Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (5): 1271-1286.doi: 10.3724/SP.J.1006.2024.34134

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of seed soaking with exogenous substances on late-seeded rapeseed cold resistance of during overwintering period and yield

WANG Xian-Ling(), JIANG Yue, LEI Yi-Zhong, XIAO Sheng-Nan, SHE Hui-Jie, DUAN Sheng-Xing, HUANG Ming, KUAI Jie, WANG Bo, WANG Jing, ZHAO Jie, XU Zheng-Hua*(), ZHOU Guang-Sheng   

  1. College of Plant Science and Technology, Huazhong Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System for the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
  • Received:2023-08-05 Accepted:2024-01-12 Online:2024-05-12 Published:2024-02-09
  • Contact: E-mail: xzh@mail.hzau.edu.cn
  • Supported by:
    Key Research and Development Plan of Hubei Province(2023BBB028);China Agriculture Research System of MOF and MARA(CARS-12)

Abstract:

In double-cropping rice areas in the Yangtze River Basin (YRB), ensuring the yield of late-seeded rapeseed is essential to reduce the winter fallow fields. Additionally, promoting the accumulation of dry matter before winter and improving cold resistance during the overwintering period are effective ways to increase the yield of late-seeded rapeseed. Soaking seeds with exogenous substances is an effective measure to improve the cold resistance during the overwintering period and promote the rapid growth before winter. In this experiment, the early maturing rapeseed variety Huayouza 137 was selected, while soaking-seed treatments of water (CK); 0.01 mmol L-1, 0.05 mmol L-1, 0.10 mmol L-1 betaine (T1-1, T1-2, T1-3); 0.1 mmol L-1, 0.5 mmol L-1, 1.0 mmol L-1 proline (T2-1, T2-2, T2-3); 0.03%, 0.15%, 0.30% hydrogen peroxide (T3-1, T3-2, T3-3); 0.001 mmol L-1, 0.01 mmol L-1, 0.05 mmol L-1 malic acid (T4-1, T4-2, T4-3); 25 mg L-1, 100 mg L-1, 300 mg L-1 nano zinc oxide (T5-1, T5-2, T5-3); 0.5 mmol L-1, 1.0 mmol L-1 polyamines (T6-1, T6-2) were conducted between 2021 and 2023 rapeseed growing season. We studied the effects of soaking seeds with different exogenous substances and their levels on the cold resistance in winter and yield of late-seeded rapeseed. The results showed that the different exogenous substances and their levels of soaking seeds affected the germination rate of late-seeded rapeseed, and part of them, such as T3-3, T4-2, and T5-3, significantly increased by 19.2%, 15.3%, and 17.3% versus CK. Soaking seeds with some exogenous substances significantly improved the cold resistance of late-seeded rapeseed in winter. On the one hand, the activities of peroxidase, catalase, and the content of glutathione were improved, and the contents of hydrogen peroxide, active oxygen and MDA reduced; on the other hand, the contents of soluble sugar, proline, malic acid, polyamine, and mannitol were increased; at the same time, the content of membrane cold response protein kinase was increased. The increase of leaf cold resistance was beneficial to the accumulation of leaf biomass and the increase of effective branches and pod number per plant, thus promoting yield. In addition, 9 positive and 3 negative cold resistance indicators were comprehensively evaluated. The results showed that the two-year average yield ranking and the comprehensive evaluation value ranking of cold resistance were basically the same over the two years. While the soaking-seed treatments with the best yield and cold resistance were T5-3, T5-2, T2-3, and T1-2. These results of this study provide theoretical and technical support for the cultivation of late-seeded rapeseed seedlings before winter and the improvement of cold resistance in the YRB, and provide a basis for the stress resistance and stable production of late-seeded rapeseed and the development and utilization of winter fallow fields.

Key words: rapeseed, late-seeded, cold resistance, exogenous substance, soaking seeds

Table 1

Different exogenous substances and concentrations used for soaking late-seeded rapeseed"

浓度
Concentration
对照
Contrast
(CK)
甜菜碱
Betaine
(T1)
脯氨酸
Proline
(T2)
过氧化氢
Hydrogen peroxide (T3)
苹果酸
Malic acid
(T4)
氧化纳米锌
Nano zinc oxide
(T5)
多胺
Polyamine
(T6)
浓度-1
Concentration-1
0.01 mmol L-1 0.1 mmol L-1 0.03% 0.001 mmol L-1 25 mg L-1 0.5 mmol L-1
浓度-2
Concentration-2
0.05 mmol L-1 0.5 mmol L-1 0.15% 0.01 mmol L-1 100 mg L-1 1.0 mmol L-1
浓度-3
Concentration-3
0.10 mmol L-1 1.0 mmol L-1 0.30% 0.05 mmol L-1 300 mg L-1

Fig. 1

Main meteorological factors in 2021-2022 growing season (a) and in 2022-2023 growing season (b) Tmin and Tmax represent the daily minimum temperature and the daily maximum temperature, respectively."

Fig. 2

Effects of soaking seeds with different exogenous substances on the emergence rate of late-seeded rapeseed in the growing seasons of 2021-2022 (a) and 2022-2023 (b) Different lowercase letters indicate that there is significant difference between different seed soaking treatments with different exogenous substances (P < 0.05). Treatments are the same as those given in Table 1."

Table 2

Effects of soaking seeds with different exogenous substances on yield and yield components of late-seeded rapeseed"

年份
Year
外源物质
Exogenous
substance
浓度
Concentration
单株角果数
Pod number per plant
每角粒数
Seed number per pod
千粒重1000-seed weight (g) 单株产量
Yield
per plant (g)
成株率Survival rate (%) 产量
Yield
(kg hm-2)
2021-
2022
对照CK CK 128.7 ef 17.40 bc 3.55 ab 7.95 bc 45.27 d 2347.1 gh
甜菜碱
Betaine (T1)
T1-1 125.1 ef 17.84 a 3.40 abc 7.61 bc 47.56 bcd 2112.9 i
T1-2 145.8 cde 17.31 c 3.60 a 9.09 ab 46.95 bcd 2558.7 abc
T1-3 146.3 cde 17.68 ab 3.44 abc 8.89 abc 47.33 bcd 2549.6 abc
脯氨酸
Proline (T2)
T2-1 139.8 cdef 17.66 ab 3.51 abc 8.66 abc 47.18 bcd 2563.1 abc
T2-2 178.7 a 17.48 abc 3.37 bc 10.53 a 49.68 abc 2571.5 abc
T2-3 163.4 abc 17.42 bc 3.43 abc 9.75 ab 49.81 abc 2591.8 abc
过氧化氢
Hydrogen
peroxide (T3)
T3-1 114.5 f 17.34 bc 3.45 abc 6.87 c 49.82 abc 1771.8 j
T3-2 126.7 ef 17.69 ab 3.52 abc 7.89 bc 47.17 bcd 2321.5 h
T3-3 134.1 def 17.46 abc 3.34 c 7.83 bc 47.58 bcd 2430.2 efg
苹果酸
Malic acid (T4)
T4-1 136.1 def 17.26 c 3.47 abc 8.13 bc 49.65 abc 2444.2 ef
T4-2 141.5 cdef 17.38 bc 3.48 abc 8.57 abc 49.92 abc 2451.6 def
T4-3 138.4 cdef 17.66 ab 3.51 abc 8.56 abc 44.65 d 2419.8 fg
氧化纳米锌
Nano zinc oxide (T5)
T5-1 159.8 abcd 17.32 bc 3.48 abc 9.66 ab 45.74 cd 2536.1 bcd
T5-2 163.8 abc 17.53 abc 3.34 c 9.60 ab 52.43 a 2603.6 ab
T5-3 171.7 ab 17.45 abc 3.51 abc 10.52 a 50.00 ab 2635.1 a
多胺
Polyamine (T6)
T6-1 148.8 bcde 17.39 bc 3.44 abc 8.90 abc 47.21 bcd 2451.3 def
T6-2 135.1 def 17.67 ab 3.44 abc 8.20 bc 47.15 bcd 2510.4 cde
2022-
2023
对照CK CK 126.0 de 17.19 b 3.54 ab 7.66 cde 47.09 ab 2280.0 e
甜菜碱
Betaine (T1)
T1-1 122.0 de 17.44 ab 3.37 bc 7.20 de 50.45 a 2050.5 f
T1-2 139.4 cd 17.73 a 3.58 a 8.85 abcd 48.46 ab 2508.4 a
T1-3 141.9 bcd 17.67 a 3.33 bc 8.37 bcde 45.45 ab 2449.9 abcd
脯氨酸
Proline (T2)
T2-1 133.0 d 17.16 b 3.47 abc 7.90 cde 50.05 ab 2482.5 abc
T2-2 174.2 a 17.52 ab 3.45 abc 10.54 a 46.19 ab 2488.5 ab
T2-3 160.7 abc 17.62 ab 3.31 c 9.38 abc 48.96 ab 2532.2 a
2022-
2023
过氧化氢
Hydrogen
peroxide (T3)
T3-1 108.3 e 17.44 ab 3.50 ab 6.62 e 46.27 ab 1671.1 g
T3-2 123.7 de 17.64 ab 3.50 ab 7.63 cde 46.81 ab 2261.2 e
T3-3 129.4 de 17.74 a 3.30 c 7.56 cde 48.36 ab 2366.2 bcde
苹果酸
Malic acid (T4)
T4-1 129.5 de 17.39 ab 3.53 ab 7.97 cde 47.89 ab 2355.1 de
T4-2 134.1 d 17.56 ab 3.53 ab 8.33 bcde 47.61 ab 2359.4 cde
T4-3 134.7 d 17.57 ab 3.48 abc 8.21 bcde 49.18 ab 2339.2 de
氧化纳米锌
Nano zinc oxide (T5)
T5-1 157.2 abc 17.37 ab 3.45 abc 9.44 abc 50.37 ab 2453.1 abcd
T5-2 159.2 abc 17.48 ab 3.48 abc 9.70 abc 47.66 ab 2525.9 a
T5-3 164.1 ab 17.55 ab 3.52 ab 10.14 ab 47.83 ab 2575.0 a
多胺
Polyamine (T6)
T6-1 146.8 bcd 17.44 ab 3.44 abc 8.81 abcd 48.40 ab 2358.4 cde
T6-2 129.6 de 17.36 ab 3.51 abc 7.89 cde 45.10 b 2454.8 abcd
方差分析 ANOVA
年份 Year * ns ns ns ns **
处理 Treatment ** ns ns ** ns **
年份×处理 Year×Treatment ns ns ns ns ns ns

Table 3

Effects of soaking seeds with different exogenous substances on key agronomic characters of late-seeded rapeseed at maturity"

年份
Year
外源物质
Exogenous
substance
浓度
Concentration
株高
Plant
height (cm)
有效分枝数Effective branch number 根颈粗
Root-crown
diameter (mm)
地上部干重
Shoot
biomass (g)
抗折力
Bending
resistance (N)
2021-2022 对照CK CK 164.1 ab 4.6 bcd 10.8 bcd 23.6 abc 79.2 g
甜菜碱
Betaine (T1)
T1-1 171.5 ab 4.5 bcd 11.4 abcd 22.6 bc 64.2 h
T1-2 170.8 ab 5.9 a 10.0 d 29.7 abc 96.4 cd
T1-3 168.6 ab 5.6 abc 11.9 abcd 29.7 abc 95.4 cd
2021-2022 脯氨酸
Proline (T2)
T2-1 174.6 a 5.6 ab 12.1 abc 30.0 abc 96.4 cd
T2-2 164.2 ab 5.1 abcd 11.1 abcd 30.7 ab 91.8 de
T2-3 170.4 ab 5.4 abcd 12.7 ab 31.1 ab 115.6 a
过氧化氢
Hydrogen
peroxide (T3)
T3-1 166.8 ab 4.8 abcd 11.4 abcd 20.7 c 82.4 efg
T3-2 172.3 ab 5.3 abcd 12.8 a 23.5 abc 91.6 de
T3-3 157.8 b 5.2 abcd 11.1 abcd 24.7 abc 102.2 bc
苹果酸
Malic acid (T4)
T4-1 173.1 a 5.5 abc 12.5 ab 24.8 abc 81.4 fg
T4-2 166.9 ab 4.9 abcd 12.2 abc 26.3 abc 94.4 cd
T4-3 169.6 ab 4.7 bcd 10.5 cd 24.7 abc 92.6 cd
氧化纳米锌
Nano zinc oxide (T5)
T5-1 170.5 ab 4.4 cd 11.1 abcd 29.1 abc 81.4 fg
T5-2 170.3 ab 4.2 d 10.5 cd 32.4 a 94.4 cd
T5-3 166.3 ab 4.3 d 11.2 abcd 32.5 a 92.6 cd
多胺
Polyamine (T6)
T6-1 173.7 a 5.5 abc 12.2 abc 27.2 abc 107.0 ab
T6-2 170.8 ab 4.8 abcd 11.1 abcd 27.6 abc 89.4 def
2022-2023 对照CK CK 166.3 ab 4.8 bcd 10.4 abc 22.6 abc 69.2 g
甜菜碱
Betaine (T1)
T1-1 164.6 ab 4.4 d 10.3 bc 22.2 abc 54.2 h
T1-2 172.0 ab 4.5 cd 11.0 abc 20.9 bc 86.4 bcd
T1-3 171.4 ab 6.0 a 9.4 c 29.0 ab 85.4 cd
脯氨酸
Proline (T2)
T2-1 169.1 ab 5.7 abc 11.2 abc 28.7 ab 86.4 bcd
T2-2 175.0 a 5.7 ab 11.5 ab 28.6 ab 81.8 de
T2-3 164.7 ab 5.2 abcd 10.6 abc 30.8 a 95.6 ab
过氧化氢
Hydrogen
peroxide (T3)
T3-1 171.0 ab 5.5 abcd 12.3 a 29.5 ab 72.4 efg
T3-2 166.9 ab 4.9 abcd 10.5 abc 19.4 c 81.6 de
T3-3 172.5 ab 5.4 abcd 12.1 ab 22.5 abc 92.2 abc
苹果酸
Malic acid (T4)
T4-1 158.3 b 5.3 abcd 10.7 abc 23.9 abc 71.4 fg
T4-2 173.7 ab 5.6 abc 11.8 ab 23.7 abc 84.4 cd
T4-3 167.4 ab 4.9 abcd 11.6 ab 25.7 abc 82.6 cd
氧化纳米锌
Nano zinc oxide (T5)
T5-1 170.2 ab 4.8 abcd 10.1 bc 23.7 abc 71.4 fg
T5-2 170.9 ab 4.5 cd 10.3 bc 28.0 abc 84.4 cd
T5-3 170.5 ab 4.3 d 10.2 bc 27.9 abc 82.6 cd
多胺
Polyamine (T6)
T6-1 166.9 ab 4.3 d 10.6 abc 31.6 a 97.0 a
T6-2 174.4 a 5.6 abc 11.7 ab 25.7 abc 79.4 def
方差分析 ANOVA
年份 Year ns ns ** ns **
处理 Treatment ns ** ns ** **
年份×处理 Year×Treatment ** ns ** ns ns

Table 4

Effects of soaking seeds with different exogenous substances on key agronomic characters and leaf biomass of late-seeded rapeseed during wintering period"

年份
Year
外源物质
Exogenous
substance
浓度
Concentration
株高
Plant
Height (cm)
根长
Root
length (cm)
根颈粗
Root-crown
diameter (mm)
叶面积
Leaf
area (cm2)
叶片生物量
Leaf
biomass (g)
2021-
2022
对照CK CK 22.4 b 12.2 abc 2.80 cde 436.6 de 1.24 gh
甜菜碱
Betaine (T1)
T1-1 21.8 bc 11.9 bc 2.71 de 423.6 e 1.13 h
T1-2 21.0 bc 13.4 abc 3.43 abcd 487.9 bcde 1.63 cd
T1-3 21.0 bc 12.8 abc 3.37 abcde 481.1 bcde 1.55 de
脯氨酸
Proline (T2)
T2-1 20.1 bc 14.1 a 3.57 abc 498.3 bcd 1.71 bc
T2-2 20.8 bc 12.8 abc 3.58 abc 506.9 bc 1.73 bc
T2-3 21.6 bc 12.9 abc 3.63 abc 507.1 bc 1.82 ab
过氧化氢
Hydrogen
peroxide (T3)
T3-1 21.4 bc 12.6 abc 2.57 e 326.0 f 0.77 i
T3-2 21.7 bc 13.3 abc 2.80 cde 426.2 e 1.24 gh
T3-3 22.0 bc 12.9 abc 2.99 bcde 448.7 cde 1.38 efg
苹果酸
Malic acid (T4)
T4-1 23.9 a 12.6 abc 3.07 abcde 460.6 cde 1.41 ef
T4-2 20.2 bc 13.1 abc 3.14 abcde 470.7 cde 1.46 e
T4-3 21.4 bc 11.9 bc 2.91 bcde 446.2 cde 1.27 fgh
氧化纳米锌
Nano zinc oxide (T5)
T5-1 19.6 c 12.7 abc 3.27 abcde 476.0 bcde 1.49 e
T5-2 20.6 bc 13.6 abc 3.69 ab 537.0 ab 1.89 a
T5-3 21.1 bc 14.0 ab 3.84 a 571.7 a 1.93 a
多胺
Polyamine (T6)
T6-1 20.7 bc 12.0 abc 3.10 abcde 470.1 cde 1.43 e
T6-2 20.8 bc 11.4 c 3.23 abcde 473.3 bcde 1.48 e
2022-
2023
对照CK CK 22.3 ab 12.4 bc 2.95 abc 435.7 cd 1.16 de
甜菜碱
Betaine (T1)
T1-1 21.3 abc 12.3 bc 2.84 bc 413.6 d 1.02 e
T1-2 20.3 bcd 14.3 abc 3.49 abc 481.2 bcd 1.46 bc
T1-3 20.8 bcd 13.2 abc 3.50 abc 473.0 bcd 1.49 bc
脯氨酸
Proline (T2)
T2-1 19.5 cd 14.9 a 3.68 abc 488.9 bc 1.63 ab
T2-2 20.1 bcd 13.5 abc 3.78 ab 501.6 bc 1.61 ab
T2-3 21.2 abcd 13.2 abc 3.73 ab 493.5 bc 1.72 a
过氧化氢
Hydrogen
peroxide (T3)
T3-1 21.0 bcd 13.1 abc 2.73 c 318.5 e 0.69 f
T3-2 21.4 abc 13.5 abc 2.89 bc 416.8 d 1.16 de
T3-3 21.5 abc 13.3 abc 3.17 abc 439.9 cd 1.21 de
苹果酸
Malic acid (T4)
T4-1 23.1 a 12.8 abc 3.16 abc 446.5 cd 1.29 cd
T4-2 20.0 bcd 13.6 abc 3.22 abc 454.9 bcd 1.34 cd
T4-3 20.9 bcd 12.5 bc 3.08 abc 438.0 cd 1.15 de
氧化纳米锌
Nano zinc oxide (T5)
T5-1 18.9 d 13.2 abc 3.33 abc 471.3 bcd 1.38 cd
T5-2 20.3 bcd 14.0 abc 3.79 ab 521.2 ab 1.75 a
T5-3 20.9 bcd 14.4 ab 3.93 a 559.9 a 1.77 a
多胺
Polyamine (T6)
T6-1 20.2 bcd 12.3 bc 3.23 abc 459.1 bcd 1.32 cd
T6-2 20.4 bcd 12.0 c 3.41 abc 464.8 bcd 1.32 cd
方差分析 ANOVA
年份 Year ** ** * ns **
处理 Treatment ** ** ** ** **
年份×处理 Year×Treatment ns ns ns ns ns

Fig. 3

Correlation analysis of yield and (a) root-crown diameter, (b) leaf area, and (c) leaf biomass in the late-seeded rapeseed during wintering period ***: P<0.001."

Table 5

Effects of soaking seeds with different exogenous substances on active oxygen and antioxidant system in leaves of late-seeded rapeseed during wintering period"

外源物质
Exogenous
substance
浓度
Concentration
MDA
(nmol g-1)
H2O2
(μmol g-1)
O2-
(μg g-1)
·OH
(ng g-1)
SOD
(U)
POD
(U)
CAT
(U)
APX
(U)
对照CK CK 184.3 a 0.983 b 5.56 b 7.37 a 1730.1 g 2.64 def 589.3 d 0.86 e
甜菜碱
Betaine (T1)
T1-1 190.2 a 1.014 b 6.29 a 7.85 a 1727.4 g 2.48 f 569.8 d 1.17 cd
T1-2 121.7 cde 0.682 cd 5.48 bc 5.08 cd 2463.3 cd 3.52 bc 968.2 b 1.10 d
T1-3 128.6 cd 0.741 c 4.95 bcde 5.24 c 2319.4 cde 3.41 c 937.1 b 0.94 e
脯氨酸
Proline (T2)
T2-1 116.6 cde 0.614 d 4.74 cde 4.69 cde 2485.1 cd 3.72 abc 969.1 b 0.91 e
T2-2 115.8 cde 0.589 d 5.33 bc 4.69 cde 2585.5 c 3.80 ab 982.7 b 1.35 ab
T2-3 115.3 cde 0.589 d 4.49 def 4.67 cde 2938.6 b 3.83 ab 1002.2 b 1.43 a
过氧化氢
Hydrogen
peroxide (T3)
T3-1 192.8 a 1.123 a 4.43 ef 7.96 a 1091.9 h 1.59 g 561.1 d 0.85 e
T3-2 185.4 a 1.002 b 3.94 f 7.40 a 1730.1 g 2.56 ef 589.3 d 0.98 e
T3-3 177.9 a 0.968 b 5.18 bcd 7.16 a 1855.0 fg 2.84 def 681.6 cd 0.97 e
苹果酸
Malic acid (T4)
T4-1 157.3 b 0.937 b 3.97 f 6.37 b 1998.9 efg 2.93 de 740.8 c 1.26 bc
T4-2 155.3 b 0.918 b 6.17 a 6.29 b 2069.6 defg 2.95 de 772.9 c 1.12 cd
T4-3 183.3 a 0.969 b 4.60 def 7.25 a 1768.1 fg 2.69 def 613.5 d 0.95 e
氧化纳米锌
Nano zinc oxide (T5)
T5-1 134.2 c 0.773 c 5.50 bc 5.27 c 2210.8 cdef 3.08 d 917.6 b 0.98 e
T5-2 108.1 de 0.570 d 6.45 a 4.30 de 3047.2 ab 4.00 a 1013.8 b 1.15 cd
T5-3 105.4 e 0.561 d 6.23 a 4.14 e 3313.4 a 4.11 a 1122.6 a 0.90 e
多胺
Polyamine (T6)
T6-1 138.5 c 0.891 b 5.33 bc 6.19 b 2199.9 cdef 3.00 de 780.6 c 1.21 cd
T6-2 135.2 c 0.781 c 4.77 cde 5.44 c 2191.8 cdef 3.00 de 891.4 b 1.15 cd

Table 6

Effects of soaking seeds with different exogenous substances on non-enzymatic scavenging system in late-seeded rapeseed leaves during wintering period"

外源物质
Exogenous substance
浓度
Concentration
抗坏血酸
ASA (μmol g-1)
类胡萝卜素
Carnosine (pmol g-1)
谷胱甘肽
GSH (mg g-1)
对照CK CK 6.91 b 1.22 def 4.06 d
甜菜碱
Betaine (T1)
T1-1 5.76 c 1.19 ef 3.46 e
T1-2 9.13 a 1.03 gh 4.88 bc
T1-3 7.14 b 0.96 h 4.84 bc
脯氨酸
Proline (T2)
T2-1 7.66 b 1.17 f 5.07 ab
T2-2 5.57 c 1.53 ab 5.14 ab
T2-3 9.42 a 1.29 cde 5.23 ab
过氧化氢
Hydrogen peroxide (T3)
T3-1 8.88 a 1.10 fg 3.28 e
T3-2 8.73 a 1.12 fg 3.47 e
T3-3 6.86 b 1.33 cd 4.34 cd
苹果酸
Malic acid (T4)
T4-1 5.90 c 1.37 c 4.37 cd
T4-2 5.51 c 1.29 cde 4.44 cd
T4-3 7.22 b 1.51 ab 4.11 d
氧化纳米锌
Nano zinc oxide (T5)
T5-1 7.31 b 1.35 cd 4.83 bc
T5-2 8.65 a 1.42 bc 5.48 a
T5-3 5.84 c 1.30 cde 5.56 a
多胺
Polyamine (T6)
T6-1 6.86 b 1.38 c 4.79 bc
T6-2 9.77 a 1.56 a 4.81 bc

Table 7

Effects of soaking seeds with different exogenous substances on osmotic adjustment substances in leaves of late-seeded rapeseed during wintering period"

外源物质
Exogenous
substance
浓度
Concentration
可溶性糖
Soluble sugar
(mg g-1)
脯氨酸
Proline
(ng g-1)
苹果酸
Malate
(μg g-1)
甜菜碱
Betaine
(pg g-1)
多胺
Polyamine
(mg g-1)
甘露醇
Mannitol
(ng g-1)
对照CK CK 4.28 k 268.5 b 3.71 f 398.6 cd 5.69 ef 126.7 e
甜菜碱
Betaine (T1)
T1-1 4.11 l 211.7 c 3.40 f 475.9 ab 5.45 ef 125.0 e
T1-2 5.15 ef 319.3 a 5.03 bcd 365.0 cde 9.24 ab 181.8 bcd
T1-3 5.13 ef 308.8 a 4.82 cd 523.3 a 8.99 abc 177.6 bcd
脯氨酸
Proline (T2)
T2-1 5.27 d 318.0 a 5.06 bcd 319.2 e 9.31 ab 184.4 bcd
T2-2 5.23 de 321.8 a 5.17 bc 338.5 de 9.71 a 186.4 bc
T2-3 5.39 c 318.7 a 5.42 bc 383.0 cde 9.32 ab 187.9 bc
过氧化氢
Hydrogen
peroxide (T3)
T3-1 4.05 l 256.6 b 2.89 g 488.2 ab 5.01 f 70.4 f
T3-2 4.27 k 303.8 a 3.48 f 492.7 ab 5.52 ef 125.5 e
T3-3 4.42 j 264.7 b 3.78 f 483.7 ab 5.97 ef 159.2 cd
苹果酸
Malic acid (T4)
T4-1 4.55 i 215.0 c 3.81 f 354.4 de 6.10 ef 161.4 cd
T4-2 4.72 h 253.0 b 4.06 ef 473.0 ab 7.91 d 162.9 cd
T4-3 4.41 j 267.7 b 3.67 f 325.8 e 5.79 ef 153.6 d
氧化纳米锌
Nano zinc oxide (T5)
T5-1 5.04 f 300.0 a 4.77 cd 388.4 cde 8.12 cd 177.1 bcd
T5-2 5.60 b 330.9 a 5.59 ab 428.4 bc 10.02 a 201.8 ab
T5-3 6.31 a 322.8 a 6.00 a 369.1 cde 10.04 a 215.5 a
多胺
Polyamine (T6)
T6-1 4.84 g 323.3 a 4.15 ef 513.9 a 6.61 e 165.8 cd
T6-2 5.04 f 264.7 b 4.45 de 512.7 a 8.45 bcd 168.7 cd

Fig. 4

Effects of soaking seeds with different exogenous substances on membrane cold response protein kinase and Ca2+ channel protein of late-seeded rapeseed during wintering period Different lowercase letters indicate significant difference between different seed soaking treatments with different exogenous substances at P < 0.05. MRPK: the membrane-associated cold response protein kinase; VGCC: Ca2+ channel protein. Treatments are the same as those given in Table 1."

Fig. 5

Principal component analysis of physiological indexes of cold resistance Y: yield; LA: leaf area; LB: leaf biomass; POD: peroxidase; SOD: superoxide dismutase; CAT: catalase; GSH: glutathione; MRPK: membrane-associated cold response protein kinase; Mal: malic acid; Pol: polyamine; Man: mannitol; ASA: ascorbic acid; Car: carotenoids; O2?-: superoxide anion radical; SS: soluble sugar; Pro: proline; Bet: betaine; VGCC: Ca2+ channel protein; APX: ascorbate peroxidase; H2O2: hydrogen peroxide; ?OH: hydroxyl radical; MDA: malondialdehyde."

Table 8

Ranking results of Topsis comprehensive evaluation of cold resistance and average yield of late-seeded rapeseed seeds soaking with exogenous substances"

外源物质
Exogenous
substance
评价对象
Evaluation
object
正理想解距离D+
Positive ideal solution distance D+
负理想解距离D- Negative ideal solution distance D- 相对接近度C Relative
proximity C
排序结果Sorting
result
平均产量排序结果
Average yield
Sorting result
对照CK CK 2.618 1.350 0.340 15 15
甜菜碱
Betaine (T1)
T1-1 3.111 0.882 0.221 17 17
T1-2 0.908 2.890 0.761 6 4
T1-3 1.079 2.705 0.715 7 7
脯氨酸
Proline (T2)
T2-1 0.733 3.068 0.807 5 6
T2-2 0.642 3.168 0.832 4 5
T2-3 0.581 3.219 0.847 3 3
过氧化氢
Hydrogen
peroxide (T3)
T3-1 3.659 0.377 0.093 18 18
T3-2 2.765 1.349 0.328 16 16
T3-3 2.340 1.624 0.410 13 13
苹果酸
Malic acid (T4)
T4-1 2.236 1.741 0.438 12 12
T4-2 1.904 1.942 0.505 11 10
T4-3 2.505 1.493 0.373 14 14
氧化纳米锌
Nano zinc oxide (T5)
T5-1 1.258 2.527 0.668 8 8
T5-2 0.335 3.496 0.913 2 2
T5-3 0.068 3.724 0.982 1 1
多胺
Polyamine (T6)
T6-1 1.737 2.192 0.558 10 11
T6-2 1.445 2.365 0.621 9 9
[1] 刘成, 冯中朝, 肖唐华, 马晓敏, 周广生, 黄凤洪, 李加纳, 王汉中. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报, 2019, 41: 485-489.
doi: 10.7505/j.issn.1007-9084.2019.04.001
Liu C, Feng Z C, Xiao T H, Ma X M, Zhou G S, Huang F H, Li J N, Wang H Z. Development, potential and adaptation of Chinese rapeseed industry. Chin J Oil Crop Sci, 2019, 41: 485-489 (in Chinese with English abstract).
doi: 10.7505/j.issn.1007-9084.2019.04.001
[2] Food and Agriculture Organization FAO of the United Nations.FAO Statistical Databases in 2023. [2023-04-25]. http://www.fao.org.
[3] 李勤, 刘小焱, 盛紫微, 曲昭杰, 罗涛, 王晶, 蒯婕, 汪波, 李俊, 徐正华, 周广生. 我国油菜适合机械化收获关键农艺性状研究进展. 中国油料作物学报, 2023, 45: 1053-1061.
doi: 10.19802/j.issn.1007-9084.2022194
Li Q, Liu X Y, Sheng Z W, Qu Z J, Luo T, Wang J, Kuai J, Wang B, Li J, Xu Z H, Zhou G S. Research progress on target agronomic traits for mechanized harvesting of rapeseed in China. Chin J Oil Crop Sci, 2023, 45: 1053-1061 (in Chinese with English abstract).
doi: 10.19802/j.issn.1007-9084.2022194
[4] 张顺凯, 王端, 陶雨佳, 江海东. H2O2浸种对晚直播油菜生长及产量的影响. 中国油料作物学报, 2019, 41: 559-567.
doi: 10.7505/j.issn.1007-9084.2019.04.010
Zhang S K, Wang D, Tao Y J, Jiang H D. Effects of seeds soaking with hydrogen peroxide on growth and yield of rapeseed at different sowing dates. Chin J Oil Crop Sci, 2019, 41: 559-567 (in Chinese with English abstract).
[5] 张钰钦, 杨之帆, 李越, 李银水, 胡小加, 秦璐, 廖星. 外源海藻糖浸种对低温胁迫油菜种子萌发及幼苗生长的影响. 中国油料作物学报, 2022, 44: 376-384.
doi: 10.19802/j.issn.1007-9084.2020317
Zhang Y Q, Yang Z F, Li Y, Li Y S, Hu X J, Qin L, Liao X. Effect of exogenous trehalose on seed germination and seedling growth of rapeseed under low temperature. Chin J Oil Crop Sci, 2022, 44: 376-384 (in Chinese with English abstract).
[6] 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用. 作物学报, 2022, 48: 2016-2027.
doi: 10.3724/SP.J.1006.2022.12041
Zhu C Q, Wei Q Q, Xiang X J, Hu W J, Xu Q S, Cao X C, Zhu L F, Kong Y L, Liu J, Jin Q Y, Zhang J H. Regulation effects of seedling raising by melatonin and methyl jasmonate substrate on low temperature stress tolerance in rice. Acta Agron Sin, 2022, 48: 2016-2027 (in Chinese with English abstract).
[7] 刘自刚, 张长生, 孙万仓, 杨宁宁, 王月, 何丽, 赵彩霞, 武军艳, 方彦, 曾秀存. 不同生态区冬前低温下白菜型冬油菜不同抗寒品种(系)的比较. 作物学报, 2014, 40: 346-354.
doi: 10.3724/SP.J.1006.2014.00346
Liu Z G, Zhang C S, Sun W C, Yang N N, Wang Y, He L, Zhao C X, Wu J Y, Fang Y, Zeng X C. Comparison of winter rapeseed varieties (lines) with different cold resistance planted in the northern-extending regions in China under low temperature before winter. Acta Agron Sin, 2014, 40: 346-354 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.00346
[8] 蒲媛媛, 赵玉红, 武军艳, 刘丽君, 白静, 马骊, 牛早霞, 金姣姣, 方彦, 李学才, 孙万仓. 北方强冬性甘蓝型冬油菜品种(系)抗寒性评价. 中国农业科学, 2019, 52: 3291-3308.
doi: 10.3864/j.issn.0578-1752.2019.19.002
Pu Y Y, Zhao Y H, Wu J Y, Liu L J, Bai J, Ma L, Niu Z X, Jin J J, Fang Y, Li X C, Sun W C. Comprehensive assessment on cold tolerance of the strong winter Brassica napus L. cultivated in northern China. Sci Agric Sin, 2019, 52: 3291-3308 (in Chinese with English abstract).
[9] 曾韶西, 王以柔. 低温胁迫对黄瓜子叶抗坏血酸过氧化物酶活性和谷胱甘肽含量的影响. 植物生理学报, 1990, 16: 37-42.
Zeng S X, Wang Y R. Effects of low temperature stress on ascorbic acid peroxidase activity and glutathione content in cucumber cotyledons. Acta Phytophy Sin, 1990, 16: 37-42 (in Chinese).
[10] Chung S W, Rho H, Lim C K, Jeon M K, Kim S, Jang Y J, An H J. Photosynthetic response and antioxidative activity of ‘Hass’ avocado cultivar treated with short-term low temperature. Sci Rep, 2022, 12: 11593.
doi: 10.1038/s41598-022-15821-3 pmid: 35804002
[11] He H, Lei Y, Yi Z, Raza A, Zeng L, Yan L, Ding X Y, Yong C, Zou X L. Study on the mechanism of exogenous serotonin improving cold tolerance of rapeseed (Brassica napus L.) seedlings. Plant Growth Regul, 2021, 94: 161-170.
doi: 10.1007/s10725-021-00700-0
[12] Wang P C, Hsu C C, Du Y Y, Zhu P P, Zhao C Z, Fu X, Zhang C G, Paez J S, Macho A P, Tao W A, Zhu J K. Mapping proteome-wide targets of protein kinases in plant stress responses. Proc Nat Acad Sci USA, 2020, 117: 3270-3280.
doi: 10.1073/pnas.1919901117
[13] Hu S L, Chen Q H, Guo F, Wang M L, Zhao H, Wang Y, Ni D J, Wang P. (Z)-3-Hexen-1-ol accumulation enhances hyperosmotic stress tolerance in Camellia sinensis. Plant Mol Biol, 2020, 103: 287-302.
doi: 10.1007/s11103-020-00992-2
[14] 张曼, 戴蓉, 张顺凯, 江海东. H2O2浸种对油菜种子低温萌发的缓解效应. 南京农业大学学报, 2017, 40: 963-970.
Zhang M, Dai R, Zhang S K, Jiang H D. Alleviation effects of seed soaking with H2O2 on seed germination in rape under low temperature stress. J Nanjing Agric Univ, 2017, 40: 963-970 (in Chinese with English abstract).
[15] 方彦, 武军艳, 孙万仓, 杨晓娟, 韩慧敏, 韩亚伟, 陈亚平. 外源ABA浸种对冬油菜种子萌发及幼苗抗寒性的诱导效应. 干旱地区农业研究, 2014, 32(6): 70-74.
Fang Y, Wu J Y, Sun W C, Yang X J, Han H M, Han Y W, Chen Y P. Inducing effects of exogenous ABA on seed germination and cold tolerance of winter rape seedlings. Agric Res Arid Areas, 2014, 32(6): 70-74 (in Chinese with English abstract).
[16] 黄少华, 王增春, 刘胜环. 不同植物生长调节剂浸种对油菜壮苗的效果比较. 江苏农业科学, 2006, (3): 49-51.
Huang S H, Wang Z C, Liu S H. Comparison of the effect of soaking seeds with different plant growth regulators on rapeseed seedling strengthening. Jiangsu Agric Sci, 2006, (3): 49-51 (in chinese).
[17] 徐家裕, 倪文海. 早中熟甘蓝型油菜播种期研究. 中国油料作物学报, 1987, (2): 41-44.
Xu J Y, Ni W H. Study on sower for early and late maturing Brassica napus L. Chin J Oil Crop Sci, 1987, (2): 41-44 (in Chinese).
[18] 万林. H2O2浸种对直播油菜生长和抗寒性的影响. 南京农业大学硕士学位论文, 江苏南京, 2015.
Wan L. Effect of Seed Soaking with Hydrogen Peroxide on Growth and Chilling Resistance of Direct-seeding Oilrape. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China (in Chinese with English abstract).
[19] Ella E S, Dionisio-Sese M L, Ismail A M. Seed pre-treatment in rice reduces damage, enhances carbohydrate mobilization and improves emergence and seedling establishment under flooded conditions. AoB Plants, 2011, 2011: plr007.
[20] Alabdallah N M, Alzahrani H S. The potential mitigation effect of ZnO nanoparticles on [Abelmoschus esculentus L. Moench] metabolism under salt stress conditions. Saudi J Biol Sci, 2020, 27: 3132-3137.
doi: 10.1016/j.sjbs.2020.08.005 pmid: 33100874
[21] Faizan M, Bhat J A, Hessini K, Yu F, Ahmad P. Zinc oxide nanoparticles alleviates the adverse effects of cadmium stress on Oryza sativa via modulation of the photosynthesis and antioxidant defense system. Ecotoxicol Environ Saf, 2021, 220: 112401.
doi: 10.1016/j.ecoenv.2021.112401
[22] Rameshraddy, Pavithra G J, Reddy B H R, Salimath M, Geetha K N, Shankar A G. Zinc oxide nano particles increases Zn uptake, translocation in rice with positive effect on growth, yield and moisture stress tolerance. Indian J Plant Physiol, 2017, 22: 287-294.
doi: 10.1007/s40502-017-0303-2
[23] Fatima A, Safdar N, Ain N, Yasmin A, Chaudhry G. Abscisic acid-loaded ZnO nanoparticles as drought tolerance inducers in Zea mays L. with physiological and biochemical aAttributes. J Plant Growth Regul, 2023, 42: 7280-7293.
doi: 10.1007/s00344-023-11016-w
[24] 李春燕, 陈思思, 徐雯, 李东升, 顾骁, 朱新开, 郭文善, 封超年. 苗期低温胁迫对扬麦16叶片抗氧化酶和渗透调节物质的影响. 作物学报, 2011, 37: 2293-2298.
doi: 10.3724/SP.J.1006.2011.02293
Li C Y, Chen S S, Xu W, Li D S, Gu X, Zhu X K, Guo W S, Feng C N. Effect of low temperature at seedling stage on antioxidation enzymes and cytoplasmic osmoticum of leaves in wheat cultivar yangmai 16. Acta Agron Sin, 2011, 37: 2293-2298 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2011.02293
[25] Ren Y Q, Guo Y T, Zhao M L. Research progress of response to low temperature stress in Plant. Mol Plant Breed, 2020, 18: 4775-4781.
[26] 吕艳, 黄涌, 邹锡玲, 罗丹, 王小燕, 鲍五洲, 陈建军, 马海清, 程勇. 油菜抗低温的评价指标与分子生理机制研究进展. 中国油料作物学报, 2020, 42: 527-535.
Lyu Y, Huang Y, Zou X L, Luo D, Wang X Y, Bao W Z, Chen J J, Ma H Q, Cheng Y. Reaserches on evaluation, physiological and molecular mechanism of rapeseed low-tempreature resistance. Chin J Oil Crop Sci, 2020, 42: 527-535 (in Chinese with English abstract).
doi: 10.19802/j.issn.1007-9084.2020151
[27] Jahed K R, Saini A K, Sherif S M. Coping with the cold: unveiling cryoprotectants, molecular signaling pathways, and strategies for cold stress resilience. Front Plant Sci, 2023, 14: 1246093.
doi: 10.3389/fpls.2023.1246093
[28] Zuo S Y, Zuo Y T, Gu W R, Wei S, Li J. Exogenous proline optimizes osmotic adjustment substances and active oxygen metabolism of maize embryo under low-temperature stress and metabolomic analysis. Processes, 2022, 10: 1388.
doi: 10.3390/pr10071388
[29] Chen Y, Jiang J F, Chang Q S, Gu C S, Song A P, Chen S M, Dong B, Chen F D. Cold acclimation induces freezing tolerance via antioxidative enzymes, proline metabolism and gene expression changes in two chrysanthemum species. Mol Biol, 2014, 41: 815-822.
[30] Wu H C, Jinn T L. Heat shock-triggered Ca2+ mobilization accompanied by pectin methylesterase activity and cytosolic Ca2+ oscillation are crucial for plant thermotolerance. Plant Signal Behav, 2010, 5: 1252-1256.
doi: 10.4161/psb.5.10.12607
[31] Kang T M, Hilgemann D W. Multiple transport modes of the cardiac Na+/Ca2+ exchanger. Nature, 2004, 427: 544-548.
doi: 10.1038/nature02271
[32] Ren R F, Zhou H, Zhang L L, Jiang X R, Liu Y. Ca2+ participates in programmed cell death by modulating ROS during pollen cryopreservation. Plant Cell Rep, 2022, 41: 1043-1057.
doi: 10.1007/s00299-022-02836-3
[33] Renaut J, Hausman J F, Wisniewski M E. Proteomics and low-temperature studies: bridging the gap between gene expression and metabolism. Physiol Plant, 2006, 126: 97-109.
[34] Breton G, Vazquez-tello A, Danyluk J, Sarhan F. Two novel intrinsic annexins accumulate in wheat membranes in response to low temperature. Plant Cell Physiol, 2000, 41: 177-184.
pmid: 10795312
[35] Wang J C, Liu X, Zhang A, Ren Y L, Wu F Q, Wang G, Xu Y, Lei C L, Zhu S S, Pan T, Wang Y F, Zhang H, Wang F, Tan Y Q, Wang Y P, Jin X, Luo S, Zhou C L, Zhang X, Liu J L, Wang S, Meng L Z, Wang Y H, Chen X, Lin Q B, Zhang X, Guo X P, Cheng Z J, Wang J L, Tian Y L, Liu S J, Jiang L, Wu C Y, Wang E T, Zhou J M, Wang Y F, Wang H Y, Wan J M. A cyclic nucleotide-gated channel mediates cytoplasmic calcium elevation and disease resistance in rice. Cell Res, 2019, 29: 820-831.
doi: 10.1038/s41422-019-0219-7 pmid: 31444468
[36] Subrahmanyam D, Subash N, Haris A, Sikka A K. Influence of water stress on leaf photosynthetic characteristics in wheat cultivars differing in their susceptibility to drought. Photosynthetica, 2006, 44: 125-129.
[37] 刘海卿, 孙万仓, 刘自刚, 武军艳, 钱武, 王志江, 郭仁迪, 马骊, 侯献飞, 刘林波. 北方寒旱区白菜型冬油菜抗寒性与抗旱性评价及其关系. 中国农业科学, 2015, 48: 3743-3756.
doi: 10.3864/j.issn.0578-1752.2015.18.018
Liu H Q, Sun W C, Liu Z G, Wu J Y, Qian W, Wang Z J, Guo R D, Ma L, Hou X F, Liu L B. Evaluation of drought resistance and cold resistance and research of their relationship at seedling stage of winter rapeseed (Brassica campestris L.) in cold and arid regions in North China. Sci Agric Sin, 2015, 48: 3743-3756 (in Chinese with English abstract).
[38] 范军强, 武军艳, 刘丽君, 马骊, 杨刚, 蒲媛媛, 李学才, 孙万仓. 甘蓝型冬油菜气孔特性与抗寒性的关系. 中国农业科学, 2023, 56: 599-619.
doi: 10.3864/j.issn.0578-1752.2023.04.002
Fan J Q, Wu J Y, Liu L J, Ma L, Yang G, Pu Y Y, Li X C, Sun W C. Correlation between stomatal characteristics and cold resistance of Brassica napus L. Sci Agric Sin, 2023, 56: 599-619 (in Chinese with English abstract).
[39] Su H, Sun H, Dong X, Chen P, Zhang X, Tian L, Liu X, Wang J. Did manure improve saline water irrigation threshold of winter wheat? A 3-year field investigation. Agric Water Manag, 2021, 258: 107203.
doi: 10.1016/j.agwat.2021.107203
[1] CAO Xin-Yuan, DU Ming-Li, WANG Yu-Cheng, CHEN Xin-Hua, CHEN Jia-Xin, LING Xiao-Xia, HUANG Jian-Liang, PENG Shao-Bing, DENG Nan-Yan. Evaluation of annual yield gap and yield limiting facters in rice-rapeseed cropping system: an example from Wuxue city, Hubei province, China [J]. Acta Agronomica Sinica, 2024, 50(5): 1287-1299.
[2] YAN Jin-Yao, SONG Yi, LU Zhi-Feng, REN Tao, LU Jian-Wei. Effect of phosphorus fertilizer rate on rapeseed yield and quality (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1668-1677.
[3] YU Xin-Ying, WANG Chun-Yun, LI Da-Shuang, WANG Zong-Kai, KUAI Jie, WANG Bo, WANG Jing, XU Zheng-Hua, ZHOU Guang-Sheng. Formation mechanism of yield stability in high-yielding rapeseed varieties [J]. Acta Agronomica Sinica, 2023, 49(6): 1601-1615.
[4] FANG Ya-Ting, REN Tao, ZHANG Shun-Tao, ZHOU Xiang-Qi, ZHAO Jian, LIAO Shi-Peng, CONG Ri-Huan, LU Jian-Wei. Different effects of nitrogen, phosphorus and potassium fertilizers on oilseed rape yield and nutrient utilization between continuous upland and paddy-upland rotations [J]. Acta Agronomica Sinica, 2023, 49(3): 772-783.
[5] NING Ning, MO Jiao, HU Bing, LI Da-Shuang, LOU Hong-Xiang, WANG Chun-Yun, BAI Chen-Yang, KUAI Jie, WANG Bo, WANG Jing, XU Zheng-Hua, LI Xiao-Hua, JIA Cai-Hua, ZHOU Guang-Sheng. Comparative study on the processing quality of winter rape in different ecological zones of the Yangtze River valley [J]. Acta Agronomica Sinica, 2023, 49(12): 3315-3327.
[6] YE Xiao-Lei, GENG Guo-Tao, XIAO Guo-Bin, LYU Wei-Sheng, REN Tao, LU Zhi-Feng, LU Jian-Wei. Effects of magnesium application rate on yield and quality in oilseed rape (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(11): 3063-3073.
[7] GONG Ruo-Lin, SONG Bo, YANG Zhi-Ye, LU Li-Jing, DONG Jun-Gang. Effects of sowing date and density on lodging resistance and yield of different rapeseed cultivars [J]. Acta Agronomica Sinica, 2023, 49(10): 2777-2792.
[8] QIN Lu, HAN Pei-Pei, CHANG Hai-Bin, GU Chi-Ming, HUANG Wei, LI Yin-Shui, LIAO Xiang-Sheng, XIE Li-Hua, LIAO Xing. Screening of rapeseed germplasms with low nitrogen tolerance and the evaluation of its potential application as green manure [J]. Acta Agronomica Sinica, 2022, 48(6): 1488-1501.
[9] LOU Hong-Xiang, JI Jian-Li, KUAI Jie, WANG Bo, XU Liang, LI Zhen, LIU Fang, HUANG Wei, LIU Shu-Yan, YIN Yu-Feng, WANG Jing, ZHOU Guang-Sheng. Effects of planting density on yield and lodging related characters of reciprocal hybrids in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(9): 1724-1740.
[10] ZHANG Jian, XIE Tian-Jin, WEI Xiao-Nan, WANG Zong-Kai, LIU Chong-Tao, ZHOU Guang-Sheng, WANG Bo. Estimation of feed rapeseed biomass based on multi-angle oblique imaging technique of unmanned aerial vehicle [J]. Acta Agronomica Sinica, 2021, 47(9): 1816-1823.
[11] GUO Qing-Yun, KUAI Jie, WANG Bo, LIU Fang, ZHANG Chun-Yu, LI Gen-Ze, ZHANG Yun-Yun, FU Ting-Dong, ZHOU Guang-Sheng. Effect of mixed-sowing of near-isogenic lines on the clubroot disease controlling efficiency in rapeseed [J]. Acta Agronomica Sinica, 2020, 46(9): 1408-1415.
[12] Qing-Yun GUO, Bo WANG, Jie KUAI, Chun-Yu ZHANG, Gen-Ze LI, Hui-Xian KANG, Ting-Dong FU, Guang-Sheng ZHOU. Controlling efficiency against clubroot disease of rapeseed by mixed-cropping of susceptible and resistant cultivars [J]. Acta Agronomica Sinica, 2020, 46(5): 725-733.
[13] DONG Jian-Ke, TU Wei, WANG Hai-Bo, YING Jing-Wen, DU Juan, ZHAO Xi-Juan, ZHAO Qing-Hao, HUANG Wei, CAI Xing-Kui, SONG Bo-Tao. Establishment of a high efficient method for chromosome doubling and exploration of cold-resistant resources in potato [J]. Acta Agronomica Sinica, 2020, 46(11): 1659-1666.
[14] LYU Wei-Sheng, XIAO Fu-Liang, ZHANG Shao-Wen, ZHENG Wei, HUANG Tian-Bao, XIAO Xiao-Jun, LI Ya-Zhen, WU Yan, HAN De-Peng, XIAO Guo-Bin, ZHANG Xue-Kun. Effects of sowing and fertilizing methods on yield and fertilizer use efficiency in red-soil dryland rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2020, 46(11): 1790-1800.
[15] HU Mao-Long, CHENG Li, GUO Yue, LONG Wei-Hua, GAO Jian-Qin, PU Hui-Ming, ZHANG Jie-Fu, CHEN Song. Development and application of the marker for imidazolinone-resistant gene in Brassica napus [J]. Acta Agronomica Sinica, 2020, 46(10): 1639-1646.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!