Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (1): 110-125.doi: 10.3724/SP.J.1006.2024.34037

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-wide identification of NAP transcription factors subfamily in Saccharum spontaneum and functional analysis of SsNAP2a involvement in leaf senescence

WANG Heng-Bo1(), FENG Chun-Yan1(), ZHANG Yi-Xing1, XIE Wan-Jie1, DU Cui-Cui1, WU Ming-Xing1, ZHANG Ji-Sen2,*()   

  1. 1Key Laboratory of Sugarcane Biology and Genetic Breeding (Fujian), Ministry of Agriculture and Rural Affairs / National Sugarcane Engineering Technology Research / College of Life Sciences Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    2State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, China
  • Received:2023-02-23 Accepted:2023-06-29 Online:2024-01-12 Published:2023-07-20
  • Contact: *E-mail: zjisen@126.com
  • About author:**Contributed equally to this study
  • Supported by:
    National Key Research and Development Program(2021YFF1000101-5);National Natural Science Foundation of China(32272156);Natural Science Foundation of Fujian Province, China(2022J01160);National Undergraduate Innovation and Entrepreneurship Training Program Project(202310389001)

Abstract:

NAP (NAC-like, Activated by APETALA3/PISTILLATA) is a subfamily of the transcription factor NAC gene family, which is widely involved in regulating plant growth and development, leaf senescence, and response to hormones and abiotic stress. Firstly, the NAP subfamily members were identified from the genomic database of Saccharum spontaneum, and phylogenetic analysis, conserved domains, and cis-regulatory elements were predicted using comparative genomics and various bioinformatics methods. Secondly, the allele SsNAP2a of the SsNAP2 member was isolated from the cDNA library of a wide accession SES208. The relative expression characteristics of the SsNAP2a were detected by qRT-PCR under hormone and abiotic stresses at different growth and development stages. Finally, transient overexpression and subcellular localization performed the function of SsNAP2a gene. The results showed that five NAP subfamily members were identified in the genome of S. spontaneum. The subcellular localization predicted that the encoded proteins of all members were localized in the nucleus. The Ka/Ks ratio of five gene pairs was less than 1, indicating that purifying selection was crucial in the evolution. Phylogenetic analysis revealed that 46 NAP members, including five representative angiosperms (Arabidopsis thaliana, Ananas comosus, Oryza sativa, Zea mays, and Sorghum bicolor), 12 reported species, and the S. spontaneum, were classified into four Clades. The evolution order was Clade I > Clade II > Clade III > Clade IV. In addition, the promoter regions of SsNAP members predicted many cis-acting elements in response to abscisic acid, jasmonic acid, low temperature, and other stresses. We speculated that they were involved in various hormone and abiotic stress-related response pathways. Furthermore, the full-length cDNA sequence of the SsNAP2a gene (GenBank accession number: OQ335094) was isolated from the wild accession SES208, with an open reading frame of 1173 bp and encoding 390 amino acid residues. The amino acid sequence similarity between SsNAP2 and SsNAP2a proteins was 97.70%. There was a difference of 10 amino acid residues, indicating that the autopolyploid allelic sequences of Saccharum species were significant difference. The qRT-PCR demonstrated that the SsNAP2a gene was constitutively expressed in various tissues of S. spontaneum, especially in the senescent bark and root, and its expression level was significantly induced under the treatment of ethylene, ET, abscisic acid (ABA), low temperature at 4℃, and high temperature at 40℃. However, the relative expression level of the SsNAP2a gene was significantly down-regulated under 8% polyethylene glycol (PEG) stress. Subcellular localization revealed that the SsNAP2a-GFP fusion protein was located in the cell nucleus of Nicotiana benthamiana leaves. After transient overexpression of the SsNAP2a gene for seven days, the leaves of N. benthamiana displayed obvious curling and shriveling phenotype. The relative expression level of ET synthesis-related genes (NtEFE26, NtAccdeaminase) was significantly up-regulated, while salicylic acid, jasmonic acid, and ABA synthesis-related genes (NtPR-1a/c, NtPR3, and NtAREB1) were significantly down-regulated, indicating that the SsNAP2a gene was involved in multiple hormone signaling pathways to induce leaf senescence. These results lay a foundation for exploring the biological functions of NAP subfamily gene members involved in sugarcane leaf senescence and provide candidate gene resources for breeding anti-senescence new cultivars.

Key words: Saccharum spontaneum, NAP gene, leaf senescence, hormone stress, functional analysis, sugarcane

Table 1

Primers used in this study"

名称
Primer name
引物序列
Primer sequences (5′-3′)
备注
Annotation
SsNAP2a-F ATGACGACGATGATGTCGGCG 基因克隆
Gene cloning
SsNAP2a-R CTAGAAATGAGGAAGCATGTGATGG
qRT-PCR-SsNAP2a-F CCTCCAAGCTCAGGAACGTC 定量PCR引物
qRT-PCR primers
qRT-PCR-SsNAP2a-R CTCGTAGTCGGCGAGCG
qRT-PCR-SsUBC-F GATTCTACTGCGGATGGATTGA 甘蔗内参基因
Reference gene in sugarcane
qRT-PCR-SsUBC-R CAACTTTGGGATGCTTGATACAC
pMDC202-SsNAP2a-F CTCGACTCTAGAACTAGTATGACGACGATGATGTCGGCG 过表达载体构建
Construction of overexpression vector
pMDC202-SsNAP2a-R ATTTTTTCTACCGGTACCCTAGAAATGAGGAAGCATGTGATGG
pSuper-1300-SsNAP2a-F GGGGCCCGGGGTCGACATGACGACGATGATGTCGGCG 亚细胞定位载体构建
Construction of subcellular localization vector
pSuper-1300-SsNAP2a-R CCCTTGCTCACCATGGTACCGAAATGAGGAAGCATGTGATGG
qPCR-AREB1-ABA-F ATCCAGAAAAACAGAAAAGAGTGAT 脱落酸通路相关基因
Abscisic acid pathway related gene
qPCR-AREB1-ABA-R CAACACTACTTCCACCCTCCC

Table 2

Physicochemical properties of NAP subfamily members in Saccharum spontaneum"

名称
Name
基因编号
Sequence ID
氨基酸残基数
Number of amino acid
相对
分子量
Molecular weight (kD)
理论等
电点
Theoretical pI
不稳定
系数
Instability index
平均疏水性
Grand
average of hydropathicity
高粱直系同源基因
Orthologous gene from sorghum
非同义
和同义
替换率
Ka/Ks
SsNAP1 Npp.01C032290.1 371 40.285 9.04 41.98 -0.50 Sobic.001G385800.1 0.46
SsNAP2 Npp.02D037500.1 392 41.876 7.29 44.69 -0.26 Sobic.002G420700.1 0.65
SsNAP3 Npp.03B008200.1 340 36.933 6.33 55.52 -0.45 Sobic.003G105800.1 0.48
SsNAP4 Npp.05B003240.1 396 43.899 6.22 49.34 -0.65 Sobic.005G018500.1 0.34
SsNAP5 Npp.08D002510.1 409 44.912 6.06 51.39 -0.61 Sobic.008G021800.1 0.30

Fig. 1

Amino acid sequence alignment of the different NAP members"

Fig. 2

Phylogenetic tree and the conserved motifs of NAP subfamily members from some species These NAP members are from different species. SsNAP: Saccharum spontaneum; ZmNAC: Zea mays; OsNAC: Oryza sativa; SbNAP: Sorghum bicolor; TtNAM: Triticum turgidum; AcNAP: Ananas comosus; ANAC: Arabidopsis thaliana; VvNAC: Vitis riparia; GhNAC5 and GhNAC8: Gossypium hirsutum; MsNAP: Medicago sativa; BeNAC1: Bambusa emeiensis; CarNAC3: Cicer arietinum; MmNAP: Mikania micrantha; CitNAC: Citrus sinensis; BrNAP: Brassica rapa; CsNAP: Crocus sativus; PvNAC2: Phaseolus vulgaris; AmTr_v1.0_scaffold00119.21: Amborella trichopoda."

Fig. 3

Cis-acting elements prediction"

Fig. 4

Nucleic acid sequence and the coding amino acid sequence of SsNAP2a gene The underlined letter is the untranslated region sequence; the red sequence is the NAM conservative domain; * is the stop codon."

Fig. 5

Relative expression pattern of SsNAP2a genes at different growth and development stages Stem pith, leaf sheath, roller-leaf, bud, bark, root, and leaf are represented various tissues. Stem pith 3 and stem pith 6 are the stem pith of tender and senescence parts, respectively; bark 3 and bark 6 are the bark of the tender and senescence part, respectively. The error bar represents the standard error of each group treatment (n = 3). Different lowercase letters indicate significant differences at the 0.05 probability level."

Fig. 6

Relative expression pattern of SsNAP2a gene in ET and ABA treatments The error bar represents the standard error of each group treatment (n = 3). Different lowercase letters indicate significant differences at the 0.05 probability level."

Fig. 7

Relative expression of SsNAP2a gene under low temperature, high temperature, and drought stresses The error bar represents the standard error of each group treatment (n = 3). Different lowercase letters indicate significant differences at the 0.05 probability level."

Fig. 8

Subcellular localization of SsNAP2a protein Photographs were taken under three fields of view (visible field, green fluorescence, and merged field). pSuper1300-35S::GFP and pSuper1300-35S::SsNAP2a::GFP were represented the results of injection of GV3101 bacterial solution with empty vector and recombinant vector into N. benthamiana leaves, respectively. Bar: 50 μm."

Fig. 9

Transient expression of SsNAP2a gene in tobacco leaves a: the phenotype and DAB staining results of the dark treatment and DAB staining after transient overexpression of SsNAP2a gene in tobacco leaves. Symptom 0 represented the transient overexpression of the SsNAP2a gene for 1 day. Symptom 1 d and 7 d indicated the time of dark treatment after transient overexpression of SsNAP2a gene, respectively. B: the transcript levels of genes involved in tobacco immunity and hormone synthesis pathways after overexpression of SsNAP2a gene. Different lowercase letters indicate significant differences at the 0.05 probability level."

[1] 李伟, 韩蕾, 钱永强, 孙振元. 植物NAC转录因子的种类、特征及功能. 应用与环境生物学报, 2011, 17: 596-606.
Li W, Han L, Qian Y Q, Sun Z Y. Characteristics and functions of NAC transcription factors in plants. Chin J Appl Environ Biol, 2011, 17: 596-606. (in Chinese with English abstract)
[2] Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res, 2003, 10: 239-247.
[3] Sablowski R W, Meyerowitz E M. A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell, 1998, 92: 93-103.
doi: 10.1016/s0092-8674(00)80902-2 pmid: 9489703
[4] Guo Y, Gan S. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J, 2006, 46: 601-612.
[5] Ernst H A, Olsen A N, Larsen S, Lo Leggio L. Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Rep, 2004, 5: 297-303.
doi: 10.1038/sj.embor.7400093 pmid: 15083810
[6] 范凯, 王学德, 袁淑娜, 王铭. 植物转录因子NAP亚家族的研究进展. 中国农业科学, 2014, 47: 209-220.
doi: 10.3864/j.issn.0578-1752.2014.02.001
Fan K, Wang X D, Yuan S N, Wang M. Recent advances in research of transcription factor nap subfamily in plants. Sci Agric Sin, 2014, 47: 209-220. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2014.02.001
[7] Olsen A N, Ernst H A, Leggio L L, Skriver K. NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci, 2005, 10: 79-87.
doi: 10.1016/j.tplants.2004.12.010 pmid: 15708345
[8] Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell, 1997, 9: 841-857.
doi: 10.1105/tpc.9.6.841 pmid: 9212461
[9] 范凯. 植物转录因子NAP的系统发育及其对叶片衰老的调控. 浙江大学博士学位论文, 浙江杭州, 2015.
Fan K. Phyogenetic Analysis of the NAP Transcription Factor in Plants and Its Regulation to Leaf Senescence. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2015. (in Chinese with English abstract)
[10] Kalivas A, Pasentsis K, Argiriou A, Tsaftaris A S. Isolation, characterization, and expression analysis of an NAP-like cDNA from Crocus (Crocus sativus L.). Plant Mol Biol Rep, 2010, 28: 654-663.
doi: 10.1007/s11105-010-0197-x
[11] Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science, 2006, 314: 1298-1301.
doi: 10.1126/science.1133649 pmid: 17124321
[12] Meng Q, Zhang C, Gai J, Yu D. Molecular cloning, sequence characterization and tissue-specific expression of six NAC-like genes in soybean (Glycine max (L.) Merr.). J Plant Physiol, 2007, 164: 1002-1012.
doi: 10.1016/j.jplph.2006.05.019
[13] Fernandez L, Ageorges A, Torregrosa L. A putative NAP homolog specifically expressed during grapevine flower and berry development. Vitis, 2006, 45, 51-52.
[14] Chai L, Biswas M K, Ge X, Deng X. Isolation, characterization, and expression analysis of an SKP1-like gene from ‘Shatian’ Pummelo. Plant Mol Biol Rep, 2010, 28: 569-577.
doi: 10.1007/s11105-010-0184-2
[15] 樊金萍, 赵然. 金鱼藤中ApNAP基因的克隆和表达模式分析. 植物科学学报, 2014, 32: 251-258.
Fan J P, Zhao R. Cloning and expression pattern analysis of the ApNAP gene in Asarina procumbens. Plant Sci J, 2014, 32: 251-258. (in Chinese with English abstract)
[16] 晁跃辉, 李珊珊, 滕珂, 许立新, 肖国增, 郭涛, 韩烈保. 紫花苜蓿MsNAP基因克隆及烟草转化. 中国草地学报, 2016, 38(2): 13-19.
Chao Y H, Li S S, Teng K, Xu L X, Xiao G Z, Guo T, Han L B. Cloning of MsNAP gene from Medicago sativa and transformation to tobacco (Nicotiana tabacum). Chin J Grassland, 2016, 38(2): 13-19. (in Chinese with English abstract)
[17] Huang G Q, Li W, Zhou W, Zhang J M, Li D D, Gong S Y, Li X B. Seven cotton genes encoding putative NAC domain proteins are preferentially expressed in roots and in responses to abiotic stress during root development. Plant Growth Regul, 2013, 71: 101-112.
doi: 10.1007/s10725-013-9811-x
[18] Liang C, Wang Y, Zhu Y, Tang J, Hu B, Liu L, Ou S, Wu H, Sun X, Chu J, Chu C. OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci USA, 2014, 111: 10013-10018.
doi: 10.1073/pnas.1321568111 pmid: 24951508
[19] Zhou Y, Huang W, Liu L, Chen T, Zhou F, Lin Y. Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence. BMC Plant Biol, 2013, 13: 132.
doi: 10.1186/1471-2229-13-132
[20] Carrillo-Bermejo E A, Gamboa-Tuz S D, Pereira-Santana A, Keb-Llanes M A, Castaño E, Figueroa-Yañez L J, Rodriguez-Zapata L C. The SoNAP gene from sugarcane (Saccharum officinarum) encodes a senescence-associated NAC transcription factor involved in response to osmotic and salt stress. J Plant Res, 2020, 133: 897-909.
doi: 10.1007/s10265-020-01230-y pmid: 33094397
[21] Oz M T, Altpeter A, Karan R, Merotto A, Altpeter F. CRISPR/Cas9-mediated multi-allelic gene targeting in sugarcane confers herbicide tolerance. Front Genome Ed, 2021, 3: 673566.
doi: 10.3389/fgeed.2021.673566
[22] 许孚, 汪洲涛, 路贵龙, 阙友雄. 甘蔗遗传改良中的基因工程: 适用、成就、局限和展望. 农业生物技术学报, 2022, 30: 580-593.
Xu F, Wang Z T, Lu G L, Que Y X. Genetic engineering in sugarcane improvement: adaptability, achievements, limitations and prospects. J Agric Biotechnol, 2022, 30: 580-593. (in Chinese with English abstract)
[23] 王恒波, 张畅, 吴明星, 李湘, 蒋钟莉, 林容潇, 郭晋隆, 阙友雄. 甘蔗割手密种NAC转录因子ATAF亚家族鉴定及栽培品种ScNAC2 基因的功能分析. 作物学报, 2023, 49: 46-61.
doi: 10.3724/SP.J.1006.2023.24005
Wang H B, Zhang C, Wu M X, Li X, Jiang Z L, Lin R X, Guo J L, Que Y X. Genome-wide identification of NAC transcription factors ATAF subfamily in Saccharum spontaneum and functional analysis of its homologous gene ScNAC2 in sugarcane cultivar. Acta Agron Sin, 2023, 49: 46-61 (in Chinese with English abstract).
[24] 张旭, 凌辉, 刘峰, 黄宁, 王玲, 毛花英, 李聪娜, 汤翰臣, 苏炜华, 苏亚春, 阙友雄. 一个甘蔗IId类WRKY转录因子基因的克隆和表达分析. 中国农业科学, 2018, 51: 4409-4423.
doi: 10.3864/j.issn.0578-1752.2018.23.002
Zhang X, Ling H, Liu F, Huang N, Wang L, Mao H Y, Li C N, Tang H C, Su W H, Su Y C, Que Y X. Cloning and expression analysis of a IId sub-group WRKY transcription factor gene from sugarcane. Sci Agric Sin, 2018, 51: 4409-4423. (in Chinese with English abstract)
[25] 杜翠翠, 吴明星, 张雅婷, 谢婉婕, 张积森, 王恒波. 甘蔗割手密种糖转运蛋白基因SsSWEET11的克隆与功能分析. 作物学报, 2023, 51: 1-12.
Du C C, Wu M X, Zhang Y T, Xie W J, Zhang J S, Wang H B. Cloning and functional analysis of sucrose transporter protein SsSWEET11 gene in sugarcane (Saccharum spontaneum L.). Acta Agron Sin, 2023, 51: 1-12. (in Chinese with English abstract)
[26] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[27] 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析. 作物学报, 2021, 47: 1275-1296.
doi: 10.3724/SP.J.1006.2021.04192
Su Y C, Li C N, Su W H, You C H, Cen G L, Zhang C, Ren Y J, Que Y X. Identification of thaumatin-like protein family in Saccharum spontaneum and functional analysis of its homologous gene in sugarcane cultivar. Acta Agron Sin, 2021, 47: 1275-1296. (in Chinese with English abstract)
[28] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[29] Liu F, Huang N, Wang L, Ling H, Sun T, Ahmad W, Muhammad K, Guo J, Xu L, Gao S, Que Y, Su Y. A novel L-ascorbate peroxidase 6 gene, ScAPX6, plays an important role in the regulation of response to biotic and abiotic stresses in sugarcane. Front Plant Sci, 2017, 8: 2262.
doi: 10.3389/fpls.2017.02262
[30] 申娟娟. 本氏烟响应黑暗胁迫的多组学分析. 郑州大学硕士学位论文. 河南郑州, 2021.
Shen J J. Muti-Omics Analysis of Nicotiana bethamiana in response to Dark Stress. MS Thesis of Zhengzhou University, Zhengzhou, Henan, China, 2021 (in Chinese with English abstract).
[31] Brogue K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais C J, Broglie R. Transgenic plants with enhanced resistance to the fungal pathogen. Science, 1991, 254: 1194-1197.
doi: 10.1126/science.254.5035.1194 pmid: 17776411
[32] 李钰卓, 刘柯, 袁璐, 曹丽雯, 王挺进, 甘苏生, 陈利萍. 菜薹BrNAP克隆及其在采后叶片衰老中的功能分析. 园艺学报, 2021, 48(1): 60-72.
doi: 10.16420/j.issn.0513-353x.2020-0295
Li Y Z, Liu K, Yuan L, Cao L W, Wang T J, Gan S S, Chen L P. Cloning and functional analyses of BrNAP in postharvest leaf senescence in Chinese flowering cabbage. Acta Hortic Sin, 2021, 48(1): 60-72. (in Chinese with English abstract)
[33] Chen N, Goodwin P H, Hsiang T. The role of ethylene during the infection of Nicotiana tabacum by Colletotrichum destructivum. J Exp Bot, 2003, 54: 2449-2456.
pmid: 14565949
[34] 朱丽萍, 于壮, 邹翠霞, 李秋莉. 植物逆境相关启动子及功能. 遗传, 2010, 32: 229-234.
Zhu L P, Yu Z, Zou C X, Li Q L. Plant stress-inducible promoters and their function. Hereditas, 2010, 32: 229-234. (in Chinese with English abstract)
[35] 李钰卓. 菜心BrNAP基因的克隆及其在采后叶片衰老中的功能研究. 浙江大学硕士学位论文, 浙江杭州, 2020.
Li J Z. Cloning and Functional Analyses of BrNAP in Postharvest Leaf Senescence in Chinese Flowering Cabbage. MS Thesis of Zhejiang University, Hangzhou, Zhejiang, China, 2020. (in Chinese with English abstract)
[36] He Y, Tang W, Swain J, Green A, Jack T, Gan S. Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines. Plant Physiol, 2001, 126: 707-716.
pmid: 11402199
[37] Ming R, VanBuren R, Wai C M, Tang H, Schatz M C, Bowers J E, Lyons E, Wang M L, Chen J, Biggers E, Zhang J, Huang L, Zhang L, Miao W, Zhang J, Ye Z, Miao C, Lin Z, Wang H, Zhou H, Yim W C, Priest H D, Zheng C, Woodhouse M, Edger P P, Guyot R, Guo H B, Guo H, Zheng G, Singh R, Sharma A, Min X, Zheng Y, Lee H, Gurtowski J, Sedlazeck F J, Harkess A, McKain M R, Liao Z, Fang J, Liu J, Zhang X, Zhang Q, Hu W, Qin Y, Wang K, Chen L Y, Shirley N, Lin Y R, Liu L Y, Hernandez A G, Wright C L, Bulone V, Tuskan G A, Heath K, Zee F, Moore P H, Sunkar R, Leebens-Mack J H, Mockler T, Bennetzen J L, Freeling M, Sankoff D, Paterson A H, Zhu X, Yang X, Smith J A C, Cushman J C, Paull R E, Yu Q. The pineapple genome and the evolution of CAM photosynthesis. Nat Genet, 2015, 47: 1435-1442.
doi: 10.1038/ng.3435 pmid: 26523774
[38] 李捷. 水稻NAP转录因子在非生物胁迫调控中的功能分析. 上海师范大学硕士学位论文, 上海, 2013.
Li J. Characterization of NAC Family Transcription Factor OsNAP Conferring Abiotic Stress in Rice. MS Thesis of Shanghai Normal University, Shanghai, China, 2013. (in Chinese with English abstract)
[39] Zhang J, Zhang X, Tang H, Zhang Q, Hua X, Ma X, Zhu F, Jones T, Zhu X, Bowers J, Wai C M, Zheng C, Shi Y, Chen S, Xu X, Yue J, Nelson D R, Huang L, Li Z, Xu H, Zhou D, Wang Y, Hu W, Lin J, Deng Y, Pandey N, Mancini M, Zerpa D, Nguyen J K, Wang L, Yu L, Xin Y, Ge L, Arro J, Han J O, Chakrabarty S, Pushko M, Zhang W, Ma Y, Ma P, Lyu M, Chen F, Zheng G, Xu J, Yang Z, Deng F, Chen X, Liao Z, Zhang X, Lin Z, Lin H, Yan H, Kuang Z, Zhong W, Liang P, Wang G, Yuan Y, Shi J, Hou J, Lin J, Jin J, Cao P, Shen Q, Jiang Q, Zhou P, Ma Y, Zhang X, Xu R, Liu J, Zhou Y, Jia H, Ma Q, Qi R, Zhang Z, Fang J, Fang H, Song J, Wang M, Dong G, Wang G, Chen Z, Ma T, Liu H, Dhungana S R, Huss S E, Yang X, Sharma A, Trujillo J H, Martinez M C, Hudson M, Riascos J J, Schuler M, Chen L Q, Braun D M, Li L, Yu Q, Wang J, Wang K, Schatz M C, Heckerman D, Van Sluys M A, Souza G M, Moore P H, Sankoff D, Van Buren R, Paterson A H, Nagai C, Ming R. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat Genet, 2018, 50: 1565-1573.
doi: 10.1038/s41588-018-0237-2
[40] D’Hont A, Ison D, Alix K, Roux C, Glaszmann J C. Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome, 1998, 41: 221-225.
doi: 10.1139/g98-023
[41] Zhang Q, Qi Y, Pan H, Tang H, Wang G, Hua X, Wang Y, Lin L, Li Z, Li Y, Yu F, Yu Z, Huang Y, Wang T, Ma P, Dou M, Sun Z, Wang Y, Wang H, Zhang X, Yao W, Wang Y, Liu X, Wang M, Wang J, Deng Z, Xu J, Yang Q, Liu Z, Chen B, Zhang M, Ming R, Zhang J. Genomic insights into the recent chromosome reduction of autopolyploid sugarcane Saccharum spontaneum. Nat Genet, 2022, 54: 885-896.
doi: 10.1038/s41588-022-01084-1 pmid: 35654976
[42] Torregrosa L. A putative NAP homolog specifically expressed during grapevine flower and berry development. Vitis, 2005, 45: 51-52.
[43] Fan K, Bibi N, Gan S, Li F, Yuan S, Ni M, Wang M, Shen H, Wang X. A novel NAP member GhNAP is involved in leaf senescence in Gossypium hirsutum. J Exp Bot, 2015, 66: 4669-4682.
[44] Wang Z, Dane F. NAC (NAM/ATAF/CUC) transcription factors in different stresses and their signaling pathway. Acta Physiol Plant, 2013, 35: 1397-1408.
doi: 10.1007/s11738-012-1195-4
[45] Lu P L, Chen N Z, An R, Su Z, Qi B S, Ren F, Chen J, Wang X C. A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Mol Biol, 2007, 63: 289-305.
doi: 10.1007/s11103-006-9089-8
[46] Peng H, Cheng H Y, Chen C, Yu X W, Yang J N, Gao W R, Shi Q H, Zhang H, Li J G, Ma H. A NAC transcription factor gene of chickpea (Cicer arietinum), CarNAC3, is involved in drought stress response and various developmental processes. J Plant Physiol, 2009, 166: 1934-1945.
doi: 10.1016/j.jplph.2009.05.013
[47] Li D M, Wang J H, Peng S L, Zhu G F, Lyu F B. Molecular cloning and characterization of two novel NAC genes from Mikania micrantha (Asteraceae). Genet Mol Res, 2012, 11: 4383-4401.
doi: 10.4238/2012.September.19.3 pmid: 23079980
[48] Zhang K, Xia X, Zhang Y, Gan S S. An ABA-regulated and Golgi-localized protein phosphatase controls water loss during leaf senescence in Arabidopsis. Plant J, 2012, 69: 667-678.
doi: 10.1111/tpj.2012.69.issue-4
[49] Zhang K, Gan S S. An abscisic acid-AtNAP transcription factor- SAG113 protein phosphatase 2C regulatory chain for controlling dehydration in senescing Arabidopsis leaves. Plant Physiol, 2012, 158: 961-969.
doi: 10.1104/pp.111.190876
[1] TIAN Chun-Yan, BIAN Xin, LANG Rong-Bin, YU Hua-Xian, TAO Lian-An, AN Ru-Dong, DONG Li-Hua, ZHANG Yu, JING Yan-Fen.

Association analysis of three breeding traits with SSR markers and exploration of elite alleles in sugarcane

#br# [J]. Acta Agronomica Sinica, 2024, 50(2): 310-324.

[2] DU Cui-Cui, WU Ming-Xing, ZHANG Ya-Ting, XIE Wan-Jie, ZHANG Ji-Sen, WANG Heng-Bo. Cloning and functional analysis of sucrose transporter protein SsSWEET11 gene in sugarcane (Saccharum spontaneum L.) [J]. Acta Agronomica Sinica, 2023, 49(9): 2385-2397.
[3] MO Guang-Ling, YU Chen-Jing, LIANG Yan-Lan, ZHOU Ding-Gang, LUO Jun, WANG Mo, QUE You-Xiong, HUANG Ning, LING Hui. RT-PCR cloning and functional analysis of ScbHLH13 in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(9): 2485-2497.
[4] HU Xin, LUO Zheng-Ying, LI Chun-Jia, WU Zhuan-Di, LI Xu-Juan, LIU Xin-Long. Comparative transcriptome analysis of elite ‘ROC’ sugarcane parents for exploring genes involved in Sporisorium scitamineum infection by using Illumina- and SMRT-based RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(9): 2412-2432.
[5] YU Quan-Xin, YANG Zong-Tao, ZHANG Hai, CHENG Guang-Yuan, ZHOU Ying-Shuan, JIAO Wen-Di, ZENG Kang, LUO Ting-Xu, HUANG Guo-Qiang, ZHANG Mu-Qing, XU Jing-Sheng. Interaction of sugarcane VAMP associated protein ScPVA12 with SCMV P3N-PIPO [J]. Acta Agronomica Sinica, 2023, 49(9): 2472-2484.
[6] DING Hong-Yan, FENG Xiao-Xi, WANG Bai-Yu, ZHANG Ji-Sen. Evolution and relative expression pattern of LRRII-RLK gene family in sugarcane Saccharum spontaneum [J]. Acta Agronomica Sinica, 2023, 49(7): 1769-1784.
[7] ZHANG Zhen-Bo, JIA Chun-Lan, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of combined application of nitrogen and phosphorus on yield and leaf senescence physiological characteristics in summer maize [J]. Acta Agronomica Sinica, 2023, 49(6): 1616-1629.
[8] WANG Jin-Song, BAI Ge, ZHANG Yan-Hui, SHEN Tian-Yu, DONG Er-Wei, JIAO Xiao-Yan. Impacts of long-term fertilization on post-anthesis leaf senescence, antioxidant enzyme activities and yield in sorghum [J]. Acta Agronomica Sinica, 2023, 49(3): 845-855.
[9] PAN Jie-Ming, TIAN Shao-Rui, LIANG Yan-Lan, ZHU Yu-Lin, ZHOU Ding-Gang, QUE You-Xiong, LING Hui, HUANG Ning. Identification and expression analysis of PIN-LIKES gene family in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(2): 414-425.
[10] XIAO Jian, WEI Xing-Xuan, YANG Shang-Dong, LU Wen, TAN Hong-Wei. Effects of intercropping with watermelons on cane yields, soil physicochemical properties and micro-ecology in rhizospheres of sugarcanes [J]. Acta Agronomica Sinica, 2023, 49(2): 526-538.
[11] YANG Zong-Tao, JIAO Wen-Di, ZHANG Hai, ZHANG Ke-Ming, CHENG Guang-Yuan, LUO Ting-Xu, ZENG Kang, ZHOU Ying-Shuan, XU Jing-Sheng. Interaction of sugarcane glutathione S-transferase ScGSTF1 with P3N-PIPO in response to SCMV infection [J]. Acta Agronomica Sinica, 2023, 49(10): 2665-2676.
[12] SHEN Qing-Qing, WANG Tian-Ju, WANG Jun-Gang, ZHANG Shu-Zhen, ZHAO Xue-Ting, HE Li-Lian, LI Fu-Sheng. Functional identification of Saccharum spontaneum transcription factor SsWRKY1 to improve drought tolerance in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(10): 2654-2664.
[13] WANG Heng-Bo, ZHANG Chang, WU Ming-Xing, LI Xiang, JIANG Zhong-Li, LIN Rong-Xiao, GUO Jin-Long, QUE You-Xiong. Genome-wide identification of NAC transcription factors ATAF subfamily in Sacchrum spontaneum and functional analysis of its homologous gene ScNAC2 in sugarcane cultivar [J]. Acta Agronomica Sinica, 2023, 49(1): 46-61.
[14] LI Pei-Ting, ZHAO Zhen-Li, HUANG Chao-Hua, HUANG Guo-Qiang, XU Liang-Nian, DENG Zu-Hu, ZHANG Yu, ZHAO Xin-Wang. Analysis of drought responsive regulatory network in sugarcane based on transcriptome and WGCNA [J]. Acta Agronomica Sinica, 2022, 48(7): 1583-1600.
[15] LI Xu-Juan, LI Chun-Jia, WU Zhuan-Di, TIAN Chun-Yan, HU Xin, QIU Li-Hang, WU Jian-Ming, LIU Xin-Long. Expression characteristic and gene diversity analysis of ScHTD2 in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(7): 1601-1613.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .