Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (7): 1740-1749.doi: 10.3724/SP.J.1006.2024.34185

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Screening and functional identification of chlorogenic acid regulatory factors in potato

ZHOU Hong-Yuan(), YANG Hui-Qin, LUO Wei, SHI Zhen-Ming, MA Ling*()   

  1. Key Laboratory of Yunnan Province for Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Kunming 650000, Yunnan, China
  • Received:2023-11-07 Accepted:2024-01-31 Online:2024-07-12 Published:2024-06-15
  • Contact: *E-mail: may_ynnu@ynnu.edu.cn
  • Supported by:
    Basic and Applied Basic Research Project of Guangdong Province(2021B0301030004);Academician William John Lucas Workstation, Yunnan Province(202105AF150028);National Natural Science Foundation of China “Mapping Cloning of Self-compatibility Gene in Potato RH from Diploid Culture”(32002032);Yunnan Province Basic Research Special Surface Project “Cloning and Functional Analysis of StERF9 Gene, a Negative Regulator of Solanin Content in Potato Meat”(202201AT070037);Zhaotong Qianhe Agricultural Science and Technology Development Co., Ltd. “Shangyi Expert Workstation”

Abstract:

Potato is the third largest food crop in the world. Chlorogenic acid is the most important phenolic compound in potato, and also one of the material basis of potato insect resistance and disease resistance. However, excessive chlorogenic acid can affect the taste of tuber, therefore, breeding varieties with high chlorogenic acid content in the ground part and low chlorogenic acid content in tuber flesh can well meet the needs of potato disease resistance and quality taste. In order to clarify the molecular regulation mechanism of chlorogenic acid in potato, we used the promoter sequence of StHQT, a key enzyme for chlorogenic acid synthesis, as bait to screen the yeast single hybridization library, and identified the transcription factor StAHL of an AT-hook gene family. Further, the bioinformatic characteristics, the relative expression patterns, and subcellular localization of protein products of StAHL were systematically analyzed, and the transcriptional activity between StAHL and StHQT promoters was verified by yeast single hybridization and double luciferase report experiments. The results showed that StAHL gene expression was not tissue specific, but relatively high in roots and flowers. StAHL protein products contained two conserved domains, AT-Hook and DUF296, and were localized in the nucleus. StAHL proteins acted directly on StHQT promoter sequences and inhibited transcriptional activity. This suggests that StAHL may inhibit the accumulation of chlorogenic acid in potato by inhibiting StHQT expression. The results laid a foundation for revealing the molecular mechanism of chlorogenic acid biosynthesis in potato, and provided a molecular target for the breeding practices in potato.

Key words: potato, chlorogenic acid, regulatory factor, StAHL, AT-Hook

Table 1

Primers and sequences in this study"

引物名称
Primer name
正向引物
Forward sequences (5'-3')
反向引物
Reverse sequences (5'-3')
pProStHQT-AbAi agcttgaattcgaATTTGTAAAGTTTTAAAAAATTCAAAGATAA cctcgaggtcgacGTAATTGTTGTGGTACAAGAAATATAGTGTGTTT
pBI121s-StAHL ctctcgagctttcgcgagctcATGAGTATGAGTGGAGTAACAGTGG caggtcgactctagaggatccCTATGCAGGCAACGTTATGTTGA
Luc-ProStHQT ctatagggcgaattgggtaccTTGAGATAGCTTGAGTTTTGAGAA aagcttatcgataccgtcgacGTAATTGTTGTGGTACAAGAAATATAGT
Luc-ProStHQT-1 ctatagggcgaattgggtaccTTGAGATAGCTTGAGTTTTGAGAA aagcttatcgataccgtcgacTATATATTTTTGGGGCCATATAAAACC
Luc-ProStHQT-2 ctatagggcgaattgAAAGACATATAAAAGAAAAGTACTAGAC aagcttatcgataccgtcgacAGTATTTTCTTTGGAGTTCAATTTGG
Luc-ProStHQT-3 ctatagggcgaattgggtaccAAAGGGCATCTTTCTCAAATTTACT aagcttatcgataccgtcgacAGTTACACTGATATATTCAGTAGTGGTC
Luc-ProStHQT-4 ctatagggcgaattgggtaccCAAAGAAGCTTCACAGAATTTGGC aagcttatcgataccgtcgacGTAATTGTTGTGGTACAAGAAATATAGT
pR101-StAHL-GFP gagaacacgggggactctagaATGAGTATGAGTGGAGTAACAGT gcccttgctcaccatcatatgTGCAGGCAACGTTATGTTGATG
pJG4-5-StAHL gattatgcctctcccgaattcATGAGTATGAGTGGAGTAACAGTG agaagtccaaagcttctcgagCTATGCAGGCAACGTTATGTTGA
pLacZ-ProStHQT atcgaattcgagctcggtaTTGAGATAGCTTGAGTTTTGAGAAGTT agcacatgcctcgaggtcgaGTAATTGTTGTGGTACAAGAAATATAGT
pLacZ-ProStHQT-1 atcgaattcgagctcggtaTTGAGATAGCTTGAGTTTTGAGAAG agcacatgcctcgaggtcgacTATATATTTTTGGGGCCATATAAAACC
pLacZ-ProStHQT-2 atcgaattcgagctcgAAAGACATATAAAAGAAAAGTACTAGAC agcacatgcctcgaggtcgacAGTATTTTCTTTGGAGTTCAATTTGG
pLacZ-ProStHQT-3 atcgaattcgagctcggtaccAAAGGGCATCTTTCTCAAATTTACT agcacatgcctcgaggtcgAGTTACACTGATATATTCAGTAGTGGTCG
pLacZ-ProStHQT-4 atcgaattcgagctcggtaccCAAAGAAGCTTCACAGAATTTGGC agcacatgcctcgaggtcgacGTAATTGTTGTGGTACAAGAAATATAGT
StAHL-qPCR TCCAGATTGTTGTGGGGAGC AATCGAGGAAGCGGGCATAG
StActin-qPCR GGATCTTGCTGGTCGTGATTT CATAGGCAAGCTTTTCCTTCAT

Table 2

StHQT promoter element analysis"

元件名称
Component name
核心序列
Core sequence
数量
Quantity
功能
Feature
AT-rich element ATAGAAATCAA 1 富含AT碱基的DNA结合蛋白的结合位点
Binding site of AT-rich DNA binding protein (ATBP-1)
STRE AGGGG 1 压力相关元件
Stress-related element
Myb TAACTG 1 MYB识别序列
MYB recognition sequence
MYB-like sequence TAACCA 3 MYB结合位点
MYB binding site
MYB T/CAACCA 4 MYB结合位点
MYB binding site
Myc TCTCTTA 1 MYC结合位点
MYC binding site
MYC CATTTG 1 E-box, MYC结合位点
E-box, MYC binding site
TATA-box TATA 72 在转录开始 -30 bp左右的核心启动子元件
Core promoter element around -30 bp of transcription start
TCA-element CCATCTTTTT 1 参与水杨酸反应的顺式作用元件
Cis-acting element involved in salicylic acid responsiveness
GT1-motif GGTTAA 1 光响应元件
Light responsive element
chs-CMA1a TTACTTAA 1 光响应元件的一部分
Part of a light responsive element
ABRE ACGTG 1 参与脱落酸反应的顺式元件
Cis-acting element involved in the abscisic acid responsiveness
G-Box CACGTT 1 参与光响应的顺式调节元件
Cis-acting regulatory element involved in light responsiveness
WUN-motif AAATTACT 2 创伤反应元件
Wound response element
LTR CCGAAA 1 参与低温反应的顺式元件
Cis-acting element involved in low-temperature responsiveness
CAAT-box C(A)AAT 40 启动子和增强子区域中常见的顺式作用元件
Common cis-acting element in promoter and enhancer regions
Box 4 ATTAAT 3 与光反应有关的保守DNA的一部分
Part of a conserved DNA module involved in light responsiveness
DRE core GCCGAC 1 脱水反应元件
Dehydration response element
TC-rich repeats ATTCTCTAAC 1 参与防御和应激反应的顺式作用因子
Cis-acting element involved in defense and stress responsiveness

Table 3

Result of yeast single hybrid screening pool"

马铃薯转录因子基因号
Potato transcription factor ID
比对率
Comparison rate (%)
马铃薯参考基因组注释
Potato reference genome notes
PGSC0003DMT400002870 100.00 组蛋白H3.2
Histone H3.2
PGSC0003DMT400009127 100.00 果糖二磷酸醛缩酶
Fructose-bisphosphate aldolase
PGSC0003DMT400014700 99.56 一种连接组蛋白的类似蛋白的连接子
A linker histone like protein
PGSC0003DMT400015124 100.00 40S核糖体蛋白S11
40S ribosomal protein S11
PGSC0003DMT400020708 100.00 26S蛋白酶体非ATP酶调控亚基
26S proteasome non-ATPase regulatory subunit
PGSC0003DMT400023621 98.21 核糖体生物发生蛋白
Ribosome biogenesis protein
PGSC0003DMT400023985 99.57 DCK/dGK-like脱氧核苷激酶
DCK/dGK-like deoxyribonucleoside kinase
PGSC0003DMT400027155 100.00 多泛素
Polyubiquitin
PGSC0003DMT400032575 97.67 DNA结合蛋白
DNA binding protein
PGSC0003DMT400047424 96.71 含有MTERF结构域的蛋白
MTERF domain containing protein
PGSC0003DMT400049672 97.36 富含F-box/亮氨酸的重复性蛋白
F-box/leucine rich repeat protein
PGSC0003DMT400052472 100.00 肌醇磷酸化神经酰胺合成酶2
Inositol phosphorylceramide synthase 2
PGSC0003DMT400052781 100.00 核RNA结合蛋白
Nuclear RNA binding protein
PGSC0003DMT400058778 100.00 组蛋白H3.2
Histone H3.2
PGSC0003DMT400061170 100.00 渗透应激活化蛋白激酶
Osmotic stress-activated protein kinase
PGSC0003DMT400078775 85.83 Armadillo/beta连环重复蛋白家族
Armadillo/beta-catenin repeat family protein
PGSC0003DMT400081297 100.00 组蛋白H3.2
Histone H3.2

Fig. 1

Analysis of StAHL expression patterns a: expression patterns of StAHL in 7 tissues of potato; b: expression of StHQT in the same tissue of the same potato."

Fig. 2

StAHL subcellular localization"

Fig. 3

Interaction between StAHL and StHQT a: StAHL and StHQT promoter full-length yeast single hybrid results. b: StHQT promoter segment diagram, the yellow part is segment 1, the green part is segment 2, the red part is segment 3, and the blue part is segment 4. c: StAHL and StHQT promoter segmental yeast monohybrid results. d: StAHL and StHQT promoter full-length double luciferase test results. e: StAHL and StHQT promoter segmenting double luciferase assay results. * and *** indicate significant difference at the 0.05 and 0.001 probability levels, respectively. ns indicates no significant difference."

Fig. 4

StAHL phylogenetic tree (a) and protein domain conservation analysis (b)"

[1] Akyol H, Riciputi Y, Capanoglu E, Caboni M F, Verardo V. Phenolic compounds in the potato and its byproducts: an overview. Int J Mol Sci, 2016, 17: 835-853.
[2] Leiss K A, Maltese F, Choi Y H, Verpoorte R, Klinkhamer P G. Identification of chlorogenic acid as a resistance factor for thrips in chrysanthemum. Plant Physiol, 2009, 150: 1567.
doi: 10.1104/pp.109.138131 pmid: 19448039
[3] Kumar P, Ortiz E V, Garrido E, Poveda K, Jander G. Potato tuber herbivory increases resistance to aboveground lepidopteran herbivores. Oecologia, 2016, 182: 177-187.
doi: 10.1007/s00442-016-3633-2 pmid: 27147449
[4] Lee G, Joo Y, Kim S G, Baldwin I T. What happens in the pith stays in the pith: tissue-localized defense responses facilitate chemical niche differentiation between two spatially separated herbivores. Plant J, 2017, 92: 414-425.
[5] Guo X Z, Ning Z X. Natural phenolic compounds and their health effects. Food Ind, 2002, 23: 28-29.
[6] Hua X Y, Tao S, Sun S N, Guo N, Yan X F, Lin J X. Research progress of plant secondary metabolites-phenolic compounds. Bull Biotechnol, 2017, 33: 22-29.
[7] Sinden S L, Deahl K L, Aulenbach B B. Effect of glycoalkaloids and phenolics on potato flavor. J Food Sci, 1976, 41: 520-523.
[8] Ulbrich B, Zenk M H. Partial purification and properties of hydroxycinnamoyl-CoA: quinate hydroxycinnamoyl transferase from higher plants. Phytochemistry, 1979, 18: 929-933.
[9] Niggeweg R, Michael A J, Martin C. Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat Biotechnol, 2004, 22: 746-754.
doi: 10.1038/nbt966 pmid: 15107863
[10] Sonnante G D, Amore R, Blanco E, Pierri C L, Palma M, Luo J, Tucci M, Martin C. Novel hydroxycinnamoyl-coenzyme A quinate transferase genes from artichoke are involved in the synthesis of chlorogenic acid. Plant Physiol, 2010, 153: 1224-1238.
doi: 10.1104/pp.109.150144 pmid: 20431089
[11] Payyavula R S, Shakya R, Sengoda V G, Munyaneza J E, Swamy P, Navarre D A. Synthesis and regulation of chlorogenic acid in potato: rerouting phenylpropanoid flux in HQT-silenced lines. Plant Biotechnol J, 2015, 13: 551-564.
doi: 10.1111/pbi.12280 pmid: 25421386
[12] Chen Z X, Liu G H, Liu Y Q, Xian Z Q, Tang N. Overexpression of the LmHQT1 gene increases chlorogenic acid production in Lonicera macranthoides Hand-Mazz. Acta Physiol Plant, 2017, 39: 27.
[13] Yun J, Kim Y S, Jung J H, Seo P J, Park C M. The AT-hook motif-containing protein AHL22 regulates flowering initiation by modifying FLOWERING LOCUS T chromatin in Arabidopsis. J Biol Chem, 2012, 287: 15307-15316.
doi: 10.1074/jbc.M111.318477 pmid: 22442143
[14] Aravind L, Landsman D. AT-hook motifs identified in a wide variety of DNA-binding proteins. Nucleic Acids Res, 1998, 26: 4413-4421.
doi: 10.1093/nar/26.19.4413 pmid: 9742243
[15] Zhao J, Favero D S, Peng H, Neff M M. Arabidopsis thaliana AHL family modulates hypocotyl growth redundantly by interacting with each other via the PPC/DUF296 domain. Proc Natl Acad Sci USA, 2013, 110: E4688-E4697.
[16] Huth J R, Bewley C A, Nissen M S, Evans J N, Reeves R, Gronenborn A M, Clore G M. The solution structure of an HMG-I(Y)-DNA complex defines a new architectural minor groove binding motif. Nat Struct Biol, 1997, 4: 657-665.
doi: 10.1038/nsb0897-657 pmid: 9253416
[17] Xiao C, Chen F, Yu X, Lin C, Fu Y F. Over-expression of an AT-hook gene AHL22 delays flowering and inhibits the elongation of the hypocotyl in Arabidopsis thaliana. Plant Mol Biol, 2009, 71: 39-50.
[18] Zhang W M, Cheng X Z, Fang D, Cao J. AT-HOOK MOTIF NUCLEAR LOCALIZED (AHL) proteins of ancient origin radiate new functions. Int J Biol Macromol, 2022, 214: 290-300.
[19] Lim P O, Kim Y, Breeze E, Koo J C, Woo H R, Ryu J S, Park D H, Beynon J, Tabrett A, Buchanan-Wollaston V, Nam H G. Overexpression of a chromatin architecture-controlling AT-hook protein extends leaf longevity and increases the post-harvest storage life of plants. Plant J, 2007, 52: 1140-1153.
pmid: 17971039
[20] Wong M M, Bhaskara G B, Wen T N, Lin W D, Nguyen T T, Chong G L, Verslues P E. Phosphoproteomics of Arabidopsis highly ABA-induced1 identifies AT-Hook-Like10 phosphorylation required for stress growth regulation. Proc Natl Acad Sci USA, 2019, 116: 2354-2363.
doi: 10.1073/pnas.1819971116 pmid: 30670655
[21] Yadeta K A, Hanemian M, Smit P, Hiemstra J A, Pereira A, Marco Y, Thomma B P. The Arabidopsis thaliana DNA-binding protein AHL19 mediates Verticillium wilt resistance. Mol Plant-Microbe Interact, 2011, 24: 1582-1591.
[22] Wang L, Li T, Liu N, Liu X. Identification of tomato AHL gene families and functional analysis their roles in fruit development and abiotic stress response. Plant Physiol Biochem, 2023, 202: 107931.
[23] Kumar A, Singh S, Mishra A. Genome-wide identification and analyses of the AHL gene family in rice (Oryza sativa). 3 Biotech, 2023, 13: 248.
doi: 10.1007/s13205-023-03666-0 pmid: 37366497
[24] Zhou L, Liu Z, Liu Y, Kong D, Li T, Yu S, Mei H, Xu X, Liu H, Chen L, Luo L. A novel gene OsAHL1 improves both drought avoidance and drought tolerance in rice. Sci Rep, 2016, 6: 30264.
[1] LIU Yuan-Yuan, DONG Jian-Ke, YING Jing-Wen, MEI Wen-Xiang, CHENG Gang, GUO Jing-Jing, JIAO Wen-Biao, SONG Bo-Tao. Creating cold resistant germplasm of potato using Solanum boliviense [J]. Acta Agronomica Sinica, 2024, 50(6): 1384-1393.
[2] LIU Zhen, CHEN Li-Min, LI Zhi-Tao, ZHU Jin-Yong, WANG Wei-Lu, QI Zhe-Ying, YAO Pan-Feng, BI Zhen-Zhen, SUN Chao, BAI Jiang-Ping, LIU Yu-Hui. Genome-wide identification and expression analysis of ARM gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2024, 50(6): 1451-1466.
[3] SUN Yi-Ming, TIAN Xia, WANG Shao-Xia, LIU Qing. Effects of phosphorus application levels on selenium absorption, distribution, and transformation in sweet potatoes [J]. Acta Agronomica Sinica, 2024, 50(6): 1608-1615.
[4] ZHAO Na, LIU Yu-Xi, ZHANG Chao-Shu, SHI Ying. Transcriptomic analysis of differences in the starch content of different potatoes [J]. Acta Agronomica Sinica, 2024, 50(6): 1503-1513.
[5] YANG Chun-Ju, TANG Dao-Bin, ZHANG Kai, DU Kang, HUANG Hong, QIAO Huan-Huan, WANG Ji-Chun, LYU Chang-Wen. Effect of reducing nitrogen and potassium application on yield and quality in sweet potato [J]. Acta Agronomica Sinica, 2024, 50(5): 1341-1350.
[6] ZHU Xiao-Ya, ZHANG Qiang-Qiang, ZHAO Peng, LIU Ming, WANG Jing, JIN Rong, YU Yong-Chao, TANG Zhong-Hou. Transcriptome and metabolomic analysis of foliar spraying of Salvia miltiorrhiza carbon dots to alleviate low phosphorus stress in sweetpotato [J]. Acta Agronomica Sinica, 2024, 50(2): 383-393.
[7] LIU Jie, CAI Cheng-Cheng, LIU Shi-Feng, DENG Meng-Sheng, WANG Xue-Feng, WEN He, LI Luo-Pin, YAN Feng-Jun, WANG Xi-Yao. Function analysis of potato StCYP85A3 in promoting germination and root elongation [J]. Acta Agronomica Sinica, 2023, 49(9): 2462-2471.
[8] YANG Yi, HE Zhi-Qiang, LIN Jia-Hui, LI Yang, CHEN Fei, LYU Chang-Wen, TANG Dao-Bin, ZHOU Quan-Lu, WANG Ji-Chun. Effects of coconut bran application rate on soil physicochemical properties and sweet-potato yield [J]. Acta Agronomica Sinica, 2023, 49(9): 2517-2527.
[9] SU Yi-Jun, ZHAO Lu-Kuan, TANG Fen, DAI Xi-Bin, SUN Ya-Wei, ZHOU Zhi-Lin, LIU Ya-Ju, CAO Qing-He. Genetic diversity and population structure analysis of 378 introduced sweetpotato germplasm collections [J]. Acta Agronomica Sinica, 2023, 49(9): 2582-2593.
[10] JIA Rui-Xue, CHEN Yi-Hang, ZHANG Rong, TANG Chao-Chen, WANG Zhang-Ying. Simultaneous determination of 13 carotenoids in sweetpotato by Ultra- Performance Liquid Chromatography [J]. Acta Agronomica Sinica, 2023, 49(8): 2259-2274.
[11] ZHAO Xi-Juan, LIU Sheng-Xuan, LIU Teng-Fei, ZHENG Jie, DU Juan, HU Xin-Xi, SONG Bo-Tao, HE Chang-Zheng. Transcriptome analysis reveals the regulatory role of the transcription factor StMYB113 in light-induced chlorophyll synthesis of potato tuber epidermis [J]. Acta Agronomica Sinica, 2023, 49(7): 1860-1870.
[12] WANG Yan-Nan, CHEN Jin-Jin, BIAN Qian-Qian, HU Lin-Lin, ZHANG Li, YIN Yu-Meng, QIAO Shou-Chen, CAO Guo-Zheng, KANG Zhi-He, ZHAO Guo-Rui, YANG Guo-Hong, YANG Yu-Feng. Integrated analysis of transcriptome and metabolome reveals the metabolic response pathways of sweetpotato under shade stress [J]. Acta Agronomica Sinica, 2023, 49(7): 1785-1798.
[13] SUO Hai-Cui, LIU Ji-Tao, WANG Li, LI Cheng-Chen, SHAN Jian-Wei, LI Xiao-Bo. Functional analysis of StZIP12 in regulating potato Zn uptake [J]. Acta Agronomica Sinica, 2023, 49(7): 1994-2001.
[14] MEI Yu-Qin, LIU Yi, WANG Chong, LEI Jian, ZHU Guo-Peng, YANG Xin-Sun. Genome-wide identification and expression analysis of PHB gene family in sweet potato [J]. Acta Agronomica Sinica, 2023, 49(6): 1715-1725.
[15] ZHANG Xiao-Hong, PENG Qiong, YAN Zheng. Transcriptome sequencing analysis of different sweet potato varieties under salt stress [J]. Acta Agronomica Sinica, 2023, 49(5): 1432-1444.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[2] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[3] Hu Yuqi;Liao Xiaohai. A STUDY ON THE COEFFICIENT OF LEAVES SHAPE OF MAIZE[J]. Acta Agron Sin, 1986, (01): 71 -72 .
[4] WANG Cheng-Zhang;HAN Jin-Feng;SHI Ying-Hua;LI Zhen-Tian;LI De-Feng. Production Performance in Alfalfa with Different Classes of Fall Dormancy[J]. Acta Agron Sin, 2008, 34(01): 133 -141 .
[5] A JIA La-Tie;ZENG Long-Jun;XUE Da-Wei;HU Jiang;ZENG Da-Li;GAO Zhen-Yu;GUO Long-Biao;LI Shi-Gui;QIAN Qian
. QTL Analysis for Chlorophyll Content in Four Grain-Filling Stage in Rice[J]. Acta Agron Sin, 2008, 34(01): 61 -66 .
[6] SHAO Rui-Xin;SHANG-GUAN Zhou-Ping. Effects of Exogenous Nitric Oxide Donor Sodium Nitroprusside on Photosynthetic Pigment Content and Light Use Capability of PS II in Wheat under Water Stress[J]. Acta Agron Sin, 2008, 34(05): 818 -822 .
[7] ZHOU Lu-Ying;LI Xiang-Dong;WANG Li-Li;TANG Xiao;LIN Ying-Jie. Effects of Different Ca Applications on Physiological Characteristics, Yield and Quality in Peanut[J]. Acta Agron Sin, 2008, 34(05): 879 -885 .
[8] CHEN Guang-Yao;WANG Guo-Huai;LUO Feng;NIE Ming-Jian. Effects of Endogenous Hormones on Pre-harvest Sprouting in Siliqua of Rapeseed (Brassica napus L.)[J]. Acta Agron Sin, 2007, 33(08): 1324 -1328 .
[9] HE Liang;LI Fu-Hua;SHA Li-Na;FU Feng-Ling;LI Wan-Chen. Activity of Serine/Threonine Protein Phosphatase Type-2C (PP2C) and Its Relationships to Drought Tolerance in Maize[J]. Acta Agron Sin, 2008, 34(05): 899 -903 .
[10] LIU Shan-Shan;TIAN Fu-Dong;GAO Li-Hui;WANG Zhi-Kun;GE Yu-Jun;DIAO Gui-Zhu;LI Wen-Bin;. Effect of Subunit Composition of 7S Globulin on Soybean Quality Cha- racteristics[J]. Acta Agron Sin, 2008, 34(05): 909 -913 .