Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (7): 1740-1749.doi: 10.3724/SP.J.1006.2024.34185
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
ZHOU Hong-Yuan(), YANG Hui-Qin, LUO Wei, SHI Zhen-Ming, MA Ling*(
)
[1] | Akyol H, Riciputi Y, Capanoglu E, Caboni M F, Verardo V. Phenolic compounds in the potato and its byproducts: an overview. Int J Mol Sci, 2016, 17: 835-853. |
[2] |
Leiss K A, Maltese F, Choi Y H, Verpoorte R, Klinkhamer P G. Identification of chlorogenic acid as a resistance factor for thrips in chrysanthemum. Plant Physiol, 2009, 150: 1567.
doi: 10.1104/pp.109.138131 pmid: 19448039 |
[3] |
Kumar P, Ortiz E V, Garrido E, Poveda K, Jander G. Potato tuber herbivory increases resistance to aboveground lepidopteran herbivores. Oecologia, 2016, 182: 177-187.
doi: 10.1007/s00442-016-3633-2 pmid: 27147449 |
[4] | Lee G, Joo Y, Kim S G, Baldwin I T. What happens in the pith stays in the pith: tissue-localized defense responses facilitate chemical niche differentiation between two spatially separated herbivores. Plant J, 2017, 92: 414-425. |
[5] | Guo X Z, Ning Z X. Natural phenolic compounds and their health effects. Food Ind, 2002, 23: 28-29. |
[6] | Hua X Y, Tao S, Sun S N, Guo N, Yan X F, Lin J X. Research progress of plant secondary metabolites-phenolic compounds. Bull Biotechnol, 2017, 33: 22-29. |
[7] | Sinden S L, Deahl K L, Aulenbach B B. Effect of glycoalkaloids and phenolics on potato flavor. J Food Sci, 1976, 41: 520-523. |
[8] | Ulbrich B, Zenk M H. Partial purification and properties of hydroxycinnamoyl-CoA: quinate hydroxycinnamoyl transferase from higher plants. Phytochemistry, 1979, 18: 929-933. |
[9] |
Niggeweg R, Michael A J, Martin C. Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat Biotechnol, 2004, 22: 746-754.
doi: 10.1038/nbt966 pmid: 15107863 |
[10] |
Sonnante G D, Amore R, Blanco E, Pierri C L, Palma M, Luo J, Tucci M, Martin C. Novel hydroxycinnamoyl-coenzyme A quinate transferase genes from artichoke are involved in the synthesis of chlorogenic acid. Plant Physiol, 2010, 153: 1224-1238.
doi: 10.1104/pp.109.150144 pmid: 20431089 |
[11] |
Payyavula R S, Shakya R, Sengoda V G, Munyaneza J E, Swamy P, Navarre D A. Synthesis and regulation of chlorogenic acid in potato: rerouting phenylpropanoid flux in HQT-silenced lines. Plant Biotechnol J, 2015, 13: 551-564.
doi: 10.1111/pbi.12280 pmid: 25421386 |
[12] | Chen Z X, Liu G H, Liu Y Q, Xian Z Q, Tang N. Overexpression of the LmHQT1 gene increases chlorogenic acid production in Lonicera macranthoides Hand-Mazz. Acta Physiol Plant, 2017, 39: 27. |
[13] |
Yun J, Kim Y S, Jung J H, Seo P J, Park C M. The AT-hook motif-containing protein AHL22 regulates flowering initiation by modifying FLOWERING LOCUS T chromatin in Arabidopsis. J Biol Chem, 2012, 287: 15307-15316.
doi: 10.1074/jbc.M111.318477 pmid: 22442143 |
[14] |
Aravind L, Landsman D. AT-hook motifs identified in a wide variety of DNA-binding proteins. Nucleic Acids Res, 1998, 26: 4413-4421.
doi: 10.1093/nar/26.19.4413 pmid: 9742243 |
[15] | Zhao J, Favero D S, Peng H, Neff M M. Arabidopsis thaliana AHL family modulates hypocotyl growth redundantly by interacting with each other via the PPC/DUF296 domain. Proc Natl Acad Sci USA, 2013, 110: E4688-E4697. |
[16] |
Huth J R, Bewley C A, Nissen M S, Evans J N, Reeves R, Gronenborn A M, Clore G M. The solution structure of an HMG-I(Y)-DNA complex defines a new architectural minor groove binding motif. Nat Struct Biol, 1997, 4: 657-665.
doi: 10.1038/nsb0897-657 pmid: 9253416 |
[17] | Xiao C, Chen F, Yu X, Lin C, Fu Y F. Over-expression of an AT-hook gene AHL22 delays flowering and inhibits the elongation of the hypocotyl in Arabidopsis thaliana. Plant Mol Biol, 2009, 71: 39-50. |
[18] | Zhang W M, Cheng X Z, Fang D, Cao J. AT-HOOK MOTIF NUCLEAR LOCALIZED (AHL) proteins of ancient origin radiate new functions. Int J Biol Macromol, 2022, 214: 290-300. |
[19] |
Lim P O, Kim Y, Breeze E, Koo J C, Woo H R, Ryu J S, Park D H, Beynon J, Tabrett A, Buchanan-Wollaston V, Nam H G. Overexpression of a chromatin architecture-controlling AT-hook protein extends leaf longevity and increases the post-harvest storage life of plants. Plant J, 2007, 52: 1140-1153.
pmid: 17971039 |
[20] |
Wong M M, Bhaskara G B, Wen T N, Lin W D, Nguyen T T, Chong G L, Verslues P E. Phosphoproteomics of Arabidopsis highly ABA-induced1 identifies AT-Hook-Like10 phosphorylation required for stress growth regulation. Proc Natl Acad Sci USA, 2019, 116: 2354-2363.
doi: 10.1073/pnas.1819971116 pmid: 30670655 |
[21] | Yadeta K A, Hanemian M, Smit P, Hiemstra J A, Pereira A, Marco Y, Thomma B P. The Arabidopsis thaliana DNA-binding protein AHL19 mediates Verticillium wilt resistance. Mol Plant-Microbe Interact, 2011, 24: 1582-1591. |
[22] | Wang L, Li T, Liu N, Liu X. Identification of tomato AHL gene families and functional analysis their roles in fruit development and abiotic stress response. Plant Physiol Biochem, 2023, 202: 107931. |
[23] |
Kumar A, Singh S, Mishra A. Genome-wide identification and analyses of the AHL gene family in rice (Oryza sativa). 3 Biotech, 2023, 13: 248.
doi: 10.1007/s13205-023-03666-0 pmid: 37366497 |
[24] | Zhou L, Liu Z, Liu Y, Kong D, Li T, Yu S, Mei H, Xu X, Liu H, Chen L, Luo L. A novel gene OsAHL1 improves both drought avoidance and drought tolerance in rice. Sci Rep, 2016, 6: 30264. |
[1] | LIU Yuan-Yuan, DONG Jian-Ke, YING Jing-Wen, MEI Wen-Xiang, CHENG Gang, GUO Jing-Jing, JIAO Wen-Biao, SONG Bo-Tao. Creating cold resistant germplasm of potato using Solanum boliviense [J]. Acta Agronomica Sinica, 2024, 50(6): 1384-1393. |
[2] | LIU Zhen, CHEN Li-Min, LI Zhi-Tao, ZHU Jin-Yong, WANG Wei-Lu, QI Zhe-Ying, YAO Pan-Feng, BI Zhen-Zhen, SUN Chao, BAI Jiang-Ping, LIU Yu-Hui. Genome-wide identification and expression analysis of ARM gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2024, 50(6): 1451-1466. |
[3] | SUN Yi-Ming, TIAN Xia, WANG Shao-Xia, LIU Qing. Effects of phosphorus application levels on selenium absorption, distribution, and transformation in sweet potatoes [J]. Acta Agronomica Sinica, 2024, 50(6): 1608-1615. |
[4] | ZHAO Na, LIU Yu-Xi, ZHANG Chao-Shu, SHI Ying. Transcriptomic analysis of differences in the starch content of different potatoes [J]. Acta Agronomica Sinica, 2024, 50(6): 1503-1513. |
[5] | YANG Chun-Ju, TANG Dao-Bin, ZHANG Kai, DU Kang, HUANG Hong, QIAO Huan-Huan, WANG Ji-Chun, LYU Chang-Wen. Effect of reducing nitrogen and potassium application on yield and quality in sweet potato [J]. Acta Agronomica Sinica, 2024, 50(5): 1341-1350. |
[6] | ZHU Xiao-Ya, ZHANG Qiang-Qiang, ZHAO Peng, LIU Ming, WANG Jing, JIN Rong, YU Yong-Chao, TANG Zhong-Hou. Transcriptome and metabolomic analysis of foliar spraying of Salvia miltiorrhiza carbon dots to alleviate low phosphorus stress in sweetpotato [J]. Acta Agronomica Sinica, 2024, 50(2): 383-393. |
[7] | LIU Jie, CAI Cheng-Cheng, LIU Shi-Feng, DENG Meng-Sheng, WANG Xue-Feng, WEN He, LI Luo-Pin, YAN Feng-Jun, WANG Xi-Yao. Function analysis of potato StCYP85A3 in promoting germination and root elongation [J]. Acta Agronomica Sinica, 2023, 49(9): 2462-2471. |
[8] | YANG Yi, HE Zhi-Qiang, LIN Jia-Hui, LI Yang, CHEN Fei, LYU Chang-Wen, TANG Dao-Bin, ZHOU Quan-Lu, WANG Ji-Chun. Effects of coconut bran application rate on soil physicochemical properties and sweet-potato yield [J]. Acta Agronomica Sinica, 2023, 49(9): 2517-2527. |
[9] | SU Yi-Jun, ZHAO Lu-Kuan, TANG Fen, DAI Xi-Bin, SUN Ya-Wei, ZHOU Zhi-Lin, LIU Ya-Ju, CAO Qing-He. Genetic diversity and population structure analysis of 378 introduced sweetpotato germplasm collections [J]. Acta Agronomica Sinica, 2023, 49(9): 2582-2593. |
[10] | JIA Rui-Xue, CHEN Yi-Hang, ZHANG Rong, TANG Chao-Chen, WANG Zhang-Ying. Simultaneous determination of 13 carotenoids in sweetpotato by Ultra- Performance Liquid Chromatography [J]. Acta Agronomica Sinica, 2023, 49(8): 2259-2274. |
[11] | ZHAO Xi-Juan, LIU Sheng-Xuan, LIU Teng-Fei, ZHENG Jie, DU Juan, HU Xin-Xi, SONG Bo-Tao, HE Chang-Zheng. Transcriptome analysis reveals the regulatory role of the transcription factor StMYB113 in light-induced chlorophyll synthesis of potato tuber epidermis [J]. Acta Agronomica Sinica, 2023, 49(7): 1860-1870. |
[12] | WANG Yan-Nan, CHEN Jin-Jin, BIAN Qian-Qian, HU Lin-Lin, ZHANG Li, YIN Yu-Meng, QIAO Shou-Chen, CAO Guo-Zheng, KANG Zhi-He, ZHAO Guo-Rui, YANG Guo-Hong, YANG Yu-Feng. Integrated analysis of transcriptome and metabolome reveals the metabolic response pathways of sweetpotato under shade stress [J]. Acta Agronomica Sinica, 2023, 49(7): 1785-1798. |
[13] | SUO Hai-Cui, LIU Ji-Tao, WANG Li, LI Cheng-Chen, SHAN Jian-Wei, LI Xiao-Bo. Functional analysis of StZIP12 in regulating potato Zn uptake [J]. Acta Agronomica Sinica, 2023, 49(7): 1994-2001. |
[14] | MEI Yu-Qin, LIU Yi, WANG Chong, LEI Jian, ZHU Guo-Peng, YANG Xin-Sun. Genome-wide identification and expression analysis of PHB gene family in sweet potato [J]. Acta Agronomica Sinica, 2023, 49(6): 1715-1725. |
[15] | ZHANG Xiao-Hong, PENG Qiong, YAN Zheng. Transcriptome sequencing analysis of different sweet potato varieties under salt stress [J]. Acta Agronomica Sinica, 2023, 49(5): 1432-1444. |
|