Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (9): 2157-2166.doi: 10.3724/SP.J.1006.2024.44018

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Cloning and functional analysis of drought-inducible promoter AhMYB44-11- Pro in peanut (Arachis hypogaea L.)

LIU Yong-Hui(), SHEN Yi, SHEN Yue, LIANG Man, SHA Qin, ZHANG Xu-Yao, CHEN Zhi-De*()   

  1. Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
  • Received:2024-01-29 Accepted:2024-05-21 Online:2024-09-12 Published:2024-06-12
  • Contact: *E-mail: chen701865@aliyun.com
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-13);Open Competition Project for Seed Industry of Jiangsu Province(JBGS [2021] 062)

Abstract:

Drought is a significantly environmental factor that poses a serious threat to peanut yield and quality in China. Our study aims to elucidate the regulatory mechanism of the drought stress response gene AhMYB44-11 and uncover the function of its promoter. We isolated the promoter sequence AhMYB44-11-Pro from the peanut genome and constructed recombinant expression vectors comprising the full-length promoter and several 5'-terminal deletion promoters, each fused with the GUS reporter gene. These vectors were then introduced into plant tissue via Agrobacterium rhizogenes-mediated transformation to assess promoter activity and expression patterns. The results revealed that AhMYB44-11-Pro contains a higher number of drought-responsive cis-regulatory elements, including MBS and Myb-binding sites, compared to the promoter of its homologous gene AhMYB44-01. Furthermore, dehydration treatment significantly enhanced GUS staining and activity in AhMYB44-11-Pro transgenic Arabidopsis, indicating that the promoter’s activity is upregulated under drought stress. These findings confirm that AhMYB44-11-Pro functions as a drought-inducible promoter. Additionally, AhMYB44-11-Pro contains a seed endosperm-specific expression element and gibberellin response elements, demonstrating an increased expression trend during pod development, as evidenced by GUS histochemical staining. This suggests that AhMYB44-11 may play a crucial role in seed development, particularly in dry matter accumulation. This research lays the groundwork for a comprehensive analysis of the biological functions of AhMYB44 and provides a valuable reference for genetically enhancing crop drought resistance.

Key words: peanut, AhMYB44, promoter, drought stress, GUS activity

Table 1

Primers for promoter isolation and vectors construction"

用途
Function
引物名称
Primer name
引物序列
Primer sequence (5°-3°)
基因克隆Gene cloning Pro0-F GGCGTGCGGTCTTCTGGGGT
Pro0-R GCTACGATGCCGCTATCCAC
全长以及缺失序列载体构建
Vectors construction of full-length and several deletion sequences
Pro1-F GTCGACCTGCAGGCATGCAAGCTTGTTCTTGTAACAACTTGAGGC
Pro2-F GTCGACCTGCAGGCATGCAAGCTTAAGTTTGATAGTAAGGGTG
Pro3-F GTCGACCTGCAGGCATGCAAGCTTGTTGATTGGATTCTTTGC
Pro4-F GTCGACCTGCAGGCATGCAAGCTTATGGTCTTGTCTTCGTTA
Pro5-F GTCGACCTGCAGGCATGCAAGCTTCAGAGCAGGGATGACTTG
Pro6-F GTCGACCTGCAGGCATGCAAGCTTATCGTAACGCCCTACCTA
Pro (1-6)-R GAAATTTACCCTCAGATCTACCATGGAGTGCTTAGTTTCTTTTGTTTTG

Fig. 1

Schematic diagram of cis-regulatory elements distribution in the AhMYB44-01/11 promoters"

Fig. 2

Electrophoresis analysis of the full-length promoter and its 5°-deletion fragments M: DL2000 marker; P0: a long fragment containing the full-length promoter; P1-P6: the full-length promoter and its 5°-deletion fragments."

Fig. 3

Vectors diagram expressing GUS in plants driven by different length AhMYB44-11-Pro with 5°-deletion P1-P6: the full-length promoter and its 5°-deletion fragments."

Fig. 4

GUS histochemical detection of different length AhMYB44-11-Pro with 5°-deletion in transgenic tobacco P1-P6: transgenic tobacco leaves transformed with different lengths of AhMYB44-11-Pro series expression vectors respectively."

Fig. 5

GUS activity assay of different length AhMYB44-11-Pro with 5°-deletion in transgenic tobacco P1-P6: transgenic tobacco leaves transformed with different lengths of AhMYB44-11-Pro series expression vectors. Different lower-case letters and upper-case letters above the bars indicate significant differences at P < 0.05 and P < 0.01, respectively."

Fig. 6

GUS histochemical detection of AhMYB44-11-Pro in transgenic Arabidopsis A: seedlings germinated for 2 days; B: seedlings germinated for 3 days; C: seedlings germinated for 7 days; D: stem transection; E: inflorescence; F: stem node; G: silique."

Fig. 7

Drought stress induced expression analysis of AhMYB44-11-Pro transgenic Arabidopsis A: transcriptional level of AhMYB44-11-Pro in transgenic lines Pro-21 and Pro-27 assayed by semi-quantitative reverse transcription PCR; 35S: transgenic plants containing the CaMV35S promoter empty vector; Actin2 was used as an internal control. B, C: GUS staining and activity quantification of transgenic Arabidopsis seedlings under normal growth condition and drought stress, ** above the bars indicates significant differences at P < 0.01."

[1] 万书波. 中国花生栽培学. 上海: 上海科技出版社, 2003. pp 1-4.
Wan S B. Peanut Cultivation in China. Shanghai: Shanghai Scientific & Technical Publishers, 2003. pp 1-4 (in Chinese).
[2] 廖伯寿. 我国花生生产发展现状与潜力分析. 中国油料作物学报, 2020, 42: 161-166.
Liao B S. A review on progress and prospects of peanut industry in China. Chin J Oil Crop Sci, 2020, 42: 161-166 (in Chinese with English abstract).
doi: 10.19802/j.issn.1007-9084.2020115
[3] 张金霞, 刘艳丽, 赵治军, 董彦琪, 蒋福稳. 花生非生物胁迫响应转录因子研究进展. 中国油料作物学报, 2019, 41: 975-985.
doi: 10.19802/j.issn.1007-9084.2019067
Zhang J X, Liu Y L, Zhao Z J, Dong Y Q, Jiang F W. Research advances on abiotic stress response transcription factors in peanut. Chin J Oil Crop Sci, 2019, 41: 975-985 (in Chinese with English abstract).
[4] 任婧瑶, 王婧, 艾鑫, 赵姝丽, 李仍媛, 蒋春姬, 赵新华, 殷冬梅, 于海秋. 干旱胁迫下花生苗期耐旱生理应答特性分析. 中国油料作物学报, 2022, 44: 138-146.
doi: 10.19802/j.issn.1007-9084.2020300
Ren J Q, Wang J, Ai X, Zhao S L, Li R Y, Jiang C J, Zhao X H, Yin D M, Yu H Q. Physiological response of peanut at seedling stage under drought stress. Chin J Oil Crop Sci, 2022, 44: 138-146 (in Chinese with English abstract).
[5] 金锋, 丁莲鑫, 骆骏, 聂圣松, 方中明. 水稻MYB转录因子的研究进展. 植物遗传资源学报, 2023, 24: 917-926.
doi: 10.13430/j.cnki.jpgr.20221220001
Jin F, Ding L X, Luo J, Nie S S, Fang Z M. Research progress of MYB transcription factors in rice. J Plant Genet Resour, 2023, 24: 917-926 (in Chinese with English abstract).
[6] Xiao R X, Zhang C, Guo X R, Li H, Lu H. MYB transcription factors and its regulation in secondary cell wall formation and lignin biosynthesis during xylem development. Int J Mol Sci, 2021, 22: 3560.
[7] Shin R, Burch A Y, Huppert K A, Tiwari S B, Murphy A S, Guilfoyle T J, Schachtman D P. The Arabidopsis transcription factor MYB77modulates auxin signal transduction. Plant Cell, 2007, 19: 2440-2453.
[8] Lyu B B, Li X J, Sun W W, Li L, Gao R, Zhu Q, Tian S M, Fu M Q, Yu H L, Tang X M, Zhang C L, Dong H S. AtMYB44 regulates resistance to the green peach aphid and diamondback moth by activating EIN2-affected defences in Arabidopsis. Plant Biol, 2013, 15: 841-850.
[9] Zou B H, Jia Z H, Tian S M, Wang X M, Gou Z H, L B B, Dong H S. AtMYB44 positively modulates disease resistance to Pseudomonas syringae through the salicylic acid signalling pathway in Arabidopsis. Funct Plant Biol, 2013, 40: 304-313.
[10] Li D K, Li Y, Zhang L, Wang X Y, Zhao Z, Tao Z W, Wang J M, Wang J, Lin M, Li X F, Yang Y. Arabidopsis ABA receptor RCAR1/PYL9 interacts with an R2R3-type MYB transcription factor, AtMYB44. Int J Mol Sci, 2014, 15: 8473-8490.
[11] Qiu Z K, Yan S S, Xia B, Jiang J, Yu B W, Lei J J, Chen C M, Chen L, Yang Y, Wang Y Q, Tian S B, Cao B H. The eggplant transcription factor MYB44 enhances resistance to bacterial wilt by activating the expression of spermidine synthase. J Exp Bot, 2019, 70: 5343-5354.
[12] Zhou X J, Zha M R, Huang J, Li L, Imran M, Zhang C K. StMYB44 negatively regulates phosphate transport by suppressing expression of PHOSPHATE1 in potato. J Exp Bot, 2017, 68: 1265-1281.
[13] Wei Z Z, Hu K D, Zhao D L, Tang J, Huang Z Q, Jin P, Li Y H, Han Z, Hu L Y, Yao G F, Zhang H. MYB44 competitively inhibits the formation of the MYB340-bHLH2-NAC56 complex to regulate anthocyanin biosynthesis in purple-fleshed sweet potato. BMC Plant Biol, 2020, 20: 258.
[14] Li L X, Wei Z Z, Zhou Z L, Zhao D L, Tang J, Yang F, Li Y H, Chen X Y, Han Z, Yao G F, Hu K D, Zhang H. A single amino acid mutant in the EAR motif of IbMYB44.2 reduced the inhibition of anthocyanin accumulation in the purple-fleshed sweet potato. Plant Physiol Biochem, 2021, 167: 410-419.
[15] Wei L Z, Mao W W, Jia M R, Xing S N, Ali U, Zhao Y Y, Chen Y T, Cao M L, Dai Z R, Zhang K, Dou Z C, Jia W S, Li B B. FaMYB44.2, a transcriptional repressor, negatively regulates sucrose accumulation in strawberry receptacles through interplay with FaMYB10. J Exp Bot, 2018, 69: 4805-4820.
doi: 10.1093/jxb/ery249 pmid: 30085079
[16] 沈悦, 沈一, 刘永惠, 梁满, 张旭尧, 陈志德. 花生AhGPAT9 基因启动子克隆及其功能分析. 中国油料作物学报, 2023, 45: 533-541.
doi: 10.19802/j.issn.1007-9084.2022126
Shen Y, Shen Y, Liu Y H, Liang M, Zhang X Y, Chen Z D. Cloning and functional analysis of peanut AhGPAT9 promoter. Chin J Oil Crop Sci, 2023, 45: 533-541 (in Chinese with English abstract).
[17] 石磊, 苗利娟, 齐飞艳, 张忠信, 高伟, 孙子淇, 黄冰艳, 董文召, 汤丰收, 张新友. 花生Δ9-硬脂酰-ACP脱氢酶基因启动子的克隆及功能分析. 作物学报, 2016, 42: 1629-1637.
Shi L, Miao L J, Qi F Y, Zhang Z X, Gao W, Sun Z Q, Huang B Y, Dong W Z, Tang F S, Zhang X Y. Cloning and functional analysis of peanut Δ9-stearoyl-acyl carrier protein desaturase promoter. Acta Agron Sin, 2016, 42: 1629-1637 (in Chinese with English abstract).
[18] Geng L L, Duan X H, Liang C, Shu C L, Song F P, Zhang J. Mining tissue-specific contigs from peanut (Arachis hypogaea L.) for promoter cloning by deep transcriptome sequencing. Plant Cell Physiol, 2014, 55: 1793-1801.
[19] Tang G Y, Xu P L, Liu W, Liu Z J, Shan L. Cloning and characterization of 5' flanking regulatory sequences of AhLEC1B gene from Arachis hypogaea L. PLoS One, 2015, 10: e0139213.
[20] 孙全喜, 徐洪明, 李春娟, 闫彩霞, 赵小波, 王娟, 苑翠玲, 单世华. 花生种子特异启动子AHSSP1的克隆及功能分析. 核农学报, 2020, 34: 460-467.
doi: 10.11869/j.issn.100-8551.2020.03.0460
Sun Q X, Xu H M, Li C J, Yan C X, Zhao X B, Wang J, Yuan C L, Shan S H. Cloning and functional analysis of peanut seed-specific promoter AHSSP1. Acta Agric Nucl Sin, 2020, 34: 460-467 (in Chinese with English abstract).
[21] 万小荣, 莫爱琼, 刘帅, 梁建华, 李玲, 余土元, 郑奕雄. 粤油7号花生AhNCED1基因启动子克隆及其活性分析. 核农学报, 2011, 25: 692-699.
Wan X R, Mo A Q, Liu S, Liang J H, Li L, Yu T Y, Zheng Y X. Cloning and activity analysis of AhNCED1 gene promoter in peanut Yueyou 7. Acta Agric Nucl Sin, 2011, 25: 692-699 (in Chinese with English abstract).
[22] 王合春, 陈新利, 隋炯明, 毕英娜, 王晶珊, 乔利仙. 花生β-1,3-葡聚糖酶基因启动子的克隆及功能分析. 植物遗传资源学报, 2013, 14: 864-870.
doi: 10.13430/j.cnki.jpgr.2013.05.016
Wang H C, Chen X L, Sui J M, Bi Y N, Wang J S, Qiao L X. Cloning and functional analysis of the promoter region of β-1,3-glucanase gene in peanut. J Plant Genet Resour, 2013, 14: 864-870 (in Chinese with English abstract).
[23] Chen X L, Song R T, Yu M Y, Sui J M, Wang J S, Qiao L X. Cloning and functional analysis of the chitinase gene promoter in peanut. Genet Mol Res, 2015, 14: 12710-12722.
doi: 10.4238/2015.October.19.15 pmid: 26505422
[24] Liu Y H, Shen Y, Liang M, Zhang X Y, Xu J W, Shen Y, Chen Z D. Identification of peanut AhMYB44 transcription factors and their multiple roles in drought stress. Plants (Basel), 2022, 11: 3522.
[25] Xu Z W, Wang M P, Guo Z T, Zhu X F, Xia Z L. Identification of a 119-bp promoter of the maize sulfite oxidase gene (ZmSO) that confers high-level gene expression and ABA or drought inducibility in transgenic plants. Int J Mol Sci, 2019, 20: 3326.
[26] Wu G F, Cao A H, Wen Y H, Bao W C, She F W, Wu W Z, Zheng S, Yang N. Characteristics and Functions of MYB (v-Myb avivan myoblastsis virus oncogene homolog)-related genes in Arabidopsis thaliana. Genes (Basel), 2023, 14: 2026.
[27] Zhuang W J, Chen H, Yang M, Wang J P, Pandey M K, Zhang C, Chang W C, Zhang L S, Zhang X T, Tang R H, Garg V, Wang X J, Tang H B, Chow C N, Wang J P, Deng Y, Wang D P, Khan A W, Yang Q, Cai T C, Bajaj P, Wu K C, Guo B Z, Zhang X Y, Li J J, Liang F, Hu J, Liao B S, Liu S Y, Chitikineni A, Yan H S, Zheng Y X, Shan S H, Liu Q Z, Xie D Y, Wang Z Y, Khan S A, Ali N, Zhao C Z, Li X G, Luo Z L, Zhang S B, Zhuang R R, Peng Z, Wang S Y, Mamadou G, Zhuang Y H, Zhao Z F, Yu W C, Xiong F Q, Quan W P, Yuan M, Li Y, Zou H S, Xia H, Zha L, Fan J P, Yu J G, Xie W P, Yuan J Q, Chen K, Zhao S S, Chu W T, Chen Y T, Sun P C, Meng F B, Zhuo T, Zhao Y H, Li C J, He G H, Zhao Y L, Wang C C, Kavikishor P B, Pan R L, Paterson A H, Wang X Y, Ming R, Varshney R K. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat Genet, 2019, 51: 865-876.
doi: 10.1038/s41588-019-0402-2 pmid: 31043757
[28] Tang G Y, Xu P L, Li P X, Zhu J P, Chen G X, Shan L, Wan S B. Cloning and functional characterization of seed-specific LEC1A promoter from peanut (Arachis hypogaea L.). PLoS One, 2021, 16: e0242949.
[29] Liu H C, Zhu K Y, Tan C, Zhang J Q, Zhou J H, Jin L, Ma G Y, Zou Q C. Identification and characterization of PsDREB2 promoter involved in tissue-specific expression and abiotic stress response from Paeonia suffruticosa. PeerJ, 2019, 7: e7052.
[30] 毛燕, 郑名敏, 牟成香, 谢吴兵, 唐琦. 渗透胁迫下玉米自然反义转录本cis-NATZmNAC48启动子的功能分析. 作物学报, 2024, 50: 354-362.
doi: 10.3724/SP.J.1006.2024.33013
Mao Y, Zheng M M, Mou C X, Xie W B, Tang Q. Function analysis of the promoter of natural antisense transcript cis-NATZmNAC48 in maize under osmotic stress. Acta Agron Sin, 2024, 50: 354-362 (in Chinese with English abstract).
[31] 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用. 作物学报, 2022, 48: 2016-2027.
doi: 10.3724/SP.J.1006.2022.12041
Zhu C Q, Wei Q Q, Xiang X J, Hu W J, Xu Q S, Cao X C, Zhu L F, Kong Y L, Liu J, Jin Q Y, Zhang J H. Regulation effects of seedling raising by melatonin and methyl jasmonate substrate on low temperature stress tolerance in rice. Acta Agron Sin, 2022, 48: 2016-2027 (in Chinese with English abstract).
[32] 周定纬, 刘佳佳, 李培培, 马倩, 巩方平, 李忠峰, 马兴立, 张幸果, 殷冬梅. 外源MeJA对花生主要农艺性状和抗氧化酶活性的影响. 山东农业科学, 2020, 52(9): 29-34.
Zhou D W, Liu J J, Li P P, Ma Q, Gong F P, Li Z F, Ma X L, Zhang X G, Yin D M. Effects of exogenous MeJA on main agronomic characters and antioxidant enzyme activities of peanut. Shandong Agric Sci, 2020, 52(9): 29-34 (in Chinese with English abstract).
[33] Zhang Z Y, Zheng X X, Yang J, Messing J, Wu Y R. Maize endosperm-specific transcription factors O2 and PBF network the regulation of protein and starch synthesis. Proc Natl Acad Sci USA, 2016, 113: 10842-10847.
[34] 王梦龙, 严维, 彭小群, 唐晓艳. 水稻胚乳特异性表达基因启动子的鉴定. 植物生理学报, 2022, 58: 1946-1960.
Wang M L, Yan W, Peng X Q, Tang X Y. Identification of rice endosperm-specific gene promoters. Acta Phytophysiol Sin, 2022, 58: 1946-1960 (in Chinese with English abstract).
[35] Li Q Y, Li L Q, Liu Y, Lyu Q, Zhang H, Zhu J, Li X J. Influence of TaGW2-6A on seed development in wheat by negatively regulating gibberellin synthesis. Plant Sci, 2017, 263: 226-235.
doi: S0168-9452(17)30407-7 pmid: 28818379
[1] ZHU Rong-Yu, ZHAO Meng-Jie, YAO Yun-Feng, LI Yan-Hong, LI Xiang-Dong, LIU Zhao-Xin. Effects of straw returning methods and sowing depth on soil physical properties and emergence characteristics of summer peanut [J]. Acta Agronomica Sinica, 2024, 50(8): 2106-2121.
[2] LI Wen-Juan, WANG Li-Min, QI Yan-Ni, ZHAO Wei, XIE Ya-Ping, DANG Zhao, ZHAO Li-Rong, LI Wen, XU Chen-Meng, WANG Yan, ZHANG Jian-Ping. Functional analysis of flax LuWRI1a in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2024, 50(7): 1750-1761.
[3] YANG Qi-Rui, LI Lan-Tao, ZHANG Duo, WANG Ya-Xian, SHENG Kai, WANG Yi-Lun. Effect of phosphorus application on yield, quality, light temperature physiological characteristics, and root morphology in summer peanut [J]. Acta Agronomica Sinica, 2024, 50(7): 1841-1854.
[4] QIAO Zhi-Xin, ZHANG Jie-Dao, WANG Yu, GUO Qi-Fang, LIU Yan-Jing, CHEN Rui, HU Wen-Hao, SUN Ai-Qing. Difference in germination characteristics of different winter wheat cultivars under drought stress [J]. Acta Agronomica Sinica, 2024, 50(6): 1568-1583.
[5] LI Hai-Fen, LU Qing, LIU Hao, WEN Shi-Jie, WANG Run-Feng, HUANG Lu, CHEN Xiao-Ping, HONG Yan-Bin, LIANG Xuan-Qiang. Genome-wide identification and expression analysis of AhGA3ox gene family in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(4): 932-943.
[6] LU Qing, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, LIANG Xuan-Qiang, CHEN Xiao-Ping, HONG Yan-Bin, LIU Hai-Yan, LI Shao-Xiong. Research on oil content screen with genomic selection and near infrared ray in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(4): 969-980.
[7] ZHANG Yue, WANG Zhi-Hui, HUAI Dong-Xin, LIU Nian, JIANG Hui-Fang, LIAO Bo-Shou, LEI Yong. Research progress on genetic basis and QTL mapping of oil content in peanut seed [J]. Acta Agronomica Sinica, 2024, 50(3): 529-542.
[8] MAO Yan, ZHENG Ming-Min, MOU Cheng-Xiang, XIE Wu-Bing, TANG Qi. Function analysis of the promoter of natural antisense transcript cis- NATZmNAC48 in maize under osmotic stress [J]. Acta Agronomica Sinica, 2024, 50(2): 354-362.
[9] ZHI Chen-Yang, XUE Xiao-Meng, WU Jie, LI Xiong-Cai, WANG Jin, YAN Li-Ying, WANG Xin, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, HONG Yan-Bin, JIANG Hui-Fang, LEI Yong, LIAO Bo-Shou. Analysis of genetic model of sucrose content in peanut [J]. Acta Agronomica Sinica, 2024, 50(1): 32-41.
[10] WANG Li-Ping, WANG Xiao-Yu, FU Jing-Ye, WANG Qiang. Functional identification of maize transcription factor ZmMYB12 to enhance drought resistance and low phosphorus tolerance in plants [J]. Acta Agronomica Sinica, 2024, 50(1): 76-88.
[11] HU Mei-Ling, ZHI Chen-Yang, XUE Xiao-Meng, WU Jie, WANG Jin, YAN Li-Ying, WANG Xin, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, JIANG Hui-Fang, LEI Yong, LIAO Bo-Shou. Establishment of near-infrared reflectance spectroscopy model for predicting sucrose content of single seed in peanut [J]. Acta Agronomica Sinica, 2023, 49(9): 2498-2504.
[12] WANG Fei-Fei, ZHANG Sheng-Zhong, HU Xiao-Hui, CHU Ye, CUI Feng-Gao, ZHONG Wen, ZHAO Li-Bo, ZHANG Tian-Yu, GUO Jin-Tao, YU Hao-Liang, MIAO Hua-Rong, CHEN Jing. Comparative transcriptome profiling of dormancy regulatory network in peanut [J]. Acta Agronomica Sinica, 2023, 49(9): 2446-2461.
[13] XU Yang, ZHANG Dai, KANG Tao, WEN Sai-Qun, ZHANG Guan-Chu, DING Hong, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of salt stress on ion dynamics and the relative expression level of salt tolerance genes in peanut seedlings [J]. Acta Agronomica Sinica, 2023, 49(9): 2373-2384.
[14] ZUO Chun-Yang, LI Ya-Wei, LI Yan-Long, JIN Shuang-Xia, ZHU Long-Fu, ZHANG Xian-Long, MIN Ling. Relative expression patterns of laccase gene family members in upland Gossypium hirsutum L. [J]. Acta Agronomica Sinica, 2023, 49(9): 2344-2361.
[15] CHEN Li, WANG Jing, QIU Xiao, SUN Hai-Lian, ZHANG Wen-Hao, WANG Tian-Zuo. Differences of physiological responses and transcriptional regulation of alfalfa with different drought tolerances under drought stresses [J]. Acta Agronomica Sinica, 2023, 49(8): 2122-2132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!