Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Effects of salt stress on yield, quality, and physiology in rapeseed

WANG Long, LI Jing, QIAN Chen, LIN Guo-Bing, LI Yi-Yang, YANG Guang, and ZUO Qing-Song*   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Cultivation and Physiology / Agricultural College, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2023-08-08 Revised:2024-01-12 Accepted:2024-01-12 Published:2024-02-08
  • Supported by:
    This study was supported by the Major Project of Basic Science (Natural Science) in Colleges and Universities in Jiangsu Province (21KJA210003), the Modern Agriculture Project in Yangzhou City, Jiangsu Province, China (YZ2022055), and the Open Project from Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology (YCSL201909).

Abstract:

The objective of this study is to investigate the effects of salt stress on seed yield, quality, and physiological processes in rapeseed. During rapeseed growing season from 2020 to 2022, two different  soil salinity levels of low soil salinity (LS) and high soil salinity (HS) were conducted for rapeseed planting in Dafeng city, Jiangsu province, China (33°24′N, 120°35′E). The results indicated that, compared with LS treatment, the biomass accumulation under HS treatment was decreased by 18.46%–35.67% at the early flowering stage, and 20.92%–46.03% at maturity stage, respectively. HS treatment increased the proportion of dry biomass distribution in roots and leaves and decreased the proportion of stem and branch distribution at the early flowering stage, and increased the proportion of root, stem, and branch distribution and decreased the proportion of pod and seed distribution at maturity stage. Moreover, compared with LS treatment, HS treatment decreased the accumulations of carbon (C) and nitrogen (N) in various organs at both early flowering and maturity stages, and decreased the efficiency of C and N translocation in stems, branches, and leaves at reproductive stage, indicating that salt stress inhibited C and N assimilation and translocation, and ultimately led to a decrease in seed yield. Besides, C/N in all organs under HS treatment was lower than that under LS treatment, indicating that the adverse effects of salt stress on C assimilation were more intensive than those on N assimilation, which resulted in the increased seed protein content and decreased oil content. In addition, compared with LS treatment, HS treatment decreased net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), and instantaneous carboxylation efficiency (CE); however, it increased intercellular CO2 concentration (Ci) and water use efficiency (WUE), which indicating that the effects of salt stress on rapeseed photosynthesis were mainly attributed to the non-stomatal factors. HS treatment increased peroxide (H2O2) and malondialdehyde (MDA) content by 27.41% and 42.33% compared with LS treatment. The superoxide (SOD) activity, catalase (CAT) activity, ascorbic acid (AsA) content, soluble protein content, and soluble sugar content under HS treatment were increased by 65.54%, 22.85%, 29.68%, 9.75%, and 16.84%, compared with LS treatment, respectively. In conclusion, salt stress decreased the yield and changed quality by inhibiting C and N assimilation and photosynthesis in rapeseed, which could improve the antioxidants and osmotic regulation ability to adapt to salt stress environment.

Key words: rapeseed, salt stress, C and N assimilation, physiology, yield and quality

[1] Shrivastava P, Kumar R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saud J Biol Sci, 2015, 22: 123–131.

[2] Jamil A, Riaz S, Ashraf M, Foolad M R. Gene expression profiling of plants under salt stress. Crit Rev Plant Sci, 2011, 30: 435–458.

[3] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40: 613–617.

Wang H Z. New-demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018, 40: 613–617 (in Chinese with English abstract).

[4] 王萌, 奚钊, 万楚筠, 陈文超, 万霞, 黄凤洪. 微生物发酵在菜籽饼粕饲用品质改良中的应用研究进展. 中国油料作物学报, 2020, 42: 313–324.

Wang M, Xi Z, Wan C Y, Chen W C, Wan X, Huang F H. Research progress on application of microbial fermentation in improving feed quality of rapeseed cake and meal. Chin J Oil Crop Sci, 2020, 42: 313–324 (in Chinese with English abstract).

[5] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价. 作物学报, 2022, 48: 1451–1462. 

Wang W N, Ge J Z, Yang H C, Yin F T, Huang T L, Kuai J, Wang J, Wang B, Zhou G S, Fu T D. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil. Acta Agron Sin, 2022, 48: 1451–1462 (in Chinese with English abstract).

[6] 刘晓, 刘晓红, 宋姝, 吕婉嘉, 杨新豪, 马云霞, 杨永青. 盐碱胁迫下植物体内离子平衡调控的机制. 植物生理学报, 2023, 59: 715–726.

Liu X, Liu X H, Song S, Lyu W J, Yang X H, Ma Y X, Yang Y Q. Regulation of ion homeostasis for salinity tolerance in plants. Plant Physiol J, 2023, 59: 715–726 (in Chinese with English abstract).

[7] 付海奇, 刘晓, 宋姝, 吕婉嘉, 杨永青. 次生代谢物调控植物抵抗盐碱胁迫的机制. 植物生理学报, 2023, 59: 727–740.

Fu H Q, Liu X, Song S, Lyu W J, Yang Y Q. Mechanisms of secondary metabolites regulating plant resistance to salinity and alkali stress. Plant Physiol J, 2023, 59: 727–740 (in Chinese with English abstract).

[8] 齐琪, 马书荣, 徐维东. 盐胁迫对植物生长的影响及耐盐生理机制研究进展. 分子植物育种, 2020, 18: 2741–2746.

Qi Q, Ma S R, Xu W D. Advances in the effects of salt stress on plant growth and physiological mechanisms of salt tolerance. Mol Plant Breed, 2020, 18: 2741–2746 (in Chinese with English abstract).

[9] Yang Y Q, Guo Y. Elucidating the molecular mechanisms mediating plant salt–stress responses. New Phytol, 2018, 217: 523–539.

[10] 蒋家慧. 氮肥运筹对小麦碳素同化、运转和产量的影响. 麦类作物学报, 2004, 24(3): 69–72.

Jiang J H. Effects of nitrogen application on carbon assimilation, transfer and yield of the wheat. J Triticeae Crops, 2004, 24(3): 69–72 (in Chinese with English abstract).

[11] Zhang C C, Zhou C Z, Burnap R L, Peng L. Carbon/nitrogen metabolic balance: lessons from cyanobacteria. Trends Plant Sci, 2018, 23: 1116–1130.

[12] Zuo Q S, Liu J Y, Shan J, Zhou J L, Wang L, Yang G, Leng S H, Liu H. Carbon and nitrogen assimilation and partitioning in canola (Brassica napus L.) in saline environment. Commun Soil Sci Plant Anal, 2019, 12: 1700–1709.

[13] 周晓瑾, 黄海霞, 张君霞, 马步东, 陆刚, 齐建伟, 张婷, 朱珠. 盐胁迫对裸果木幼苗光合特性的影响. 草业学报, 2023, 32(2): 75–83.

Zhou X J, Huang H X, Zhang J X, Ma B D, Lu G, Qi J W, Zhang T, Zhu Z. Effects of salt stress on photosynthetic characteristics of Gymnocarpos przewalskii seedlings. Acta Pratac Sin, 2023, 32(2): 75–83 (in Chinese with English abstract).

[14] 陈雪, 吉春容, 巴特尔·巴克, 胡启瑞, 杨明凤, 郭燕云, 刘爱琳. 膜下滴灌条件下棉花花铃期光合特征参数对干旱胁迫的响应. 中国农学通报, 2023, 39(19): 1–8.

Chen X, Ji C R, Bake B, Hu Q R, Yang M F, Guo Y Y, Liu A L. Response of photosynthetic characteristic parameters of cotton at flower and boll stages to drought stress under mulched drip irrigation. Chin Agric Sci Bull, 2023, 39(19): 1–8 (in Chinese with English abstract).

[15] Wang L, Zuo Q S, Zheng J D, You J J, Yang G, Leng S H. Salt stress decreases seed yield and postpones growth process of canola (Brassica napus L.) by changing nitrogen and carbon characters. Sci Rep, 2022, 12: 17884.

[16] 左青松, 蒯婕, 刘浩, 冯倩南, 刘婧怡, 丁立, 杨晨, 杨光, 周广生, 冷锁虎. 土壤盐分对油菜氮素积累、运转及利用效率的影响. 植物营养与肥料学报, 2017, 23: 827–833.

Zuo Q S, Kuai J, Liu H, Feng Q N, Liu J Y, Ding L, Yang C, Yang G, Zhou G S, Leng S H. Effects of soil salt content on accumulation, translocation and utilization efficiency of nitrogen in rapeseed. J Plant Nutr Fert, 2017, 23: 827–833 (in Chinese with English abstract).

[17] 刘浩, 左青松, 刘婧怡, 周佳琳, 丁立, 杨晨. 盐分浓度对油菜干物质积累分配、农艺性状及品质的影响. 中国农学通报, 2017, 33(22): 1923.

Liu H, Zuo Q S, Liu J Y, Zhou J L, Ding L, Yang C. Effects of salt-ion content on dry matter accumulation and distribution, agronomic traits and quality of rapeseed. Chin Agric Sci Bull, 2017, 33(22): 19–23 (in Chinese with English abstract).

[18] 谷晓博, 李援农, 杜娅丹, 任全茂, 吴国军, 银敏华. 施肥深度对冬油菜产量、根系分布和养分吸收的影响. 农业机械学报, 2016, 47(6): 120–128.

Gu X B, Li Y N, Du Y D, Ren Q M, Wu G J, Yin M H. Effects of fertilization depth on yield, root distribution and nutrient uptake of winter oilseed rape (Brassica napus L.). Trans CSAM, 2016, 47(6): 120–128 (in Chinese with English abstract).

[19] 税红霞, 汤天泽. 油菜器官与产量关系的研究进展. 安徽农学通报, 2007, 13(16): 111–113.

Shui H X, Tang T Z. Progress of study on relationship between organs and yield in rape. Anhui Agric Sci Bull, 2007, 13(16): 111–113 (in Chinese with English abstract).

[20] 李俊, 张春雷, 赵懿, 马霓, 余利平. 油菜短柄叶光合衰退及其对产量的影响. 中国油料作物学报, 2011, 33: 464–469.

Li J, Zhang C L, Zhao Y, Ma N, Yu L P. Short-stalk leaf photosynthesis declining and its effect on rapeseed yield. Chin J Oil Crop Sci, 2011, 33: 464–469 (in Chinese with English abstract).

[21] Farhangi-abriz S, Torabian S. Biochar improved nodulation and nitrogen metabolism of soybean under salt stress. Symbiosis, 2018, 74: 215–223.

[22] Guo L Y, Lu Y Y, Bao S Y, Zhang Q, Geng Y Q, Shao X W. Carbon and nitrogen metabolism in rice cultivars affected by salt–alkaline stress. Crop Pasture Sci, 2021, 72: 372–382.

[23] Siddiqui M H, Khan M N, Mohammad F, Khan M M A. Role of nitrogen and gibberellin (GA(3)) in the regulation of enzyme activities and in osmoprotectant accumulation in Brassica juncea L. under salt stress. J Agron Crop Sci, 2008, 194: 214–224.

[24] Gupta M, Bhaskar P B, Sriram S, Wang P H. Integration of omics approaches to understand oil/protein content during seed development in oilseed crops. Plant Cell Rep, 2017, 36: 637–652.

[25] Steppuhn H, Falk K C, Zhou R. Emergence, height, grain yield and oil content of camelina and canola grown in saline media. Can J Soil Sci, 2010, 90: 151–164.

[26] 龙卫华, 胡茂龙, 陈松, 高建芹, 浦惠明. 盐地种植对甘蓝型油菜产量和品质性状的影响. 江苏农业科学, 2015, 43(3): 85–87.

Long W H, Hu M L, Chen S, Gao J Q, Pu H M. Effects of soil salt on yield and quality in rapeseed. Jiangsu Agric Sci, 2015, 43(3): 85–87 (in Chinese with English abstract).

[27] Yang N M, Li S, Wang S L, Li Q, Xu F S, Shi L, Wang C, Ye X S, Cai H M, Ding G D. Dynamic transcriptome analysis indicates extensive and discrepant transcriptomic reprogramming of two rapeseed genotypes with contrasting NUE in response to nitrogen deficiency. Plant Soil, 2020, 456: 369–390.

[28] Batool M, El-badri A M, Zhou G S. Drought stress in Brassica napus: effects, tolerance mechanisms, and management strategies. J Plant Growth Regul, 2023, 42: 21–45.

[29] Moradi F, Ismail A M. Responses of photosynthesis, chlorophyll fluorescence and ROS–Scavenging systems to salt stress during seedling and reproductive stages in rice. Ann Bot, 2007, 99: 1161–1173.

[30] Biswas D K, Ma B L, Morrison M J. Changes in leaf nitrogen and phosphorus content, photosynthesis, respiration, growth, and resource use efficiency of a rapeseed cultivar as affected by drought and high temperatures. Can J Plant Sci, 2019, 99: 488–498.

[31] 刘自刚, 王志江, 方圆, 孙万仓, 袁金海, 米超, 方彦, 武军艳, 李学才. NaCl胁迫对白菜型冬油菜种子萌发和幼苗生理的影响. 中国油料作物学报, 2017, 39: 351–359.

Liu Z G, Wang Z J, Fang Y, Sun W C, Yuan J H, Mi C, Fang Y, Wu J Y, Li X C. Effect of salt stress on seed germination and seedling physiology of winter rapeseed (Brassica rape L.). Chin J Oil Crop Sci, 2017, 39: 351–359 (in Chinese with English abstract).

[32] 王鲲娇, 任涛, 陆志峰, 鲁剑巍. 不同镁供应浓度对油菜苗期生长和生理特性的影响. 中国农业科学, 2021, 54: 3198–3206.

Wang K J, Ren T, Lu Z F, Lu J W. Effects of different magnesium supplies on the growth and physiological characteristics of oilseed rape in seedling stage. Sci Agric Sin, 2021, 54: 3198–3206 (in Chinese with English abstract).

[33] He Y, Yu C L, Zhou L, Chen Y, Liu A, Jin J H, Hong J, Qi Y H, Jiang D A. Rubisco decrease is involved in chloroplast protrusion and Rubisco–containing body formation in soybean (Glycine max) under salt stress. Plant Physiol Biochem, 2014, 74: 118–124.

[34] 熊大斌, 曹玲珑, 李冬兵, 邓利, 尹钧, 牛洪斌. 脯氨酸对盐胁迫条件下大麦叶片Rubisco酶活性的影响. 河南农业大学学报, 2015, 49: 443–449.

Xiong D B, Cao L L, Li D B, Deng L, Yin J, Niu H B. Effect of proline on rubisco activity in barley leaves during salinity stress. J Henan Agric Univ, 2015, 49: 443–449 (in Chinese with English abstract).

[35] 张腾国, 胡馨丹, 李萍, 刁志宏, 王娟, 郑晟. 盐及低温胁迫对油菜ROS和抗氧化酶活性的影响. 兰州大学学报(自然科学版), 2019, 55: 497–505.

Zhang T G, Hu X D, Li P, Diao Z H, Wang J, Zheng S. Effects of low temperature and salt stress on the activity of ROS and antioxidant enzymes in Brassica campestris seedlings. J Lanzhou Univ(Nat Sci), 2019, 55: 497–505 (in Chinese with English abstract).

[36] 赖晶, 李巧丽, 张小花, 粱娟红, 张腾国. 外源ATP对盐胁迫下油菜幼苗生长的影响. 生态学杂志, 2020, 39: 1983–1993.

Lai J, Li Q L, Zhang X H, Liang J H, Zhang T G. Effects of exogenous ATP on the growth of Brassica campestris seedlings under salt stress. Chin J Ecol, 2020, 39: 1983–1993 (in Chinese with English abstract).

[1] GUO Jia-Xin, YE Yang, GUO Hui-Juan, MIN Wei. Effects and variability analysis of different salt and alkali stresses on the proteome of cotton leaves [J]. Acta Agronomica Sinica, 2024, 50(1): 219-236.
[2] YANG Chuang, WANG Ling, QUAN Cheng-Tao, YU Liang-Qian, DAI Cheng, GUO Liang, FU Ting-Dong, MA Chao-Zhi. Relative expression profiles of genes response to salt stress and constructions of gene co-expression networks in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(1): 237-250.
[3] XIAO Sheng-Hua, LU Yan, LI An-Zi, QIN Yao-Bin, LIAO Ming-Jing, BI Zhao-Fu, ZHUO Gan-Feng, ZHU Yong-Hong, ZHU Long-Fu. Function analysis of an AP2/ERF transcription factor GhTINY2 in cotton negatively regulating salt tolerance [J]. Acta Agronomica Sinica, 2024, 50(1): 126-137.
[4] XU Yang, ZHANG Dai, KANG Tao, WEN Sai-Qun, ZHANG Guan-Chu, DING Hong, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of salt stress on ion dynamics and the relative expression level of salt tolerance genes in peanut seedlings [J]. Acta Agronomica Sinica, 2023, 49(9): 2373-2384.
[5] DAI Shu-Tao, ZHU Can-Can, MA Xiao-Qian, QIN Na, SONG Ying-Hui, WEI Xin, WANG Chun-Yi, LI Jun-Xia. Genome-wide identification of the HAK/KUP/KT potassium transporter family in foxtail millet and its response to K+ deficiency and high salt stress [J]. Acta Agronomica Sinica, 2023, 49(8): 2105-2121.
[6] YAN Jin-Yao, SONG Yi, LU Zhi-Feng, REN Tao, LU Jian-Wei. Effect of phosphorus fertilizer rate on rapeseed yield and quality (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1668-1677.
[7] YU Xin-Ying, WANG Chun-Yun, LI Da-Shuang, WANG Zong-Kai, KUAI Jie, WANG Bo, WANG Jing, XU Zheng-Hua, ZHOU Guang-Sheng. Formation mechanism of yield stability in high-yielding rapeseed varieties [J]. Acta Agronomica Sinica, 2023, 49(6): 1601-1615.
[8] ZHANG Xiao-Hong, PENG Qiong, YAN Zheng. Transcriptome sequencing analysis of different sweet potato varieties under salt stress [J]. Acta Agronomica Sinica, 2023, 49(5): 1432-1444.
[9] FU Jing, WANG Ya, YANG Wen-Bo, WANG Yue-Tao, LI Ben-Yin, WANG Fu-Hua, WANG Sheng-Xuan, BAI Tao, YIN Hai-Qing. Effects of alternate wetting and drying irrigation and nitrogen coupling on grain filling physiology and root physiology in rice [J]. Acta Agronomica Sinica, 2023, 49(3): 808-820.
[10] FANG Ya-Ting, REN Tao, ZHANG Shun-Tao, ZHOU Xiang-Qi, ZHAO Jian, LIAO Shi-Peng, CONG Ri-Huan, LU Jian-Wei. Different effects of nitrogen, phosphorus and potassium fertilizers on oilseed rape yield and nutrient utilization between continuous upland and paddy-upland rotations [J]. Acta Agronomica Sinica, 2023, 49(3): 772-783.
[11] ZHANG Wen-Xuan, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome editing of BnaMPK6 gene by CRISPR/Cas9 for loss of salt tolerance in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(2): 321-331.
[12] NING Ning, MO Jiao, HU Bing, LI Da-Shuang, LOU Hong-Xiang, WANG Chun-Yun, BAI Chen-Yang, KUAI Jie, WANG Bo, WANG Jing, XU Zheng-Hua, LI Xiao-Hua, JIA Cai-Hua, ZHOU Guang-Sheng. Comparative study on the processing quality of winter rape in different ecological zones of the Yangtze River valley [J]. Acta Agronomica Sinica, 2023, 49(12): 3315-3327.
[13] YE Xiao-Lei, GENG Guo-Tao, XIAO Guo-Bin, LYU Wei-Sheng, REN Tao, LU Zhi-Feng, LU Jian-Wei. Effects of magnesium application rate on yield and quality in oilseed rape (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(11): 3063-3073.
[14] GONG Ruo-Lin, SONG Bo, YANG Zhi-Ye, LU Li-Jing, DONG Jun-Gang. Effects of sowing date and density on lodging resistance and yield of different rapeseed cultivars [J]. Acta Agronomica Sinica, 2023, 49(10): 2777-2792.
[15] LIU Kun, HUANG Jian, ZHOU Shen-Qi, ZHANG Wei-Yang, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of panicle nitrogen fertilizer rates on grain yield in super rice varieties with different panicle sizes and their mechanism [J]. Acta Agronomica Sinica, 2022, 48(8): 2028-2040.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!