Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (8): 2131-2142.doi: 10.3724/SP.J.1006.2024.44002

• RESEARCH NOTES • Previous Articles     Next Articles

Identification of nitrate transporter protein 1/peptide transporter protein family 6.4 gene (ScNPF6.4) and functional analysis of its regulation of tillering in sugarcane

LI Xu-Juan1,2(), LI Chun-Jia1,2, TIAN Chun-Yan1,2, KONG Chun-Yan1,2, XU Chao-Hua1,2, LIU Xin-Long1,2,*()   

  1. 1National Key Laboratory for Biological Breeding of Tropical Crops, Kunming 650205, Yunnan, China
    2Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences / Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, Yunnan, China
  • Received:2024-01-02 Accepted:2024-04-01 Online:2024-08-12 Published:2024-04-24
  • Contact: * E-mail: lxlgood868@163.com
  • Supported by:
    Yunnan Seed Laboratory(202205AR070001-09);National Natural Science Foundation of China(31760412);National Key Research and Development Program of China(2022YFD2301102-20);Yunnan Science and Technology Talent and Platform Program(202205AM070001)

Abstract:

Sugarcane is an important sugar and energy crop, and tillering is one of the important traits affecting its yield. Nitrate transporter 1 (NRT1) / peptide transporter (PTR) family (NPF) protein plays an important role in plant vegetative growth and development, mining and exploitation of NPF genes in sugarcane could lay an important foundation for genetic regulation of tillering in sugarcane. In this study, the full-length cDNA sequence of the NPF6.4 gene (ScNPF6.4) was obtained from sugarcane variety ROC22 by combining pre-transcriptomic data with RT-PCR. Subsequently, the sequence structure, physicochemical properties and phylogeny were analyzed. The tissue-specific expression of the gene in sugarcane at seedlings stage, the expression in axillary bud germination, and the expression pattern in responsive to hormone treatments were analyzed. Finally, the gene was genetically transformed into rice to verify the over-expression for functional verification. The results showed that the cDNA of ScNPF6.4 contained an open reading frame of 1806 bp encoding 601 amino acids, which belonged to the major facilitator superfamily (MFS) protein with a molecular weight of 63.9 kD and a theoretical isoelectric point of 9.23, and included 12 transmembrane helical regions. The protein was hydrophobic in nature and had no signal peptide, whereas it belonged to a class of stable non-secretory proteins. In addition, phylogenetic analysis illustrated that it belonged to the NPF family and 6.4 subfamily of proteins. Likewise, subcellular localization indicated that the protein was localized in the endoplasmic reticulum. The tissue-specific analysis revealed that the relative expression level of ScNPF6.4 was the highest in roots and lower in leaf and stem bases of sugarcane seedling. Moreover, ScNPF6.4 was up-regulated at the axillary bud sprouting stage of different sugarcane varieties, and appropriate concentrations of exogenous plant hormones such as 6-BA, ABA, GA3, IBA, ethylene, and SLs could induce the up-regulated its expression in sugarcane at seedling stage, while ectopic over-expression of ScNPF6.4 increased the tillering number and induced early heading in rice. Thus, it could be inferred that ScNPF6.4 could regulate the germination of sugarcane tiller buds, and its expression was up-regulated by exogenous phytohormones, whereas the over-expression of this gene could increase the tillering numbers and induce early heading in rice. This study provides an important genetic resource for the breeding of sugarcane to improve tillering ability, which is beneficial for the early and rapid growth and high cane yield formation.

Key words: sugarcane, ScNPF6.4, tillering, exogenous plant hormone, functional analysis

Table 1

Primers used in this study"

引物名称Primer name 引物序列Primer sequence (5°-3°) 引物作用 Primer function
NPF-54F GTCGTCCTCGCTCCCAGTC 基因克隆
Gene cloning
NPF-2143R CGCCGTATGCCTCCTATGTT
NPF-138F ATGGTTTCCGCTGGGG
NPF-1943R CTACACGTCCATTCCTTCG
Q-ScNPF-208F TCCAACTCCAAGTCCGCCAAC 表达分析(甘蔗)
Relative expression analysis (in sugarcane)
Q-ScNPF-358R CAAGCTCACGCCGGTGGC
GAPDH-F CACGGC CAC TGGAAGCA 内参基因(甘蔗)
Reference gene (in sugarcane)
GAPDH-R TCC TCAGGG TTC CTG ATG CC
Q-ScNPF6.4-F CGCGAACGCCCGTGGTCCGC 表达分析(水稻)
Relative expression analysis (in rice)
Q-ScNPF6.4-R CGGACACGTTCGCCTTGAGACCCCCC
OsActin TGCTATGTACGTCGCCATCCA 内参基因(水稻)
Reference gene (in rice)
OsActin AATGAGTAACCACGCTCCGTC

Fig. S1

Electrophoretic results of PCR amplification products of ScNPF6.4 coding region"

Fig. S2

Gene structure of ScNPF6.4 The yellow bar and the black line represent exon and intron, respectively."

Fig. 1

Nucleotide sequence and derived amino acid sequence of ScNPF6.4"

Fig. 2

Phylogenetic tree of NRT1 protein of sugarcane and NPF proteins of other plants ScNPF6.4 was marked in red. The NPFs used in the phylogenetic tree are from S. spontaneum L. (SsNPF), Zea mays (ZmNPF), Sorghum bicolor (SbNPF), Setaria italica (SiNPF), Oryza sativa (OsNPF), Hordeum vulgare (HvNPF), Nicotiana attenuata (NaNPF), Solanum lycopersicum (SlNPF), Helianthus annuus (HaNPF), Glycine max (GmNPF), and Arabidopsis thaliana (AtNPF)."

Fig. S3

Secondary structure prediction of ScNPF6.4 Red e is the extended strand, green t is the beta turn, blue h is the alpha helix, and orange c is the random coil."

Fig. S4

Predicted transmembrane structure of ScNPF6.4"

Fig. 3

Subcellular localization of ScNPF6.4 in rice protoplast GFP: green fluorescent light channel; Bright: bright field; Merged: overlapping. Bar: 10 μm."

Fig. 4

Relative expression patterns of ScNPF6.4 genes A: the relative expression level of ScNPF6.4 in different tissues of ROC22; B: the relative expression level of ScNPF6.4 at different developmental stages of axillary buds of Huanan 56-21, Guitang 17 and ROC22; C: the relative expression level of ScNPF6.4 under different exogenous plant hormones treatments. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is used as an internal reference gene. The error bar represents the mean ± standard deviation (n = 3) of the repeats. Different lowercase letters above the bars indicate significant difference between treatments, as determined by the Duncan’s new multiple range test (P < 0.05). bud 0: dormant bud; bud 1: budding bud; bud 2: enlarged bud; bud 3: elongation bud; bud 4: sharp leaf bud. 6-BA: 6-benzylaminopurine (400 mg L-1); ABA: abscisic acid (4 mg L-1); GA3: gibberellin A3 (200 mg L-1); IBA: indole-3-butytric acid (400 mg L-1); Ethephon: 100 mg L-1; SLs: strigolactones (20 mg L-1)."

Fig. 5

Spatiotemporal expression and phenotypic analysis of ScNPF6.4 overexpression transgenic rice Rice activator protein gene (OsActin) is used as the internal reference gene. The error bar represents the mean ± standard deviation (n = 3) of the repeats. Different lowercase letters above the bars indicate a significant difference between treatments, as determined by the Duncan’s new multiple range test at P < 0.05."

[1] Oz M T, Altpeter A, Karan R, Merotto A, Altpeter F. CRISPR/Cas9-mediated multi-allelic gene targeting in sugarcane confers herbicide tolerance. Front Genome Ed, 2021, 3: 673566.
[2] Pribil M, Hermann S R, Dun G D, Ngo C K, O’Neill S, Wang L, Bonnett G D, Chandler P M, Beveridge C A, Lakshmanan P. Altering sugarcane shoot architecture through genetic engineering: prospects for increasing cane and sugar yield. Proc Aust Soc Sugar Cane Technol, 2007, 29: 251-257.
[3] Vasantha S, Shekinah D E, Gupta C, Rakkiyappan P. Tiller production, regulation and senescence in sugarcane (Saccharum species hybrid) genotypes. Sugar Technol, 2012, 14: 156-160.
[4] 储成才, 王毅, 王二涛. 植物氮磷钾养分高效利用研究现状与展望. 中国科学(生命科学), 2021, 51: 1415-1423.
Chu C C, Wang Y, Wang E T. Improving the utilization efficiency of nitrogen, phosphorus and potassium: current situation and future perspectives. Sci Sin (Life Sci), 2021, 51: 1415-1423 (in Chinese with English abstract).
[5] Kindred D R, Verhoeven T M O, Weightman R M, Swanston J S, Agu R C, Brosnan J M, Sylvester-Bradley R. Effects of variety and fertiliser nitrogen on alcohol yield, grain yield, starch and protein content, and protein composition of winter wheat. J Cereal Sci, 2008, 48: 46-57.
[6] Roger S B, Kindred D R. Analysing nitrogen responses of cereals to prioritize routes to the improvement of nitrogen use efficiency. J Exp Bot, 2009, 60: 1939-1951.
[7] 刘杨, 王强盛, 丁艳锋, 刘正辉, 李刚华, 王绍华. 氮素和6-BA对水稻分蘖芽发育的影响及其生理机制. 作物学报, 2009, 35: 1893-1899.
Liu Y, Wang Q S, Ding Y F, Liu Z H, Li G H, Wang S H. Effect of nitrogen and 6-BA on development of tillering bud and its physiological mechanism. Acta Agron Sin, 2009, 35: 1893-1899 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2009.01893
[8] 杨东清. 细胞分裂素参与氮素调控小麦分蘖发育的作用机制及构建合理群体结构的化控途径. 山东农业大学博士学位论文, 山东泰安, 2016.
Yang D Q. Effect of Cytokinin and Nitrogen on Development of Tiller Bud and Chemical Control Pathway in Constructing Rational Population Structure. PhD Dissertation of Shandong Agricultural University, Tai’an, Shandong, China, 2016 (in Chinese with English abstract).
[9] Shrivastava A K, 郑世庆. 甘蔗分蘖的诱导和萌发. 国外农学: 甘蔗, 1993, (2): 1-4.
Shrivastava A K, Zheng S Q. Induction and germination of tillers in sugarcane. Agron Abroad: Sugarcane, 1993, (2): 1-4 (in Chinese).
[10] 谢金兰, 陈引芝, 朱秋珍, 刘晓燕, 吴建明, 王维赞. 氮肥施用量与施用方法对甘蔗生长的影响. 中国农学通报, 2012, 28(31): 237-242.
Xie J L, Chen Y Z, Zhu Q Z, Liu X Y, Wu J M, Wang W Z. Effects of nitrogen fertilizer and application methods on sugarcane growth. Chin Agric Sci Bull, 2012, 28(31): 237-242 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.2012-1535
[11] Wang Y Y, Cheng Y H, Chen K E, Tsay Y F. Nitrate transport, signaling, and use efficiency. Annu Rev Plant Biol, 2018, 69: 85-122.
[12] Wang R C, Okamoto M, Xing X J, Crawford N M. Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol, 2003, 132: 556-567.
[13] Olas J J, Van Dingenen J, Abel C, Dzialo M A, Feil R, Krapp A, Schlereth A, Wahl V. Nitrate acts at the Arabidopsis thaliana shoot apical meristem to regulate flowering time. New Phytol, 2019, 223: 814-827.
[14] Fredes I, Moreno S, Diaz F P, Gutierrez R A. Nitrate signaling and the control of Arabidopsis growth and development. Curr Opin Plant Biol, 2019, 47: 112-118.
[15] Sophie L, Varala K, Boyer J C, Chiurazzi M, Lacombe B. A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends Plant Sci, 2014, 19: 5-9.
doi: 10.1016/j.tplants.2013.08.008 pmid: 24055139
[16] Sakuraba Y, Chaganzhana, Mabuchi A, Iba K, Yanagisawa S. Enhanced NRT1.1/NPF6.3 expression in shoots improves growth under nitrogen deficiency stress in Arabidopsis. Commun Biol, 2021, 4: 256.
[17] Choi M G, Kim E J, Jeon J, Jeong S W, Song J Y, Park Y I. Peptide transporter2 (PTR2) enhances water uptake during early seed germination in Arabidopsis thaliana. Plant Mol Biol, 2020, 102: 615-624.
[18] Léran S, Garg B, Yann B, Boursiac Y, Corratgé-Faillie C, Brachet C, Tillard P, Gojon A, Lacombe B. AtNPF5.5, a nitrate transporter affecting nitrogen accumulation in Arabidopsis embryo. Sci Rep, 2015, 5: 7962.
[19] Wang W, Hu B, Yuan D, Liu Y, Che R, Hu Y, Ou S, Zhang Z, Wang H, Li H. Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice. Plant Cell, 2018, 30: 638-651.
[20] Fan X R, Feng H M, Tan Y W, Xu Y L, Miao Q S, Xu G H. A putative 6-transmembrane nitrate transporter OsNRT1.1b plays a key role in rice under low nitrogen. J Integr Plant Biol, 2016, 6: 590-599.
[21] Li Y G, Ou-Yang J, Wang Y Y, Hu R, Xia K F, Duan J, Wang Y Q, Tasy Y F, Zhang M Y. Disruption of the rice nitrate transporter OsNPF2.2 hinders root-to-shoot nitrate transport and vascular development. Sci Rep, 2015, 5: 9635.
doi: 10.1038/srep09635 pmid: 25923512
[22] 王化敦, 张鹏, 马鸿翔. 植物氮素吸收利用相关NPF基因家族研究进展. 植物营养与肥料学报, 2022, 28: 1520-1534.
Wang H D, Zhang P, Ma H X. Research advances on NPF gene families in plant nitrogen uptake and utilization. J Plant Nutr Fert, 2022, 28: 1520-1534 (in Chinese with English abstract).
[23] 谭杰. 中柳硝酸盐转运蛋白基因的克隆和功能研究. 中国农业科学院硕士论文, 北京, 2019.
Tan J. Cloning and Functional Analyzation of Nitrate Transporter Gene from Hygrophila stricta. MS Thesis of Chinese Academy of Agricultural Sciences Dissertation, Beijing, China, 2019 (in Chinese with English abstract).
[24] Wang J, Li Y X, Zhu F, Ming R, Chen L Q. Genome-wide analysis of nitrate transporter (NRT/NPF) family in sugarcane Saccharum spontaneum L. Trop Plant Biol, 2019, 12: 133-149.
[25] 尹新彦, 张鑫, 储博彦, 庞曼. 植物生长调节剂对大花萱草分蘖能力的影响. 天津农业科学, 2019, 25(1): 39-42.
Yin X Y, Zhang X, Chu B Y, Pang M. Effect of different plant growth regulators on the tillering ability of Hemerocallis hybrid Hort. Tianjin Agric Sci, 2019, 25(1): 39-42 (in Chinese with English abstract).
[26] 黎正英, 丘立杭, 闫海锋, 周慧文, 陈荣发, 范业赓, 梁和, 吴建明. 外源赤霉素信号对甘蔗分蘖及其内源激素的影响. 热带作物学报, 2021, 42: 2942-2951.
doi: 10.3969/j.issn.1000-2561.2021.10.026
Li Z Y, Qiu L H, Yan H F, Zhou H W, Chen R F, Fan Y G, Liang H, Wu J M. Effect of exogenous gibberellin signal on sugarcane tillering and its endogenous hormones. J Trop Crops, 2021, 42: 2942-2951 (in Chinese with English abstract).
[27] Lyu A L, Li X J, Li C J, Liu H B, Zi Q Y, Lin X Q, Liu X L. Cloning and expression analysis of the ScD53 gene from sugarcane. Sugar Technol, 2019, 21: 898-908.
[28] 周传凤, 李杨瑞, 杨丽涛. 甘蔗分蘖期间叶面喷施乙烯利后两种内源激素的变化. 西南农业学报, 2007, 20: 388-391.
Zhou C F, Li Y R, Yang L T. Changes of IAA and CTK in sugarcane sprayed with ethephon at early tillering stage. J Southwest Agri Univ, 2007, 20: 388-391 (in Chinese with English abstract).
[29] Ling H, Wu Q B, Guo J L, Xu L P, Que Y X. Comprehensive selection of reference genes for gene expression normalization in sugarcane by real time quantitative RT-PCR. PLoS One, 2014, 9: e97469.
[30] 俸云燕, 周思如, 左同鸿, 刘义梅, 王佩灵, 朱利泉, 张贺翠, 李勇, 徐小洪. 烟草NPF基因家族的全基因组鉴定和表达分析. 分子植物育种, 网络首发 [2023-11-22], https://link.cnki.net/urlid/46.1068.S.20231121.1559.008.
Feng Y Y, Zhou S R, Zuo T H, Liu Y M, Wang P L, Zhu L Q, Zhang H C, Li Y, Xu X H. Genome-wide identification and expression analysis of tobacco NPF gene family. Mol Plant Breed, Published online [2023-11-22], https://link.cnki.net/urlid/46.1068.S.20231121.1559.008 (in Chinese with English abstract).
[31] 郭志强, 梁月秀, 冯凡, 朱立勋, 范佳丽, 姜晓东, 吕晋慧, 张春来. 高粱全基因组NRT1基因鉴定、表达与DNA变异分析. 激光生物学报, 2021, 30: 459-467.
Guo Z Q, Liang Y X, Feng F, Zhu L X, Fan J L, Jiang X D, Lyu J H, Zhang C L. Genome-wide identification of NRT1gene, expression profiling and DNA variation analysis in sorghum. Acta Laser Biol Sin, 2021, 30: 459-467 (in Chinese with English abstract).
[32] 马嘉俊, 吴英华, 李璿, 李梅兰, 侯雷平. 白菜 NPF 基因家族成员的鉴定及其生物信息学分析. 河南农业科学, 2021, 50(9): 117-127.
Ma J J, Wu Y H, Li X, Li M L, Hou L P. Identification and bioinformatics analysis of NPF gene family members in Chinese cabbage (Brassica rapa subsp. pekinensis). J Henan Agric Sci, 2021, 50(9): 117-127 (in Chinese with English abstract).
[33] 桑世飞, 曹梦雨, 王亚男, 王君怡, 孙晓涵, 张文玲, 姬生栋. 水稻氮高效相关基因的研究进展. 中国农业科学, 2022, 55: 1479-1491.
doi: 10.3864/j.issn.0578-1752.2022.08.001
Sang S F, Cao M Y, Wang Y N, Wang J Y, Sun X H, Zhang W L, Ji S D. Research progress of nitrogen efficiency related genes in rice. Sci Agric Sin, 2022, 55: 1479-1491 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.08.001
[34] 王露露, 仪子博, 王浩哲, 能芙蓉, 马新明, 张志勇, 王小纯. 不同氮利用效率小麦品种TaNRT/TaNPF家族基因表达特点. 作物学报, 2023, 49: 2966-2977.
doi: 10.3724/SP.J.1006.2023.21063
Wang L L, Yi Z F, Wang H Z, Neng F R, Ma X M, Zhang Z Y, Wang X C. Gene expression characteristics of TaNRT/TaNPF family in wheat cultivars with different nitrogen efficiency. Acta Agron Sin, 2023, 49: 2966-2977 (in Chinese with English abstract).
[35] Huang W T, Bai G X, Wang J, Zhu W, Zeng Q S, Lu K, Sun S Y, Fang Z M. Two splicing variants of OsNPF7.7 regulate shoot branching and nitrogen utilization efficiency in rice. Front Plant Sci, 2018, 9: 300.
[36] 戴毅, 田龙果, 潘贞志, 陈林, 宋丽. 激素和非生物逆境胁迫调控植物硝酸盐转运蛋白功能的研究进展. 江苏农业学报, 2020, 36: 1595-1604.
Dai Y, Tian L G, Pan Z Z, Chen L, Song L. Research progress on the regulation of plant nitrate transporter functions by hormones and abiotic stress. J Jiangsu Agric Sci, 2020, 36: 1595-1604 (in Chinese with English abstract).
[37] Miyawaki K, Matsumoto-kitano M, Kakimoto T. Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J, 2004, 37: 128-138.
doi: 10.1046/j.1365-313x.2003.01945.x pmid: 14675438
[38] 郑冬超, 夏新莉, 尹伟伦. 生长素促进拟南芥 AtNRT1.1 基因表达增强硝酸盐吸收. 北京林业大学学报, 2013, 35(2): 80-85.
Zheng D C, Xia X L, Yin W L. Auxin promotes nitrate uptake by up-regulating AtNRT1.1 gene transcript level in Arobidopsis thaliana. J Beijing For Univ, 2013, 35(2): 80-85 (in Chinese with English abstract).
[39] 白龙强, 刘玉梅, 慕英, 贺超兴, 闫妍, 谢丙炎, 于贤昌, 李衍素. 赤霉素对根区亚低温下黄瓜幼苗氮代谢与吸收的影响. 园艺学报, 2018, 45: 1917-1928.
doi: 10.16420/j.issn.0513-353x.2017-0863
Bai L Q, Liu Y M, Mu Y, He C X, Yan Y, Xie B Y, Yu X C, Li Y S. Effects of gibberellin on nitrogen metabolism and uptake of cucumber under suboptimal root-zone temperature. Acta Hortic Sin, 2018, 45: 1917-1928 (in Chinese with English abstract).
doi: 10.16420/j.issn.0513-353x.2017-0863
[40] 叶燕萍. 乙烯利促进甘蔗有效分蘖的生理生化机理研究. 广西大学博士学位论文, 广西南宁, 2016.
Ye Y P. Studies on the Physiological and Biochemical Mechanism on Ethephon Promoting Effective Tillering in Sugarcane. PhD Dissertation of Guangxi University, Nanning, Guangxi, China, 2016 (in Chinese with English abstract).
[41] Yang X H, Nong B X, Chen C, Wang J R, Xia X Z, Zhang Z Q, Wei Y, Zeng Y, Feng R, Wu Y Y, Guo H, Yan H F, Liang Y T, Liang S H, Yan Y, Li D T, Deng G F. OsNPF3.1, a member of the NRT1/PTR family, increases nitrogen use efficiency and biomass production in rice. Crop J, 2023, 11: 108-118.
[42] Yao R, Li J, Xie D. Recent advances in molecular basis for strigolactone action. Sci China Life Sci, 2018, 61: 277-284.
doi: 10.1007/s11427-017-9195-x pmid: 29116554
[43] 陶晋源. 独脚金内酯和细胞分裂素在氮、磷调控水稻分蘖生长中的作用. 南京农业大学博士学位论文, 江苏南京, 2019.
Tao J Y. Strigolactones and Cytokinins are in Response to Nitrogen and Phosphate Nutrition. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2019 (in Chinese with English abstract).
[44] 李军, 李白, 陈贵. 水稻氮高效利用基因NRT1.1B对粳稻农艺性状的影响. 分子植物育种, 2017, 9: 3629-3636.
Li J, Li B, Chen G. Effects of high nitrogen-use efficiency gene NRT1.1B on agronomic traits in japonica rice. Mol Plant Breed, 2017, 9: 3629-3636 (in Chinese with English abstract).
[45] Wang J, Wan R, Nie H, Xue S, Fang Z. OsNPF5.16, a nitrate transporter gene with natural variation, is essential for rice growth and yield. Crop J, 2022, 10: 397-406.
doi: 10.1016/j.cj.2021.08.005
[46] Huang W T, Nie H P, Feng F, Wang J, Lu K, Fang Z M. Altered expression of OsNPF7.1 and OsNPF7.4 differentially regulates tillering and grain yield in rice. Plant Sci, 2019, 283: 23-31.
[1] LI Wen-Juan, WANG Li-Min, QI Yan-Ni, ZHAO Wei, XIE Ya-Ping, DANG Zhao, ZHAO Li-Rong, LI Wen, XU Chen-Meng, WANG Yan, ZHANG Jian-Ping. Functional analysis of flax LuWRI1a in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2024, 50(7): 1750-1761.
[2] YU Quan-Xin, YANG Zong-Tao, ZHANG Hai, CHENG Guang-Yuan, JIAO Wen-Di, ZENG Kang, LUO Ting-Xu, HUANG Guo-Qiang, WANG Lu, XU Jing-Sheng. Interaction between calmodulin-like ScCML13 of sugarcane and SCMV movement protein P3N-PIPO [J]. Acta Agronomica Sinica, 2024, 50(7): 1855-1866.
[3] LI Hai-Fen, LU Qing, LIU Hao, WEN Shi-Jie, WANG Run-Feng, HUANG Lu, CHEN Xiao-Ping, HONG Yan-Bin, LIANG Xuan-Qiang. Genome-wide identification and expression analysis of AhGA3ox gene family in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(4): 932-943.
[4] ZHANG Bao-Hua, LIU Jia-Jing, TIAN Xiao, TIAN Xu-Zhao, DONG Kuo, WU Yu-Jie, XIAO Kai, LI Xiao-Juan. Cloning, expression, and functional analysis of wheat (Triticum aestivum L.) TaSPX1 gene in low nitrogen stress tolerance [J]. Acta Agronomica Sinica, 2024, 50(3): 576-589.
[5] TIAN Chun-Yan, BIAN Xin, LANG Rong-Bin, YU Hua-Xian, TAO Lian-An, AN Ru-Dong, DONG Li-Hua, ZHANG Yu, JING Yan-Fen. Association analysis of three breeding traits with SSR markers and exploration of elite alleles in sugarcane [J]. Acta Agronomica Sinica, 2024, 50(2): 310-324.
[6] WANG Heng-Bo, FENG Chun-Yan, ZHANG Yi-Xing, XIE Wan-Jie, DU Cui-Cui, WU Ming-Xing, ZHANG Ji-Sen. Genome-wide identification of NAP transcription factors subfamily in Saccharum spontaneum and functional analysis of SsNAP2a involvement in leaf senescence [J]. Acta Agronomica Sinica, 2024, 50(1): 110-125.
[7] DU Cui-Cui, WU Ming-Xing, ZHANG Ya-Ting, XIE Wan-Jie, ZHANG Ji-Sen, WANG Heng-Bo. Cloning and functional analysis of sucrose transporter protein SsSWEET11 gene in sugarcane (Saccharum spontaneum L.) [J]. Acta Agronomica Sinica, 2023, 49(9): 2385-2397.
[8] MO Guang-Ling, YU Chen-Jing, LIANG Yan-Lan, ZHOU Ding-Gang, LUO Jun, WANG Mo, QUE You-Xiong, HUANG Ning, LING Hui. RT-PCR cloning and functional analysis of ScbHLH13 in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(9): 2485-2497.
[9] HU Xin, LUO Zheng-Ying, LI Chun-Jia, WU Zhuan-Di, LI Xu-Juan, LIU Xin-Long. Comparative transcriptome analysis of elite ‘ROC’ sugarcane parents for exploring genes involved in Sporisorium scitamineum infection by using Illumina- and SMRT-based RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(9): 2412-2432.
[10] YU Quan-Xin, YANG Zong-Tao, ZHANG Hai, CHENG Guang-Yuan, ZHOU Ying-Shuan, JIAO Wen-Di, ZENG Kang, LUO Ting-Xu, HUANG Guo-Qiang, ZHANG Mu-Qing, XU Jing-Sheng. Interaction of sugarcane VAMP associated protein ScPVA12 with SCMV P3N-PIPO [J]. Acta Agronomica Sinica, 2023, 49(9): 2472-2484.
[11] JIA Lu-Qi, SUN You, TIAN Ran, ZHANG Xue-Fei, DAI Yong-Dong, CUI Zhi-Bo, LI Yang-Yang, FENG Xin-Yu, SANG Xian-Chun, and WANG Xiao-Wen. Identification of the rgs1 mutant with rapid germination of seed and isolation of the regulated gene in rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2288-2295.
[12] PAN Jie-Ming, TIAN Shao-Rui, LIANG Yan-Lan, ZHU Yu-Lin, ZHOU Ding-Gang, QUE You-Xiong, LING Hui, HUANG Ning. Identification and expression analysis of PIN-LIKES gene family in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(2): 414-425.
[13] XIAO Jian, WEI Xing-Xuan, YANG Shang-Dong, LU Wen, TAN Hong-Wei. Effects of intercropping with watermelons on cane yields, soil physicochemical properties and micro-ecology in rhizospheres of sugarcanes [J]. Acta Agronomica Sinica, 2023, 49(2): 526-538.
[14] YANG Zong-Tao, JIAO Wen-Di, ZHANG Hai, ZHANG Ke-Ming, CHENG Guang-Yuan, LUO Ting-Xu, ZENG Kang, ZHOU Ying-Shuan, XU Jing-Sheng. Interaction of sugarcane glutathione S-transferase ScGSTF1 with P3N-PIPO in response to SCMV infection [J]. Acta Agronomica Sinica, 2023, 49(10): 2665-2676.
[15] SHEN Qing-Qing, WANG Tian-Ju, WANG Jun-Gang, ZHANG Shu-Zhen, ZHAO Xue-Ting, HE Li-Lian, LI Fu-Sheng. Functional identification of Saccharum spontaneum transcription factor SsWRKY1 to improve drought tolerance in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(10): 2654-2664.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[4] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[5] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[6] ZHENG Yong-Mei;DING Yan-Feng;WANG Qiang-Sheng;LI Gang-Hua;WANG Hui-Zhi;WANG Shao-Hua. Effect of Nitrogen Applied before Transplanting on Tillering and Nitrogen Utilization in Rice[J]. Acta Agron Sin, 2008, 34(03): 513 -519 .
[7] QIN En-Hua;YANG Lan-Fang;. Selenium Content in Seedling and Selenium Forms in Rhizospheric Soil of Nicotiana tabacum L.[J]. Acta Agron Sin, 2008, 34(03): 506 -512 .
[8] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[9] Zhang Shubiao;Yang Rencui. Some Biological Character of eui-hybrid Rice[J]. Acta Agron Sin, 2003, 29(06): 919 -924 .
[10] SHAO Rui-Xin;SHANG-GUAN Zhou-Ping. Effects of Exogenous Nitric Oxide Donor Sodium Nitroprusside on Photosynthetic Pigment Content and Light Use Capability of PS II in Wheat under Water Stress[J]. Acta Agron Sin, 2008, 34(05): 818 -822 .