Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (7): 1750-1761.doi: 10.3724/SP.J.1006.2024.34171
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
LI Wen-Juan(), WANG Li-Min, QI Yan-Ni, ZHAO Wei, XIE Ya-Ping, DANG Zhao, ZHAO Li-Rong, LI Wen, XU Chen-Meng, WANG Yan, ZHANG Jian-Ping*(
)
[1] | Huis R, Hawkins S, Neutelings G. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.). BMC Plant Biol, 2010, 10: 14. |
[2] | Zheng J, Cui B, Yan Y H, Gao B, Wu Y F, Wang H D, Wang P, Xu B Q, Zhao Z, Cao Y, Zhang Y P. Agronomic cultivation measures on productivity of oilseed flax: a review. Oil Crop Sci, 2022, 7: 53-62. |
[3] | Zare S, Mirlohi A, Saeidi G, Ataii E. Water stress intensified the relation of seed color with lignan content and seed yield components in flax (Linum usitatissimum L.). Sci Rep, 2021, 11: 23958. |
[4] | Fila G, Bagatta M, Maestrini C, Potenza E, Matteo R. Linseed as a dual-purpose crop: evaluation of cultivar suitability and analysis of yield determinants. J Agric Sci, 2018, 156: 162-176. |
[5] |
Zhang J, Liao J, Ling Q, Xi Y, Qian Y. Genome-wide identification and expression profiling analysis of maize AP2/ERF superfamily genes reveal essential roles in abiotic stress tolerance. BMC Genomics, 2022, 23: 125.
doi: 10.1186/s12864-022-08345-7 pmid: 35151253 |
[6] | Yadav B, Kaur V, Narayan O P, Yadav S K, Kumar A, Wankhede D P. Integrated omics approaches for flax improvement under abiotic and biotic stress: current status and future prospects. Front Plant Sci, 2022, 13: 931275. |
[7] | Paliwal S, Tripathi M K, Tiwari S, Tripathi N, Payasi D K, Tiwari P N, Singh K, Yadav R K, Asati R, Chauhan S. Molecular advances to combat different biotic and abiotic stresses in Linseed (Linum usitatissimum L.): a comprehensive review. Genes (Basel), 2023, 14: 1461. |
[8] | 刘莹莹, 李玥, 吴兵. 胡麻籽粒产量形成对干旱胁迫的响应及其模拟模型研究. 作物研究, 2023, 37: 14-21. |
Liu Y Y, Li Y, Wu B. Response of kernel yield formation to drought stress and its simulation modeling in flaxseed. Crop Res, 2023, 37: 14-21 (in Chinese with English abstract). | |
[9] |
Kariuki L W, Masinde P, Githiri S, Onyango A N. Effect of water stress on growth of three linseed (Linum usitatissimum L.) varieties. SpringerPlus, 2016, 5: 1-16.
doi: 10.1186/s40064-015-1659-2 pmid: 26759740 |
[10] | EL-Afry M M, EL-Okkiah S A F, EL-Kady E-S A F, EL-Yamanee G S A. Exogenous application of ascorbic acid for alleviation the adverse effects of salinity stress in flax (Linum usitatissimum L.). Middle East J Agric Res, 2018, 7: 716-739. |
[11] | Nasri N, Maatallah S, Saidi I, Lachal M. Influence of salinity on germination, seedling growth, ion content and acid phosphatase activities of Linum usitatissimum L. J Anim Plant Sci, 2017, 27: 517-521. |
[12] | Datir S. Salt-induced physiological and biochemical changes in two varieties of Linum usitatissimum L. Int J Curr Microbiol Appl Sci, 2015, 4: 296-304. |
[13] | Demir Kaya M, Day S, Cikili Y, Arslan N. Classification of some linseed (Linum usitatissimum L.) genotypes for salinity tolerance using germination, seedling growth, and ion content. Chilean J Agric Res, 2012, 72: 27-32. |
[14] | 于莹, 陈宏宇, 程莉莉, 赵东升, 袁红梅, 吴广文, 关凤芝. 亚麻MAPK基因克隆及盐碱胁迫下的表达分析. 东北农业大学学报, 2015, 46(3): 8. |
Yu Y, Chen H Y, Cheng L L, Zhao D S, Yuan H M, Wu G W, Guan F Z. Flax MAPK gene cloning and expression analysis under saline and alkaline stress. J Northeast Agric Univ, 2015, 46(3): 8 (in Chinese with English abstract). | |
[15] | Yu Y, Chen H, Yang Y Y, Lou D, Liang C, Yuan H, Wu G W, Xu C. Identification and characterization of differentially expressed microRNAs and target gene related to flax stem development. J Nat Fibers, 2021, 19: 5974-5990. |
[16] | Guo R, Zhou J, Ren G X, Hao W. Physiological responses of linseed seedlings to iso osmotic polyethylene glycol, salt, and alkali stresses. Agron J, 2013, 105: 764. |
[17] | 郭晋艳, 郑晓瑜, 邹翠霞, 李秋莉. 植物非生物胁迫诱导启动子顺式元件及转录因子研究进展. 生物技术通报, 2011, 23(4): 16-20. |
Guo J Y, Zheng X Y, Zou C X, Li Q L. Progress of abiotic stress-induced promoter cis-elements and transcription factors in plants. Biotechnol Bull, 2011, 23(4): 16-20 (in Chinese with English abstract). | |
[18] |
Riechmann J L, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D, Sherman B K, Yu G. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 2000, 290: 2105-2110.
doi: 10.1126/science.290.5499.2105 pmid: 11118137 |
[19] | Iwase A, Mitsuda N, Koyama T, Hiratsu K, Kojima M, Arai T, Inoue Y, Seki M, Sakakibara H, Sugimoto K, Ohme-Takagi M. The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Curr Biol, 2011, 21: 508-514. |
[20] |
Jofuku K D, den Boer B G, Van Montagu M, Okamuro J K. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell, 1994, 6: 1211-1225.
doi: 10.1105/tpc.6.9.1211 pmid: 7919989 |
[21] |
Jaglo-Ottosen K R, Gilmour S J, Zarka D G, Schabenberger O, Thomashow M F. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 1998, 280: 104-116.
doi: 10.1126/science.280.5360.104 pmid: 9525853 |
[22] | Yamaguchi-Shinozaki K, Shinozaki K. Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Novartis Found Symp, 2001, 290: 2105-2110. |
[23] |
Chandler J W, Cole M, Flier A, Grewe B, Werr W. The AP2 transcription factors DORNROSCHEN and DORNROSCHEN-LIKE redundantly control Arabidopsis embryo patterning via interaction with PHAVOLUTA. Development, 2007, 134: 1653-1662.
doi: 10.1242/dev.001016 pmid: 17376809 |
[24] |
Aoyama T, Hiwatashi Y, Shigyo M, Kofuji R, Kubo M, Ito M, Hasebe M. AP2-type transcription factors determine stem cell identity in the moss Physcomitrella patens. Development, 2012, 139: 3120-3129.
doi: 10.1242/dev.076091 pmid: 22833122 |
[25] | De Boer K, Tilleman S, Pauwels L, Vanden Bossche R, De Sutter V, Vanderhaeghen R, Hilson P, Hamill J D, Goossens A. APETALA2/ETHYLENE RESPONSE FACTOR and basic helix-loop-helix tobacco transcription factors cooperatively mediate jasmonate-elicited nicotine biosynthesis. Plant J, 2011, 66: 1053-1065. |
[26] |
Finkelstein R R, Wang M L, Lynch T J, Rao S, Goodman H M. The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell, 1998, 10: 1043-1054.
doi: 10.1105/tpc.10.6.1043 pmid: 9634591 |
[27] |
Lorenzo O, Piqueras R, Sánchez-Serrano J J, Solano R. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell, 2003, 15: 165-178.
doi: 10.1105/tpc.007468 pmid: 12509529 |
[28] | Cook D, Fowler S, Fiehn O, Thomashow M F. A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci USA, 2004, 101: 15243-15258. |
[29] | Cheng M C, Hsieh E J, Chen J H, Chen H Y, Lin T P. Arabidopsis RGLG2, functioning as a RING E3 ligase, interacts with AtERF53 and negatively regulates the plant drought stress response. Plant Physiol, 2012, 158: 363-375. |
[30] | Oh S J, Kim Y S, Kwon C W, Park H K, Jeong J S, Kim J K. Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiol, 2009, 150: 1368-1379. |
[31] |
Chen X, Guo Z. Tobacco OPBP1 enhances salt tolerance and disease resistance of transgenic rice. Int J Mol Sci, 2008, 9: 2601-2613.
doi: 10.3390/ijms9122601 pmid: 19330095 |
[32] | Seo Y J, Park J B, Cho Y J, Jung C, Seo H S, Park S K, Nahm B H, Song J T. Overexpression of the ethylene-responsive factor gene BrERF4 from Brassica rapa increases tolerance to salt and drought in Arabidopsis plants. Mol Cells, 2010, 30: 271-277. |
[33] | Song C P, Galbraith D W. AtSAP18, an orthologue of human SAP18, is involved in the regulation of salt stress and mediates transcriptional repression in Arabidopsis. Plant Mol Biol, 2006, 60: 241-257. |
[34] | Schmidt R, Mieulet D, Hubberten H M, Obata T, Hoefgen R, Fernie A R, Fisahn J, San Segundo B, Guiderdoni E, Schippers J H, Mueller-Roeber B. Salt-responsive ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice. Plant Cell, 2013, 25: 2115-2131. |
[35] |
Wessler S R. Homing into the origin of the AP2 DNA binding domain. Trends Plant Sci, 2005, 10: 54-66.
doi: 10.1016/j.tplants.2004.12.007 pmid: 15708341 |
[36] | Xu Z S, Cheng M, Li L C, Ma Y Z. Functions and application of the AP2/ERF transcription factor family in crop improvement. J Integr Plant Biol, 2011, 53: 570-585. |
[37] | 靳鹏, 黄立钰, 王迪, 吴慧敏, 朱苓华, 傅彬英. 水稻AP2/EREBP转录因子响应非生物胁迫的表达谱分析. 中国农业科学, 2009, 42: 3765-3773. |
Jin P, Huang L Y, Wang D, Wu H M, Zhu L H, Fu B Y. Expression profiling of rice AP2/EREBP transcription factors in response to abiotic stress. Sci Agric Sin, 2009, 42: 3765-3773 (in Chinese with English abstract). | |
[38] | Xu Z S, Ni Z Y, Liu L, Nie L N, Li L C, Chen M, Ma Y Z. Characterization of the TaAIDFa gene encoding a CRT/DRE-binding factor responsive to drought, high-salt, and cold stress in wheat. Mol Genet Genomics, 2008, 280: 497-508. |
[39] | Zhang G, Chen M, Chen X, Xu Z, Guan S, Li L C, Li A, Guo J, Mao L, Ma Y. Phylogeny, gene structures, and expression patterns of the ERF gene family in soybean (Glycine max L.). J Exp Bot, 2008, 59: 4095-4107. |
[40] | Licausi F, Giorgi F M, Zenoni S, Osti F, Pezzotti M, Perata P. Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera. BMC Genomics, 2010, 11: 719. |
[41] | Sakuma Y, Liu Q, Dubouzet J G, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun, 2002, 290: 998-1009. |
[42] |
Kagaya Y, Ohmiya K, Hattori T. RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Res, 1999, 27: 470-478.
doi: 10.1093/nar/27.2.470 pmid: 9862967 |
[43] | Gao S, Zhang H, Tian Y, Li F, Zhang Z, Lu X, Chen X, Huang R. Expression of TERF1 in rice regulates expression of stress-responsive genes and enhances tolerance to drought and high-salinity. Plant Cell Rep, 2008, 27: 1787-1795. |
[44] | Zhang G, Chen M, Li L, Xu Z, Chen X, Guo J, Ma Y. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot, 2009, 60: 3781-3796. |
[45] |
Zhang H, Liu W, Wan L, Li F, Dai L, Li D, Zhang Z, Huang R. Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice. Transgenic Res, 2010, 19: 809-818.
doi: 10.1007/s11248-009-9357-x pmid: 20087656 |
[46] | Eun J S, Woon B S, Hwan K S, Sung S J, Bin Y H, Shic K Y, Kon K J. Overexpression of OsERF83, a vascular tissue-specific transcription factor gene, confers drought tolerance in rice. Int J Mol Sci, 2021, 22: 7656. |
[47] | Wang Z, Zhao X, Ren Z, Abou-Elwafa S F, Pu X, Zhu Y, Dou D, Su H, Cheng H, Liu Z, Chen Y, Wang E, Shao R, Ku L. ZmERF21 directly regulates hormone signaling and stress-responsive gene expression to influence drought tolerance in maize seedlings. Plant Cell Environ, 2022, 45: 312-328. |
[48] | Lu L L, Qanmber G, Li J, Pu M L, Chen G Q, Li S D, Liu L, Qin W Q, Ma S Y, Wang Y, Chen Q J, Liu Z. Identification and characterization of the ERF subfamily B3 group revealed GhERF13.12 improves salt tolerance in upland cotton. Front Plant Sci, 2021, 12: 705883. |
[49] | Li Y, Zhang H, Zhang Q, Liu Q, Zhai H, Zhao N, He S. An AP2/ERF gene, IbRAP2-12, from sweetpotato is involved in salt and drought tolerance in transgenic Arabidopsis. Plant Sci, 2019, 281: 19-30. |
[50] |
Fei W, Yang S, Hu J, Yang F, Qu G, Peng D, Zhou B. Research advances of WRINKLED1 (WRI1) in plants. Funct Plant Biol, 2020, 47: 185-194.
doi: 10.1071/FP19225 pmid: 31968206 |
[51] |
Cernac A, Benning C. WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J, 2004, 40: 575-585.
doi: 10.1111/j.1365-313X.2004.02235.x pmid: 15500472 |
[52] | Liu J, Hua W, Zhan G, Wei F, Wang X, Liu G, Wang H. Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from Brassica napus. Plant Physiol Biochem, 2010, 48: 9-15. |
[53] |
Yang Y, Munz J, Cass C, Zienkiewicz A, Kong Q, Ma W, Sedbrook J, Benning C. Ectopic expression of WRINKLED1 affects fatty acid homeostasis in brachypodium distachyon vegetative tissues. Plant Physiol, 2015, 169: 1836-1847.
doi: 10.1104/pp.15.01236 pmid: 26419778 |
[54] | Sun R, Ye R, Gao L, Zhang L, Wang R, Mao T, Zheng Y, Li D, Lin Y. Characterization and ectopic expression of coWRI1, an AP2/EREBP domain-containing transcription factor from Coconut (Cocos nucifera L.) endosperm, changes the seeds oil content in transgenic Arabidopsis thaliana and rice (Oryza sativa L.). Front Plant Sci, 2017, 8: 63. |
[55] | Ye J, Wang C, Sun Y, Qu J, Mao H, Chua N-H. Overexpression of a transcription factor increases lipid content in a woody perennial Jatropha curcas. Front Plant Sci, 2018, 9: 1479. |
[56] | Li W, Wang L, Qi Y, Xie Y, Zhao W, Dang Z, Zhang J. Overexpression of WRINKLED1 improves the weight and oil content in seeds of flax (Linum usitatissimum L.). Front Plant Sci, 2022, 13: 1003758. |
[57] | 陈芳. 亚麻FAD3基因的克隆及载体构建与遗传转化. 甘肃省农业大学硕士学位论文, 甘肃兰州, 2014. |
Chen F. Cloning and Vector Construction and Genetic Transformation of Flax FAD3 Gene. MS Thesis of Gansu Agricultural University, Lanzhou, Gansu, China, 2014 (in Chinese with English abstract). | |
[58] | 陈芳, 党占海, 张建平, 李闻娟, 郝荣楷, 张琼, 张瑜, 宋军生. 不同基因型亚麻下胚轴不定芽诱导的研究. 作物杂志, 2014, (3): 39-43. |
Chen F, Dang Z H, Zhang J P, Li W J, Hao R K, Zhang Q, Zhang Y, Song J S. Studies on the induction of adventitious shoots in hypocotyls of flax from different genotypes. Crops, 2014, (3): 39-43 (in Chinese with English abstract). | |
[59] |
李闻娟, 齐燕妮, 王利民, 党照, 赵利, 赵玮, 谢亚萍, 王斌, 张建平, 李淑洁. 不同胡麻品种TAG合成途径关键基因表达与含油量、脂肪酸组分的相关性分析. 草业学报, 2019, 28(1): 138-149.
doi: 10.11686/cyxb2018321 |
Li W J, Qi Y N, Wang L M, Dang Z, Zhao L, Zhao W, Xie Y P, Wang B, Zhang J P, Li S J. Correlation analysis between the expression of key genes of TAG synthesis pathway and oil content and fatty acid fractions in different caraway varieties. Acta Pratac Sin, 2019, 28(1): 138-149 (in Chinese with English abstract). | |
[60] |
范鑫, 赵雷霖, 翟红红, 王远, 孟志刚, 梁成真, 张锐, 郭三堆, 孙国清. AtNEK6在棉花旱盐胁迫响应中的表达分析研究. 中国农业科学, 2018, 51: 4230-4240.
doi: 10.3864/j.issn.0578-1752.2018.22.002 |
Fan X, Zhao L L, Zhai H H, Wang Y, Meng Z G, Liang C Z, Zhang R, Guo S D, Sun G Q. Study on expression analysis of AtNEK6 in response to drought and salt stress in cotton. Sci Agric Sin, 2018, 51: 4230-4240 (in Chinese with English abstract). | |
[61] |
Fahad S, Bajwa A A, Nazir U, Anjum S A, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan M Z, Alharby H, Wu C, Wang D, Huang J. Crop production under drought and heat stress: plant responses and management options. Front Plant Sci, 2017, 8: 1147.
doi: 10.3389/fpls.2017.01147 pmid: 28706531 |
[62] |
Shen B, Allen W B, Zheng P, Li C, Glassman K, Ranch J, Nubel D, Tarczynski M C. Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize. Plant Physiol, 2010, 153: 980-987.
doi: 10.1104/pp.110.157537 pmid: 20488892 |
[63] |
邵宇鹏, 杨明明, 包格格, 孙英楠, 杨强, 李文滨, 王志坤. 大豆GmWRI1a基因启动子克隆及其功能分析. 中国油料作物学报, 2019, 41: 517-523.
doi: 10.7505/j.issn.1007-9084.2019.04.005 |
Shao Y P, Yang M M, Bao G G, Sun Y N, Yang Q, Li W B, Wang Z K. Cloning of soybean GmWRI1a gene promoter and its functional analysis. Chin J Oil Crop Sci, 2019, 41: 517-523 (in Chinese with English abstract). | |
[64] | 闫丽, 杨强, 邵宇鹏, 李丹丹, 王志坤, 李文滨. 大豆GmWRI1a基因启动子克隆及序列分析. 作物杂志, 2017, (2): 51-58. |
Yan L, Yang Q, Shao Y P, Li D D, Wang Z K, Li W B. Cloning and sequence analysis of soybean GmWRI1a gene promoter. Crops, 2017, (2): 51-58 (in Chinese with English abstract). | |
[65] | 李丹丹, 闫丽, 常健敏, 王志坤, 李文滨. 大豆GmWRI1基因在糖,植物激素及盐胁迫下的表达分析. 作物杂志, 2015, (4): 41-46. |
Li D D, Yan L, Chang J M, Wang Z K, Li W B. Expression analysis of soybean GmWRI1 gene under sugar, phytohormone and salt stress. Crops, 2015, (4): 41-46 (in Chinese with English abstract). | |
[66] | 郝翠翠. 花生转录因子AhWRI1基因的克隆与功能研究. 青岛科技大学硕士学位论文, 山东青岛, 2018. |
Hao C C. Cloning and Functional Study of Peanut Transcription Factor AhWRI1 Gene. MS Thesis of Qingdao University of Science and Technology, Qingdao, Shandong, China, 2018 (in Chinese with English abstract). | |
[67] |
Arias-Moreno D M, Jiménez-Bremont J F, Maruri-López I, Delgado-Sánchez P. Effects of catalase on chloroplast arrangement in Opuntia streptacantha chlorenchyma cells under salt stress. Sci Rep, 2017, 7: 8656.
doi: 10.1038/s41598-017-08744-x pmid: 28819160 |
[68] | Choudhury F K, Rivero R M, Blumwald E, Mittler R. Reactive oxygen species, abiotic stress and stress combination. Plant J, 2017, 90: 856-867. |
[69] | Xing X, Zhou Q, Xing H, Jiang H, Wang S. Early abscisic acid accumulation regulates ascorbate and glutathione metabolism in soybean leaves under progressive water stress. J Plant Growth Regul, 2016, 35: 865-876. |
[70] | 牟舒敏, 张丽娟, 李红兵, 关月明, 可庆波, 张岁岐, 郭尚洙, 邓西平. 三种转基因甘薯响应PEG-6000模拟干旱胁迫的生理性差异. 植物生理学报, 2023, 59: 1339-1350. |
Mou S M, Zhang L J, Li H B, Guan Y M, Ke Q B, Zhang S Q, Guo S Z, Deng X P. Physiological differences among three transgenic sweetpotatoes in response to PEG-6000-mimicked drought stress. J Plant Physiol, 2023, 59: 1339-1350 (in Chinese with English abstract). |
[1] | LI Xu-Juan, LI Chun-Jia, TIAN Chun-Yan, KONG Chun-Yan, XU Chao-Hua, LIU Xin-Long. Identification of nitrate transporter protein 1/peptide transporter protein family 6.4 gene (ScNPF6.4) and functional analysis of its regulation of tillering in sugarcane [J]. Acta Agronomica Sinica, 2024, 50(8): 2131-2142. |
[2] | WANG Long, LI Jing, QIAN Chen, LIN Guo-Bing, LI Yi-Yang, YANG Guang, ZUO Qing-Song. Effects of salt stress on yield, quality, and physiology in rapeseed [J]. Acta Agronomica Sinica, 2024, 50(6): 1597-1607. |
[3] | QIAO Zhi-Xin, ZHANG Jie-Dao, WANG Yu, GUO Qi-Fang, LIU Yan-Jing, CHEN Rui, HU Wen-Hao, SUN Ai-Qing. Difference in germination characteristics of different winter wheat cultivars under drought stress [J]. Acta Agronomica Sinica, 2024, 50(6): 1568-1583. |
[4] | SHE Meng, ZHENG Deng-Yu, KE Zhao, WU Zhong-Yi, ZOU Hua-Wen, ZHANG Zhong-Bao. Cloning and functional analysis of ZmGRAS13 gene in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1420-1434. |
[5] | LI Hai-Fen, LU Qing, LIU Hao, WEN Shi-Jie, WANG Run-Feng, HUANG Lu, CHEN Xiao-Ping, HONG Yan-Bin, LIANG Xuan-Qiang. Genome-wide identification and expression analysis of AhGA3ox gene family in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(4): 932-943. |
[6] | ZHANG Bao-Hua, LIU Jia-Jing, TIAN Xiao, TIAN Xu-Zhao, DONG Kuo, WU Yu-Jie, XIAO Kai, LI Xiao-Juan. Cloning, expression, and functional analysis of wheat (Triticum aestivum L.) TaSPX1 gene in low nitrogen stress tolerance [J]. Acta Agronomica Sinica, 2024, 50(3): 576-589. |
[7] | GUO Jia-Xin, YE Yang, GUO Hui-Juan, MIN Wei. Effects and variability analysis of different salt and alkali stresses on the proteome of cotton leaves [J]. Acta Agronomica Sinica, 2024, 50(1): 219-236. |
[8] | YANG Chuang, WANG Ling, QUAN Cheng-Tao, YU Liang-Qian, DAI Cheng, GUO Liang, FU Ting-Dong, MA Chao-Zhi. Relative expression profiles of genes response to salt stress and constructions of gene co-expression networks in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(1): 237-250. |
[9] | XIAO Sheng-Hua, LU Yan, LI An-Zi, QIN Yao-Bin, LIAO Ming-Jing, BI Zhao-Fu, ZHUO Gan-Feng, ZHU Yong-Hong, ZHU Long-Fu. Function analysis of an AP2/ERF transcription factor GhTINY2 in cotton negatively regulating salt tolerance [J]. Acta Agronomica Sinica, 2024, 50(1): 126-137. |
[10] | WANG Heng-Bo, FENG Chun-Yan, ZHANG Yi-Xing, XIE Wan-Jie, DU Cui-Cui, WU Ming-Xing, ZHANG Ji-Sen. Genome-wide identification of NAP transcription factors subfamily in Saccharum spontaneum and functional analysis of SsNAP2a involvement in leaf senescence [J]. Acta Agronomica Sinica, 2024, 50(1): 110-125. |
[11] | WANG Li-Ping, WANG Xiao-Yu, FU Jing-Ye, WANG Qiang. Functional identification of maize transcription factor ZmMYB12 to enhance drought resistance and low phosphorus tolerance in plants [J]. Acta Agronomica Sinica, 2024, 50(1): 76-88. |
[12] | XU Yang, ZHANG Dai, KANG Tao, WEN Sai-Qun, ZHANG Guan-Chu, DING Hong, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of salt stress on ion dynamics and the relative expression level of salt tolerance genes in peanut seedlings [J]. Acta Agronomica Sinica, 2023, 49(9): 2373-2384. |
[13] | CHEN Li, WANG Jing, QIU Xiao, SUN Hai-Lian, ZHANG Wen-Hao, WANG Tian-Zuo. Differences of physiological responses and transcriptional regulation of alfalfa with different drought tolerances under drought stresses [J]. Acta Agronomica Sinica, 2023, 49(8): 2122-2132. |
[14] | DAI Shu-Tao, ZHU Can-Can, MA Xiao-Qian, QIN Na, SONG Ying-Hui, WEI Xin, WANG Chun-Yi, LI Jun-Xia. Genome-wide identification of the HAK/KUP/KT potassium transporter family in foxtail millet and its response to K+ deficiency and high salt stress [J]. Acta Agronomica Sinica, 2023, 49(8): 2105-2121. |
[15] | WEI Zheng-Xin, LIU Chang-Yan, CHEN Hong-Wei, LI Li, SUN Long-Qing, HAN Xue-Song, JIAO Chun-Hai, SHA Ai-Hua. Analysis of ASPAT gene family based on drought-stressed transcriptome sequencing in Vicia faba L. [J]. Acta Agronomica Sinica, 2023, 49(7): 1871-1881. |
|