, Xin P, Pei Z, Guo X, Liu D, Sun J, Zhan K, Chu J, Zhang A. A wheat dominant dwarfing line with Rht12, which reduces stem cell length and affects gibberellic acid synthesis, is a 5AL terminal deletion line. Plant J, 2019, 97: 887-900.
doi: 10.1111/tpj.2019.97.issue-5
[17] Ford B A, Foo E, Sharwood R, Karafiatova M, Vrána J, MacMillan C, Nichols D S, Steuernagel B, Uauy C, Doležel J, Chandler P M, Spielmeyer W. Rht18 semidwarfism in wheat is due to increased GA 2-oxidaseA9 expression and reduced GA content. Plant Physiol, 2018, 177: 168-180.
doi: 10.1104/pp.18.00023
[18] Peng Z S, Li X, Yang Z J, Liao M L. A new reduced height gene found in the tetraploid semi-dwarf wheat landrace Aiganfanmai. Genet Mol Res, 2011, 10: 2349-2357.
doi: 10.4238/2011.October.5.5 pmid: 22002128
[19] Tian X, Xia X, Xu D, Liu Y, Xie L, Hassan M A, Song J, Li F, Wang D, Zhang Y, Hao Y, Li G, Chu C, He Z, Cao S. Rht24b, an ancient variation of TaGA2ox-A9, reduces plant height without yield penalty in wheat. New Phytol, 2022, 233: 738-750.
doi: 10.1111/nph.v233.2
[20] Borrill P, Mago R, Xu T, Ford B, Williams S J, Derkx A, Bovill W D, Hyles J, Bhatt D, Xia X, MacMillan C, White R, Buss W, Molnár I, Walkowiak S, Olsen O A, Doležel J, Pozniak C J, Spielmeyer W. An autoactive NB-LRR gene causes Rht13 dwarfism in wheat. Proc Natl Acad Sci USA, 2022, 119: e2209875119.
doi: 10.1073/pnas.2209875119
[21] Chen L, Yang Y, Cui C G, Lu S, Lu Q M, Du Y Y, Su R, Chai Y M, Li H J, Chen F Z, Yu F, Hu Y G. Effects of Vrn-B1 and Ppd-D1 on developmental and agronomic traits in Rht5dwarf plants of bread wheat. Field Crops Res, 2018, 219: 24-32.
doi: 10.1016/j.fcr.2018.01.022
[22] Chai L, Chen Z, Bian R, Zhai H, Cheng X, Peng H, Yao Y, Hu Z, Xin M, Guo W, Sun Q, Zhao A N. Dissection of two quantitative trait loci with pleiotropic effects on plant height and spike length linked in coupling phase on the short arm of chromosome 2D of common wheat (Triticum aestivum L.). Theor Appl Genet, 2018, 131: 1815-1831.
[23] Li T, Deng G B, Su Y, Yang Z, Tang Y Y, Wang J H, Qiu X B, Pu X, Li J, Liu Z H, Zhang H L, Liang J J, Yang W Y, Yu M Q, Wei Y M, Long H. Identification and validation of two major QTL for spike compactness and length in bread wheat (Triticum aestivum L.) showing pleiotropic effects on yield-related traits. Theor Appl Genet, 2021, 134: 3625-3641.
doi: 10.1007/s00122-021-03918-8
[24] Zhang L, Luo P G, Ren Z L, Zhang H Y. Controlling Fusarium head blight of wheat (Triticum aestivum L.) with genetics. Adv Biosci Biotechnol, 2011, 2: 263-270.
doi: 10.4236/abb.2011.24038
[25] Zhang K P, Wang J J, Qin H J, Wei Z Y, Hang L B, Zhang P W, Reynolds M, Wang D W. Assessment of the individual and combined effects of Rht8 and Ppd-D1a on plant height, time to heading and yield traits in common wheat. Crop J, 2019, 7: 845-856.
doi: 10.1016/j.cj.2019.06.008
[26] Zhu Z W, Hao Y F, Mergoum M, Bai G H, Humphreys G, Cloutier S, Xia X C, He Z H. Breeding wheat for resistance to Fusarium head blight in the Global North: China, USA, and Canada. Crop J, 2019, 7: 730-738.
doi: 10.1016/j.cj.2019.06.003
[27] 陈云, 王建强, 杨荣明, 马忠华. 小麦赤霉病发生危害形势及防控对策. 植物保护, 2017, 43: 11-17.
Chen Y, Wang J Q, Yang R M, Ma Z H. Current situation and management strategies of Fusarium head blight in China. Plant Protect, 2017, 43: 11-17. (in Chinese with English abstract)
[28] Zhu Z W, Xu X T, Fu L P, Wang F J, Dong Y C, Fang Z W, Wang W, Chen Y P, Gao C B, He Z H, Xia X C, Hao Y F. Molecular mapping of quantitative trait loci for fusarium head blight resistance in a doubled haploid population of Chinese bread wheat. Plant Dis, 2021, 105: 1339-1345.
doi: 10.1094/PDIS-06-20-1186-RE
[29] Schroeder H W, Christensen J J. Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology, 1963, 53: 831-838.
[30] 胡文静, 张勇, 陆成彬, 王凤菊, 刘金栋, 蒋正宁, 王金平, 朱展望, 徐小婷, 郝元峰, 何中虎, 高德荣. 小麦品种扬麦16赤霉病抗扩展QTL定位及分析. 作物学报, 2020, 46: 157-165.
doi: 10.3724/SP.J.1006.2020.91048
Hu W J, Zhang Y, Lu C B, Wang F J, Liu J D, Jiang Z N, Wang J P, Zhu Z W, Xu X T, Hao Y F, He Z H, Gao D R. Mapping and genetic analysis of QTLs for Fusarium head blight resistance to disease spread in Yangmai 16. Acta Agron Sin, 2020, 46: 157-165. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.91048
[31] 陆成彬, 范金平, 印娟, 王朝顺, 褚正虎. 小麦主要农艺性状对赤霉病抗性的影响. 安徽农业科学, 2013, 41: 1091-1092.
Lu C B, Fang J P, Yin J, Wang C S, Chu Z H. Effects of main agronomic traits of wheat on the resistance of Fusarium head blight. J Anhui Agric Sci, 2013, 41: 1091-1092. (in Chinese with English abstract)
[32] 陆成彬, 张伯桥, 范金平, 吴荣林, 王朝顺, 褚正虎. 2个重组自交系群体的小麦赤霉病抗性与表型性状相关性. 江苏农业科学, 2012, 40: 99-101.
Lu C B, Zhang B Q, Fan J P, Wu R L, Wang C S, Chu Z H. Correlation between resistance to Fusarium head blight and phenotypic traits in two recombinant inbred lines. Jiangsu Agric Sci, 2012, 40: 99-101. (in Chinese with English abstract)
[33] 陈士强, 陈秀兰, 张容, 王建华, 王锦荣, 黄向明, 何震天. 小麦赤霉病抗性与株高的相关性研究. 江苏农业科学, 2015, 43: 144-147.
Chen S Q, Chen X L, Zhang R, Wang J R, Huang X M, He Z T. Study on correlation between resistance to Fusarium head blight and plant height in wheat. Jiangsu Agric Sci, 2015, 43: 144-147. (in Chinese with English abstract)
[34] Draeger R, Gosman N, Steed A, Chandler E, Thomsett M, Srinivasachary, Schondelmaier J, Buerstmayr H, Lemmens M, Schmolke M, Mesterhazy A, Nicholson P. Identification of QTLs for resistance to Fusarium head blight, DON accumulation and associated traits in the winter wheat variety Arina. Theor Appl Genet, 2007, 115: 617-625.
doi: 10.1007/s00122-007-0592-3 pmid: 17607557
[35] Mao S L, Wei Y M, Cao W. Confirmation of the relationship between plant height and Fusarium head blight resistance in wheat (Triticum aestivum L.) by QTL meta-analysis. Euphytica, 2010, 174: 343-356.
doi: 10.1007/s10681-010-0128-9
[36] Srinivasachary Gosman N, Steed A, Simmonds J, Leverington-Waite M, Wang Y, Snape J, Nicholson P. Susceptibility to Fusarium head blight is associated with the Rht-D1b semi-dwarfing allele in wheat. Theor Appl Genet, 2008, 116: 1145-1153.
doi: 10.1007/s00122-008-0742-2 pmid: 18347773
[37] Srinivasachary Gosman N, Steed A, Hollins T W, Bayles R, Jennings P, Nicholson P. Semi-dwarfing Rht-B1 and Rht-D1 loci of wheat differ significantly in their influence on resistance to Fusarium head blight. Theor Appl Genet, 2009, 118: 695-702.
doi: 10.1007/s00122-008-0930-0 pmid: 19034409
[38] Hu W J, Wu H Y, Lu C B, Zheng X, Jia J, Xu W G. Genetic dissection of quantitative trait loci for spikelets compactness in two Yanzhan 1-derived recombinant inbred line wheat populations. Plant Breed, 2022, 141: 719-732.
doi: 10.1111/pbr.v141.6
[39] Hu W J, Zhu D M, Zhang Y, Liu J, Zhao D, Liao S, Jia J Z, Xu W G. Quantitative trait loci mapping for heading date and spikelet number in wheat (Triticum aestivum L.) based on two recombinant inbred line populations. Genet Resour Crop Evol, 2023, 70: 1179-1195.
doi: 10.1007/s10722-022-01496-2
[40] Hu W J, Liao S, Zhao D, Jia J Z, Xu W G, Cheng S H. Identification and validation of quantitative trait loci for grain size in bread wheat (Triticum aestivum L.). Agriculture, 2022, 12: 822.
doi: 10.3390/agriculture12060822
[41] Nyquist W E, Baker R J. Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci, 1991, 10: 235-322.
doi: 10.1080/07352689109382313
[42] Holland J B, Nyquist W E, Cervantes-Martínez C T. Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev, 2003, 22: 9-112.
[43] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001
[44] Ma Z Q, Sorrells M E. Genetic analysis of fertility restoration in wheat using restriction fragment length polymorphisms. Crop Sci, 1995, 35: 1137-1143.
doi: 10.2135/cropsci1995.0011183X003500040037x
[45] Xu X T, Zhu Z W, Jia A L, Wang F J, Wang J P, Zhang Y L, Fu C, Fu L P, Bai G H, Xia X C, Hao Y F, He Z H. Mapping of QTL for partial resistance to powdery mildew in two Chinese common wheat cultivars. Euphytica, 2019, 216: 1.
doi: 10.1007/s10681-019-2539-6
[46] Hu W J, Gao D R, Zhang Y, Zheng X, Lu C, Wu H, Xu W, Cheng S H, Jia J Z. Mapping quantitative trait loci for type II fusarium head blight resistance in two wheat recombinant inbred line populations derived from Yangmai 4 and Yangmai 5. Plant Dis, 2023, 107: 422-430.
doi: 10.1094/PDIS-06-22-1338-RE
[47] Li T, Deng G B, Su Y, Yang Z, Tang Y Y, Wang J H, Qiu X B, Pu X, Li J, Liu Z H, Zhang H L, Liang J J, Yang W Y, Yu M Q, Wei Y M, Long H. Identification and validation of two major QTLs for spike compactness and length in bread wheat (Triticum aestivum L.) showing pleiotropic effects on yield-related traits. Theor Appl Genet, 2021, 134: 3625-3641.
doi: 10.1007/s00122-021-03918-8
[48] Jiang P, Zhang X, Wu L, He Y, Zhuang W, Cheng X, Ge W, Ma H, Kong L. A novel QTL on chromosome 5AL of Yangmai 158 increases resistance to Fusarium head blight in wheat. Plant Pathol, 2019, 69: 249-258.
doi: 10.1111/ppa.v69.2
[49] Chen Y, Song W, Xie X, Wang Z, Guan P, Peng H, Jiao Y, Ni Z, Sun Q, Guo W. A collinearity-incorporating homology inference strategy for connecting emerging assemblies in the Triticeae tribe as a pilot practice in the plant pangenomic era. Mol Plant, 2020, 13: 1694-1708.
doi: 10.1016/j.molp.2020.09.019 pmid: 32979565
[50] Ma S W, Wang M, Wu J H, Guo W L, Chen Y M, Li G W, Wang Y P, Shi W M, Xia G M, Fu D L, Kang Z S, Ni F. WheatOmics: a platform combing multiple omics data to accelerate functional genomics studies in wheat. Mol Plant, 2021, 14: 1965-1968.
doi: 10.1016/j.molp.2021.10.006
[51] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证. 作物学报, 2022, 48: 1346-1356.
doi: 10.3724/SP.J.1006.2022.11055
Hu W J, Li D S, Yi X, Zhang C M, Zhang Y. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat. Acta Agron Sin, 2022, 48: 1346-1356. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.11055
[52] Botwright T L, Rebetzke G J, Condon A G, Richards R A. Influence of the gibberellin-sensitive Rht8dwarfing gene on leaf epidermal cell dimensions and early vigour in wheat (Triticum aestivum L.). Ann Bot, 2015, 95: 631-639.
doi: 10.1093/aob/mci069
[53] Huang X Q, Cöster H, Ganal M W, Röder M S. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet, 2003, 106: 1379-1389.
doi: 10.1007/s00122-002-1179-7 pmid: 12750781
[54] McCartney C A, Somers D J, Humphreys D G, Lukow O, Ames N, Noll J, Cloutier S, McCallum B D. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ‘AC Domain’. Genome, 2005, 48: 870-883.
doi: 10.1139/g05-055 pmid: 16391693
[55] Hai L, Guo H J, Wagner C, Xiao S H, Friedt W. Genomic regions for yield and yield parameters in Chinese winter wheat (Triticum aestivum L.) genotypes tested under varying environments correspond to QTL in widely different wheat materials. Plant Sci, 2008, 175: 226-232.
doi: 10.1016/j.plantsci.2008.03.006
[56] Jia H Y, Wan H S, Yang S H, Zhang Z Z, Kong Z X, Xue S L, Zhang L X, Ma Z Q. Genetic dissection of yield-related traits in a recombinant inbred line population created using a key breeding parent in China’s wheat breeding. Theor Appl Genet, 2013, 126: 2123-2139.
doi: 10.1007/s00122-013-2123-8
[57] Yan H, Li G, Shi J, Tian S, Zhang X, Cheng R, Wang X, Yuan Y, Cao S, Zhou J, Kong Z, Jia H, Ma Z. Genetic control of Fusarium head blight resistance in two Yangmai 158-derived recombinant inbred line populations. Theor Appl Genet, 2021, 134: 3037-3049.
doi: 10.1007/s00122-021-03876-1 pmid: 34110431
[58] Gao F, Wen W, Liu J, Rasheed A, Yin G, Xia X, Wu X, He Z. Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the Chinese wheat cross Zhou 8425B/Chinese Spring. Front Plant Sci, 2015, 6: 1099.
doi: 10.3389/fpls.2015.01099 pmid: 26734019
[59] Zhang N, Fan X, Cui F, Hao C, Zhang W, Zhao X, Yang L, Pan R, Chen M, Han J, Ji J, Liu D, Zhao Z, Tong Y, Zhang A, Wang T, Li J. Characterization of the temporal and spatial expression of wheat (Triticum aestivum L.) plant height at the QTL level and their influence on yield-related traits. Theor Appl Genet, 2017, 130: 1235-1252.
doi: 10.1007/s00122-017-2884-6 pmid: 28349175
[60] Zhang L, Zhang H, Qiao L Y, Miao L F, Yan D, Liu P, Zhao G Y, Jia J Z, Gao L F. Wheat MADS-box gene TaSEP3-D1 negatively regulates heading date. Crop J, 2021, 9: 1115-1123.
doi: 10.1016/j.cj.2020.12.007
[61] Tian X, Zhu Z, Xie L, Xu D, Li J, Fu C, Fu C, Chen X, Wang D, Xia X, He Z, Cao S. Preliminary exploration of the source, spread, and distribution of Rht24 reducing height in bread wheat. Crop Sci, 2019, 59: 19-24.
doi: 10.2135/cropsci2017.12.0711
[62] Yan H, Li G, Shi J, Tian S, Zhang X, Cheng R, Wang X, Yuan Y, Cao S, Zhou J, Kong Z, Jia H, Ma Z. Genetic control of Fusarium head blight resistance in two Yangmai 158-derived recombinant inbred line populations. Theor Appl Genet, 2021, 134: 3037-3049
doi: 10.1007/s00122-021-03876-1 pmid: 34110431
[63] Zhang N, Fan X, Cui F, Zhao C, Zhang W, Zhao X, Yang L, Pan R, Chen M, Han J, Ji J, Liu D, Zhao Z, Tong Y, Zhang A, Wang T, Li J. Characterization of the temporal and spatial expression of wheat (Triticum aestivum L.) plant height at the QTL level and their influence on yield-related traits. Theor Appl Genet, 2017, 130: 1235-1252.
doi: 10.1007/s00122-017-2884-6 pmid: 28349175
[64] Schnurbusch T, Paillard S, Fossati D, Messmer M, Schachermayr G, Winzeler M, Keller B. Detection of QTLs for Stagonospora glume blotch resistance in Swiss winter wheat. Theor Appl Genet, 2003, 107: 1226-1234.
pmid: 12928778
[65] Koch A, Kumar N, Weber L, Keller H, Imani J, Kogel K H. Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase-encoding genes confers strong resistance to Fusarium species. Proc Natl Acad Sci USA, 2013, 110: 19324-19329.
doi: 10.1073/pnas.1306373110 pmid: 24218613
[66] Li X, Zhang J B, Song B, Li H P, Xu H Q, Qu B, Dang F J, Liao Y C. Resistance to fusarium head blight and seedling blight in wheat is associated with activation of a cytochrome P450 gene. Phytopathology, 2010, 100: 183-191.
doi: 10.1094/PHYTO-100-2-0183 pmid: 20055652
[67] Oñate-Sánchez L, Singh K B. Identification of Arabidopsis ethylene-responsive element binding factors with distinct induction kinetics after pathogen infection. Plant Physiol, 2002, 128: 1313-1322.
pmid: 11950980
[68] Berrocal-Lobo M, Molina A, Solano R. Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J, 2002, 29: 23-32.
doi: 10.1046/j.1365-313x.2002.01191.x pmid: 12060224
[69] Theologis A, Ecker J R, Palm C J, Federspiel N A, Kaul S, White O, Alonso J, Altafi H, Araujo R, Bowman C L, Brooks S Y, Buehler E, Chan A, Chao Q, Chen H, Cheuk R F, Chin C W, Chung M K, Conn L, Conway A B, Conway A R, Creasy T H, Dewar K, Dunn P, Etgu P, Feldblyum T V, Feng J, Fong B, Fujii C Y, Gill J E, Goldsmith A D, Haas B, Hansen N F, Hughes B, Huizar L, Hunter J L, Jenkins J, Johnson-Hopson C, Khan S, Khaykin E, Kim CJ, Koo H L, Kremenetskaia I, Kurtz D B, Kwan A, Lam B, Langin-Hooper S, Lee A, Lee J M, Lenz C A, Li J H, Li Y, Lin X, Liu S X, Liu Z A, Luros J S, Maiti R, Marziali A, Militscher J, Miranda M, Nguyen M, Nierman W C, Osborne B I, Pai G, Peterson J, Pham P K, Rizzo M, Rooney T, Rowley D, Sakano H, Salzberg S L, Schwartz J R, Shinn P, Southwick A M, Sun H, Tallon L J, Tambunga G, Toriumi M J, Town C D, Utterback T, Van Aken S, Vaysberg M, Vysotskaia V S, Walker M, Wu D, Yu G, Fraser C M, Venter J C, Davis R W. Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature, 2000, 408: 816-820.
doi: 10.1038/35048500
[1] YANG Chen-Xi, ZHOU Wen-Qi, ZHOU Xiang-Yan, LIU Zhong-Xiang, ZHOU Yu-Qian, LIU Jie-Shan, YANG Yan-Zhong, HE Hai-Jun, WANG Xiao-Juan, LIAN Xiao-Rong, LI Yong-Sheng. Mapping and cloning of plant height gene PHR1 in maize [J]. Acta Agronomica Sinica, 2024, 50(1): 55-66.
[2] HUANG Yu-Jie, ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei, DING Shuang-Cheng. Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(9): 2331-2343.
[3] WANG Xing-Rong, ZHANG Yan-Jun, TU Qi-Qi, GONG Dian-Ming, QIU Fa-Zhan. Identification and gene localization of a novel maize nuclear male sterility mutant ms6 [J]. Acta Agronomica Sinica, 2023, 49(8): 2077-2087.
[4] HUANG Li, CHEN Wei-Gang, LI Wei-Tao, YU Bo-Lun, GUO Jian-Bin, ZHOU Xiao-Jing, LUO Huai-Yong, LIU Nian, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Identification of major QTLs for nodule formation in peanut [J]. Acta Agronomica Sinica, 2023, 49(8): 2097-2104.
[5] LI Xing, YANG Hui, LUO Lu, LI Hua-Dong, ZHANG Kun, ZHANG Xiu-Rong, LI Yu-Ying, YU Hai-Yang, WANG Tian-Yu, LIU Jia-Qi, WANG Yao, LIU Feng-Zhen, WAN Yong-Shan. QTLs mapping for single-seed weight of cultivated peanut [J]. Acta Agronomica Sinica, 2023, 49(8): 2160-2170.
[6] LIN Fen-Fang, CHEN Xing-Yu, ZHOU Wei-Xun, WANG Qian, ZHANG Dong-Yan. Hyperspectral remote sensing detection of Fusarium head blight in wheat based on the stacked sparse auto-encoder algorithm [J]. Acta Agronomica Sinica, 2023, 49(8): 2275-2287.
[7] WANG Rang-Jian, YANG Jun, ZHANG Li-Lan, GAO Xiang-Feng. Genome-wide association analysis of geraniol primrose glycoside abundance in tender tea shoots [J]. Acta Agronomica Sinica, 2023, 49(7): 1843-1859.
[8] LIU Ting-Xuan, GU Yong-Zhe, ZHANG Zhi-Hao, WANG Jun, SUN Jun-Ming, QIU Li-Juan. Mapping soybean protein QTLs based on high-density genetic map [J]. Acta Agronomica Sinica, 2023, 49(6): 1532-1541.
[9] YANG Tai-Hua, YANG Fu-Quan, GAO Geng-Dong, YIN Shuai, JIN Qing-Dong, XU Lin-Shan, KUAI Jie, WANG Bo, XU Zheng-Hua, GE Xian-Hong, WANG Jing, ZHOU Guang-Sheng. Preliminary exploration of the role of LncRNA in the ecotype differentiation of Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(5): 1197-1210.
[10] ZHOU Hai-Ping, ZHANG Fan, CHEN Kai, SHEN Cong-Cong, ZHU Shuang-Bing, QIU Xian-Jin, XU Jian-Long. Identification of rice blast resistance in xian and geng germplasms by genome- wide association study [J]. Acta Agronomica Sinica, 2023, 49(5): 1170-1183.
[11] ZHU Zhi, LI Long, LI Chao-Nan, MAO Xin-Guo, HAO Chen-Yang, ZHU Ting, WANG Jing-Yi, CHANG Jian-Zhong, JING Rui-Lian. Transcription factor TaMYB5-3B is associated with plant height and 1000- grain weight in wheat [J]. Acta Agronomica Sinica, 2023, 49(4): 906-916.
[12] ZHOU Bin-Han, YANG Zhu, WANG Shu-Ping, FANG Zheng-Wu, HU Zan-Min, XU Zhao-Shi, ZHANG Ying-Xin. Screening of active LTR retrotransposons in wheat (Triticum aestivum L.) seedlings and analysis of their responses to abiotic stresses [J]. Acta Agronomica Sinica, 2023, 49(4): 966-977.
[13] YANG Jun-Fang, WANG Zhou, QIAO Lin-Yi, WANG Ya, ZHAO Yi-Ting, ZHANG Hong-Bin, SHEN DengGao, WANG HongWei, CAO Yue. QTL mapping of seed size traits based on a high-density genetic map in castor [J]. Acta Agronomica Sinica, 2023, 49(3): 719-730.
[14] XIANG Si-Qian, LI Ru-Xiang, XU Guang-Yi, DENG Ke-Li, YU Jin-Jin, LI Miao-Miao, YANG Zheng-Lin, LING Ying-Hua, SANG Xian-Chun, HE Guang-Hua, ZHAO Fang-Ming. Identification and pyramid analysis of QTLs for grain size based on rice long-large-grain chromosome segment substitution line Z66 [J]. Acta Agronomica Sinica, 2023, 49(3): 731-743.
[15] YANG Bin, QIAO Ling, ZHAO Jia-Jia, WU Bang-Bang, WEN Hong-Wei, ZHANG Shu-Wei, ZHENG Xing-Wei, ZHENG Jun. QTL mapping and validation of chlorophyll content of flag leaves in wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 744-754.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .