Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Cloning and expression analysis of transcription factor AhWRI1s in peanut

YIN Xiang-Zhen1,ZHAO Jian-Xin2,HAO Cui-Cui2,PAN Li-Juan1,CHEN Na1,XU Jing1,JIANG Xiao1,ZHAO Xu-Hong1,WANG En-Qi2,CAO Huan2,YU Shan-Lin1,CHI Xiao-Yuan1,*   

  1. 1 Shandong Peanut Research Institute, Qingdao 266100, Shandong, China;2 College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China
  • Received:2024-03-29 Revised:2024-08-15 Accepted:2024-08-15 Published:2024-09-03
  • Supported by:
    This study was supported by the China Agriculture Research System of MOF and MARA (CARS-13), the Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences (CXGC2023F20, CXGC2024F20), the Key-Area Research and Development Program of Guangdong Province (2020B020219003), the Major Scientific and Technological Project in Xinjiang (2022A02008-3), the Taishan Scholar Project Funding, the Research and Development Program of Shandong Province (the Improved Variety Engineering Project) (2022LZGC007), the Natural Science Foundation of Shandong Province (ZR2021QC172, ZR2023QC146), and the Key Research and Development Plan of Shandong Province (Action Plan to Boost Scientific and Technological Innovation in Rural Revitalization) (2022TZXD0031).

Abstract:

Peanut is one of the widely cultivated oil and economic crops worldwide and has become a major source of oil and protein for humans due to its high oil and protein content. With the increasing global demand for vegetable oil, improving the fatty acid composition and increasing the lipid content of peanut seeds has become a top priority in peanut breeding. Transcriptional regulators can modulate the expression of a series of genes in metabolic pathways related to lipid synthesis, significantly affecting lipid synthesis and metabolism. In this study, two transcription factors, AhWRI1-1 and AhWRI1-2, were cloned from the leaves of Huayu 33. The ORF of AhWRI1-1 was 1101 bp, encoding 366 amino acids, and the ORF of AhWRI1-2 was 1128 bp, encoding 375 amino acids. Bioinformatics analysis revealed that both AhWRI1-1 and AhWRI1-2 contained two AP2/EREBP conserved domains. The expression patterns of AhWRI1-1 and AhWRI1-2 in different tissues were detected by qRT-PCR. The results showed that AhWRI1-1 had the highest expression in seeds, suggesting its involvement in the regulation of fatty acid synthesis and oil accumulation, while AhWRI1-2 had the highest expression in hypocotyls, indicating its role in hypocotyl development. Additionally, the differences in the responses of AhWRI1-1 and AhWRI1-2 to abiotic stresses suggested that these transcription factors may play different roles under such conditions. Transcriptional activation experiments in yeast showed that both AhWRI1-1 and AhWRI1-2 possess transcriptional activation activities. This study lays the foundation for future in-depth functional studies of AhWRI1-1 and AhWRI1-2.

Key words: peanut, AP2/EREBP transcription factor, abiotic stress, gene expression analysis, transcriptional activation

[1] Pasupuleti J, Nigam S N, Pandey M K, Nagesh P, Varshney R K. Groundnut improvement: use of genetic and genomic tools. Front Plant Sci, 2013, 4: 23.

[2] 姚云游, 乔玉兰. 花生功能成分及营养价值的研究进展. 中国油脂, 2005, 30(9): 3133.

Yao Y Y, Qiao Y L. Advance in study on functional compositions and nutritive value of peanut. China Oils Fats, 2005, 30(9): 3133 (in Chinese with English abstract).

[3] Latchman D S. Transcription factors: an overview. Int J Biochem Cell Biol, 1997, 29: 1305–1312.

[4] Yang Y Z, Kong Q, Lim A R Q, Lu S P, Zhao H, Guo L, Yuan L, Ma W. Transcriptional regulation of oil biosynthesis in seed plants: current understanding, applications, and perspectives. Plant Commun, 2022, 3: 100328.

[5] 李玉兰, 孙勤富, 王幼平. 植物油脂合成的转录调控研究进展. 分子植物育种, 2016, 14: 25092518.

Li Y L, Sun Q F, Wang Y P. Research advance in transcriptional regulation of lipid synthesis and accumulation in plant. Mol Plant Breed, 2016, 14: 25092518 (in Chinese with English abstract).

[6] Focks N, Benning C. wrinkled1: a novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiol, 1998, 118: 91–101.

[7] Cernac A, Benning C. WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J, 2004, 40: 575–585.

[8] Ma W, Kong Q, Grix M, Mantyla J J, Yang Y, Benning C, Ohlrogge J B. Deletion of a C-terminal intrinsically disordered region of WRINKLED1 affects its stability and enhances oil accumulation in Arabidopsis. Plant J, 2015, 83: 864–874.

[9] Baud S, Mendoza M S, To A, Harscoet E, Lepiniec L, Dubreucq B. WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J, 2007, 50: 825–838.

[10] Sánchez R, González-Thuillier I, Venegas-Calerón M, Garcés R, Salas J J, Martínez-Force E. The sunflower WRINKLED1 transcription factor regulates fatty acid biosynthesis genes through an AW box binding sequence with a particular base bias. Plants (Basel), 2022, 11: 972.

[11] Maeo K, Tokuda T, Ayame A, Mitsui N, Kawai T, Tsukagoshi H, Ishiguro S, Nakamura K. An AP2-type transcription factor, WRINKLED1 of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. Plant J, 2009, 60: 476–487.

[12] Baud S, Wuillème S, To A, Rochat C, Lepiniec L. Role of WRINKLED1 in the transcriptional regulation of glycolytic and fatty acid biosynthetic genes in Arabidopsis. Plant J, 2009, 60: 933–947.

[13] Sanjaya, Durrett T P, Weise S E, Benning C. Increasing the energy density of vegetative tissues by diverting carbon from starch to oil biosynthesis in transgenic Arabidopsis. Plant Biotechnol J, 2011, 9: 874–883.

[14] Snell P, Wilkinson M, Taylor G J, Hall S, Sharma S, Sirijovski N, Hansson M, Shewry P R, Hofvander P, Grimberg Å. Characterisation of grains and flour fractions from field grown transgenic oil-accumulating wheat expressing oat WRI1. Plants, 2022, 11: 889.

[15] Dash S, Cannon E K S, Kalberer S R, Farmer A D, Cannon S B. PeanutBase and other bioinformatic resources for peanut. In: Stalker H T, Wilson R F, eds. Peanuts Genetics, Processing, and Utilization. Urbana: AOCS Press, 2016. pp 241–252.

[16] Lalitha S. Primer premier 5. Biotech Softw Internet Rep, 2000, 1: 270–272.

[17] Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins M R, Appel R D, Bairoch A. Protein identification and analysis tools on the ExPASy Server. In: Walker J M, eds. The Proteomics Protocols Handbook. Totowa, NJ: Humana Press, 2005. pp 571–607.

[18] Hallgren J, Tsirigos K D, Pedersen M D, Armenteros J J A, Marcatili P, Nielsen H, Krogh A, Winther O. DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks. bioRxiv, 2022, doi: https://doi.org/10.1101/2022.04.08.487609.

[19] Almagro Armenteros J J, Tsirigos K D, Sønderby C K, Petersen T N, Winther O, Brunak S, von Heijne G, Nielsen H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol, 2019, 37: 420–423.

[20] Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar Gustavo A, Sonnhammer E L L, Tosatto S C E, Paladin L, Raj S, Richardson L J, Finn R D, Bateman A. Pfam: the protein families database in 2021. Nucleic Acids Res, 2021, 49: D412–D419.

[21] Hu B, Jin J P, Guo A-Y, Zhang H, Luo J C, Gao G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, 2015. 31: 1296–1297.

[22] Goodstein D M, Shu S Q, Howson R, Neupane R, Hayes R D, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar D S. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res, 2012, 40: D1178–D1186.

[23] Ma W, Kong Q, Arondel V, Kilaru A, Bates P D, Thrower N A, Benning C, Ohlrogge J B. Wrinkled1, a ubiquitous regulator in oil accumulating tissues from Arabidopsis embryos to oil palm mesocarp. PLoS One, 2013, 8: e68887.

[24] To A, Joubès J, Barthole G, Lécureuil A, Scagnelli A, Jasinski S, Lepiniec L, Baud S. WRINKLED transcription factors orchestrate tissue-specific regulation of fatty acid biosynthesis in Arabidopsis. Plant Cell, 2012, 24: 5007–5023.

[25] Pouvreau B, Baud S, Vernoud V, Morin V, Py C, Gendrot G, Pichon J P, Rouster J, Paul W, Rogowsky P M. Duplicate maize Wrinkled1 transcription factors activate target genes involved in seed oil biosynthesis. Plant Physiol, 2011, 156: 674–686.

[26] Chen L, Zheng Y H, Dong Z M, Meng F F, Sun X M, Fan X H, Zhang Y F, Wang M L, Wang S M. Soybean (Glycine max) WRINKLED1 transcription factor, GmWRI1a, positively regulates seed oil accumulation. Mol Genet Genomics, 2018, 293: 401–415.

[27] Baud S, Bourrellier A B F, Azzopardi M, Berger A, Dechorgnat J, Daniel-Vedele F, Lepiniec L, Miquel M, Rochat C, Hodges M, Ferrario-Méry S. PII is induced by WRINKLED1 and fine-tunes fatty acid composition in seeds of Arabidopsis thaliana. Plant J, 2010, 64: 291–303.

[28] Yang Y, Munz J, Cass C, Zienkiewicz A, Kong Q, Ma W, Sanjaya, Sedbrook J, Benning C. Ectopic expression of WRINKLED1 affects fatty acid homeostasis in Brachypodium distachyon vegetative tissues. Plant Physiol, 2015, 169: 1836–1847.

[29] Bryant G O, Ptashne M. Independent recruitment in vivo by Gal4 of two complexes required for transcription. Mol Cell, 2003, 11: 1301–1309.

[30] Cutler S R, Rodriguez P L, Finkelstein R R, Abrams S R. Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol, 2010, 61: 651–679.

[1] QI Jia-Min, XU Chun-Miao, XIAO Bin. Genome-wide identification and expression analysis of TIFY gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2297-2309.
[2] LIU Chen-Ming, ZHAO Ke-Yong, YUE Man-Fang, ZHAO Yan-Ming, WU Zhong-Yi, ZHANG Chun. Functional study on the regulation of root growth and development and stress tolerance by maize transcription factor ZmEREB180 [J]. Acta Agronomica Sinica, 2024, 50(8): 1920-1933.
[3] LIU Zhen, CHEN Li-Min, LI Zhi-Tao, ZHU Jin-Yong, WANG Wei-Lu, QI Zhe-Ying, YAO Pan-Feng, BI Zhen-Zhen, SUN Chao, BAI Jiang-Ping, LIU Yu-Hui. Genome-wide identification and expression analysis of ARM gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2024, 50(6): 1451-1466.
[4] WEN Li-Chao, XIONG Tao, DENG Zhi-Chao, LIU Tao, GUO Cun, LI Wei, GUO Yong-Feng. Expression and functional characterization of NtNAC080 transcription factor gene from Nicotiana tabacumin under abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(8): 2171-2182.
[5] DING Hong-Yan, FENG Xiao-Xi, WANG Bai-Yu, ZHANG Ji-Sen. Evolution and relative expression pattern of LRRII-RLK gene family in sugarcane Saccharum spontaneum [J]. Acta Agronomica Sinica, 2023, 49(7): 1769-1784.
[6] ZHAO Xi-Juan, LIU Sheng-Xuan, LIU Teng-Fei, ZHENG Jie, DU Juan, HU Xin-Xi, SONG Bo-Tao, HE Chang-Zheng. Transcriptome analysis reveals the regulatory role of the transcription factor StMYB113 in light-induced chlorophyll synthesis of potato tuber epidermis [J]. Acta Agronomica Sinica, 2023, 49(7): 1860-1870.
[7] ZHOU Bin-Han, YANG Zhu, WANG Shu-Ping, FANG Zheng-Wu, HU Zan-Min, XU Zhao-Shi, ZHANG Ying-Xin. Screening of active LTR retrotransposons in wheat (Triticum aestivum L.) seedlings and analysis of their responses to abiotic stresses [J]. Acta Agronomica Sinica, 2023, 49(4): 966-977.
[8] XU Zi-Yin, YU Xiao-Ling, ZOU Liang-Ping, ZHAO Ping-Juan, LI Wen-Bin, GENG Meng-Ting, RUAN Meng-Bin. Expression pattern analysis and interaction protein screening of cassava MYB transcription factor MeMYB60 [J]. Acta Agronomica Sinica, 2023, 49(4): 955-965.
[9] SUN Quan-Xi, YUAN Cui-Ling, MOU Yi-Fei, YAN Cai-Xia, ZHAO Xiao-Bo, WANG Juan, WANG Qi, SUN Hui, LI Chun-Juan, SHAN Shi-Hua. Genome-wide identification and expression analysis of SWEET genes from peanut genomes [J]. Acta Agronomica Sinica, 2023, 49(4): 938-954.
[10] DENG Zhao, JIANG Huan-Qi, CHENG Li-Sha, LIU Rui, HUANG Min, LI Man-Fei, DU He-Wei. Identification of abiotic stress-related gene co-expression networks in maize by WGCNA [J]. Acta Agronomica Sinica, 2023, 49(3): 672-686.
[11] HUANG Zhen, WU Qi-Jing, CHEN Can-Ni, WU Xia, CAO Shan, ZHANG Hui, YUE Jiao, HU Ya-Li, LUO Deng-Jie, LI Yun, LIAO Chang-Jun, LI Ru, CHEN Peng. Role of calmodulin gene (HcCaM7) and its protein acetylation is involved in kenaf response to abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(2): 402-413.
[12] ZHU Jin-Yong, LIU Zhen, ZENG Yu-Ting, LI Zhi-Tao, CHEN Li-Min, LI Hong-Yang, SHI Tian-Bin, ZHANG Jun-Lian, BAI Jiang-Ping, LIU Yu-Hui. Genome-wide identification of potato (Solanum tuberosum L.) PAL gene family and its expression analysis in abiotic stress and tuber anthocyanin synthesis [J]. Acta Agronomica Sinica, 2023, 49(11): 2978-2990.
[13] CHEN Wu-Jun, LIU Jiang-Dong, JIANG Kai-Xuan, WANG You-Ping, JIANG Jin-Jin. Identification and analysis of BnKNOX gene family in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(11): 2991-3006.
[14] ZHU Ji-Jie, WANG Shi-Jie, ZHAO Hong-Xia, JIA Xiao-Yun, LI Miao, WANG Guo-Yin. Transcriptome analysis of different cotton varieties' leaves in response to chemical defoliant agent thidiazuron under field conditions [J]. Acta Agronomica Sinica, 2023, 49(10): 2705-2716.
[15] ZHANG Cheng, ZHANG Zhan, YANG Jia-Bao, MENG Wan-Qiu, ZENG Ling-Lu, SUN Li. Genome-wide identification and relative expression analysis of DGATs gene family in sunflower [J]. Acta Agronomica Sinica, 2023, 49(1): 73-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!