Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (12): 3315-3327.doi: 10.3724/SP.J.1006.2023.34017

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Comparative study on the processing quality of winter rape in different ecological zones of the Yangtze River valley

NING Ning1(), MO Jiao2, HU Bing2, LI Da-Shuang1, LOU Hong-Xiang1, WANG Chun-Yun1, BAI Chen-Yang1, KUAI Jie1, WANG Bo1, WANG Jing1, XU Zheng-Hua1, LI Xiao-Hua3, JIA Cai-Hua2,*(), ZHOU Guang-Sheng1   

  1. 1College of Plant Science and Technology, Huazhong Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System for the Middle Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
    2College of Food Science and Technology, Huazhong Agricultural University / Key Laboratory of Environmental Food Science, Ministry of Education, Wuhan 430070, Hubei, China
    3School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430065, Hubei, China
  • Received:2023-01-19 Accepted:2023-06-29 Online:2023-12-12 Published:2023-07-21
  • Contact: * E-mail: chjia@mail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2021YFD1600502)

Abstract:

Six rapeseed cultivars were chosen from three regions, including the upper, middle, and lower Yangtze River valley, and planted in Sichuan, Hubei, and Zhejiang experimental sites using the similar cultivation measures. The rapeseed was harvested at maturity stage, followed by cold pressing and the composition of unsaturated fatty acids (USFAs) and the content of chlorophyll, the total polar phenols, phytosterols, and tocopherols of rapeseed oil were assessed. Moreover, the essential properties of rapeseed oil on each experimental site were refined. The results showed that there were significant differences between the experimental sites in terms of the oil content and oil extraction efficiency of rapeseed, the chlorophyll, the total polar phenols, phytosterols, and tocopherol content of rapeseed oil. The results showed that: (1) Sichuan had a higher oil content than Hubei, whereas Zhejiang had the lowest oil content. The varieties from the middle and lower reaches of the Yangtze River were planted in Sichuan and their oil content increased, meanwhile Zhejiang had the highest seed oil extraction efficiency followed by Sichuan and Hubei. (2) The oleic acid content of rapeseed oil was the highest in Sichuan, followed by Zhejiang and Hubei; whereas the higher linoleic and linolenic acid contents were noted at the Hubei experimental site. Moreover, the total polar phenols and phytosterol content of rapeseed oil was the highest in the Sichuan followed by Hubei and Zhejiang; contrarily, the tocopherol content and color of rapeseed oil were best in the Zhejiang followed by Hubei and Sichuan. (3) Rapeseed oil's antioxidant capacity significantly varied between sites, which was the highest in Sichuan, followed by the Hubei and Zhejiang. The lower temperature and rainfall during rapeseed pod maturity period contributed to the stronger antioxidant capacity of studied cultivars in Sichuan site. Conclusively, the rapeseed oil quality was varied at different experimental sites in the Yangtze River valley. Thus, the findings of the current study can be used as a reference when choosing high-quality rapeseed varieties in different ecological zones.

Key words: winter rapeseed, ecological zone, rapeseed oil, cold-pressed, processing quality

Table 1

The materials in the experiment"

来源地 Variety source 编号Number 品种名称Variety name
长江上游 The Upper Yangtze River 1 庆油1号 Qingyou 1
2 庆油3号 Qingyou 3
3 渝油28 Yuyou 28
4 川油81 Chuanyou 81
5 川油36 Chuanyou 36
6 国豪油8号 Guohaoyou 8
长江中游 The Middle Yangtze River 7 湘杂518 Xiangza 518
8 沣油737 Fengyou 737
9 大地199 Dadi 199
10 中油杂19 Zhongyouza 19
11 华油杂50 Huayouza 50
12 华油杂62 Huayouza 62
长江下游 The Lower Yangtze River 13 扬油9号 Yangyou 9
14 盐油杂3号 Yanyouza 3
15 宁杂1838 Ningza 1838
16 浙油50 Zheyou 50
17 浙油51 Zheyou 51
18 浙油杂108 Zheyouza 108

Fig. 1

Main climatic factors at each experimental site at pod maturity in rapeseed"

Table 2

Analysis of variance (ANOVA) of and rapeseed oil characteristics"

因素
Factor
含油量OC 出油效率OEE 叶绿素CHL R Y 油酸
OA
亚油酸LA 亚麻酸LNA 极性总酚TPP 植物甾醇PS 生育酚Toc DPPH FRAP
品种
Variety (V)
1815.6** 2.6** 231.7** 8.3** 34.5** 1735.2** 630.1** 568.8** 43.4** 23.9** 140.1** 479.0** 108.6**
地点
Location (L)
3546.5** 337.8** 401.9** 40.6** 101.3** 2667.4** 891.0** 1249.2** 1452.6** 445.6** 79.5** 12,903.3** 8299.5**
品种×地点V×L 212.3** 2.6** 186.3** 6.7** 44.1** 211.8** 65.1** 118.4** 20.8** 18.9** 25.5** 313.4** 49.8**

Fig. 2

Seed oil content and oil extraction efficiency of 18 double-low oilseed rape cultivars at three experimental sites Least significant difference (LSD) method for multiple comparisons, different lowercase letters above the bars indicate significant difference among treatments at the 0.05 probability level."

Table 3

Chlorophyll content and Lovibond color values (red and yellow values) of rapeseed oils from 18 double-low oilseed rape cultivars at three experimental sites"

品种Variety 四川Sichuan 湖北Hubei 浙江Zhejiang
叶绿素含量
Chlorophyll contents
(mg kg-1)
红值
Red-value
黄值
Yellow-value
叶绿素含量
Chlorophyll content
(mg kg-1)
红值
Red-value
黄值
Yellow-value
叶绿素含量
Chlorophyll content
(mg kg-1)
红值
Red-value
黄值
Yellow-value
1 0.91 a 2.00 f 45.00 a 0.28 hi 3.00 ab 20.50 d 0.39 f 2.00 f 51.00 a
2 0.11 m 2.20 ef 32.00 c 0.07 k 2.00 c 20.60 d 0.12 j 2.25 cd 22.50 e
3 0.19 k 2.40 def 31.00 c 0.23 ij 2.30 bc 20.00 d 0.18 i 2.05 ef 20.00 vf
4 0.26 h 3.00 ab 31.00 c 0.54 c 3.00 ab 20.10 d 0.56 d 2.20 de 21.05 ef
5 0.32 f 2.80 bcd 32.00 c 0.82 a 3.05 a 20.00 d 0.27 g 2.05 ef 21.00 ef
6 0.44 d 2.90 bc 30.65c 0.38 fg 2.50 abc 25.00 cd 0.30 g 2.00 f 20.00 f
7 0.31 f 2.15 ef 31.00 c 0.87 a 2.50 abc 20.55 d 0.73 b 2.00 f 30.00 c
8 0.29 g 1.55 g 31.00 c 0.24 ij 2.00 c 20.00 d 0.22 h 2.50 ab 21.00 ef
9 0.22 j 2.90 bc 30.50 c 0.34 gh 2.65 abc 20.00 d 0.96 a 2.40 bc 39.50 b
10 0.16 l 2.50 cde 31.50 c 0.72 b 2.00 c 25.75 cd 0.64 c 2.00 f 20.00 f
11 0.23 i 3.00 ab 30.00 c 0.49 cd 2.00 c 30.00 c 0.21 hi 2.15 def 21.00 ef
12 0.34 e 3.40 a 31.50 c 0.41 efg 2.10 c 65.00 a 0.21 hi 2.50 ab 22.00 ef
13 0.48 c 3.00 ab 31.50 c 0.70 b 3.00 ab 21.00 d 0.29 g 2.60 a 22.50 e
14 0.21 j 2.15 ef 38.50 b 0.47 cde 3.00 ab 20.00 d 0.37 f 2.00 f 30.00 c
15 0.18 k 2.30 ef 31.00 c 0.27 hi 3.00 ab 20.00 d 0.72 b 2.00 f 30.00 c
16 0.21 j 3.20 ab 26.50 d 0.82 a 3.10 a 55.00 b 0.47 e 2.00 f 21.00 ef
17 0.62 b 2.45 cdef 32.00 c 0.45 def 2.00 c 31.00 c 0.40 f 2.05 ef 27.00 d
18 0.19 k 2.00 f 31.00 c 0.18 j 2.65 abc 20.00 d 0.36 f 2.10 def 31.00 c
平均Mean 0.32 2.55 32.09 0.46 2.55 26.36 0.41 2.16 26.14

Table 4

Oleic, linoleic and linolenic acid content and linoleic acid/linolenic acid (ω-6/ω-3) of rapeseed oils from 18 double-low oilseed rape cultivars at three experimental sites"

品种
Variety
四川Sichuan 湖北Hubei 浙江Zhejiang
油酸
Oleic acid (%)
亚油酸
Linoleic acid (%)
亚麻酸Linolenic acid (%) ω-6/
ω-3
油酸
Oleic acid (%)
亚油酸Linoleic acid (%) 亚麻酸Linolenic acid (%) ω-6/
ω-3
油酸
Oleic acid (%)
亚油酸Linoleic acid (%) 亚麻酸Linolenic acid (%) ω-6/
ω-3
1 66.20 i 17.95 de 8.17 h 2.20 65.45 cd 18.79 h 8.91 g 2.11 67.35 b 17.79 g 7.52 j 2.37
2 66.47 g 17.62 efg 8.79 e 2.00 64.17 e 19.19 g 9.62 d 1.99 65.94 de 18.53 f 8.41 g 2.20
3 65.11 k 18.59 c 9.06 c 2.05 59.71 j 20.37 d 9.70 d 2.10 62.51 g 18.81 e 8.78 d 2.14
4 62.75 q 18.62 c 9.11 c 2.04 58.92 k 20.55 c 10.03 ab 2.05 61.60 h 19.39 cd 8.80 d 2.20
5 65.29 j 17.92 def 8.80 e 2.04 59.89 j 20.12 e 9.22 f 2.18 62.60 g 20.24 b 9.21 b 2.20
6 63.12 o 17.54 fgh 9.72 a 1.81 58.95 k 18.51 i 9.76 cd 1.90 57.20 j 19.48 c 10.31 a 1.89
7 63.02 p 20.51 a 9.28 b 2.21 61.51 h 22.23 a 8.79 gh 2.53 62.76 g 21.39 a 9.19 b 2.33
8 66.95 e 17.19 hi 8.67 f 1.98 64.25 e 18.39 i 9.80 cd 1.88 64.51 f 19.45 c 9.10 c 2.14
9 68.04 b 16.06 j 8.89 d 1.81 65.34 d 17.42 kl 10.19 a 1.71 65.51 e 16.51 k 7.88 h 2.10
10 63.40 n 17.36 gh 9.31 b 1.87 62.96 g 18.04 j 9.43 e 1.91 59.64 i 17.07 i 8.55 f 2.00
11 68.19 a 16.35 j 8.17 h 2.00 65.26 d 17.51 k 8.81 gh 1.99 68.88 a 16.39 k 7.68 i 2.13
12 64.24 m 19.14 b 8.75 e 2.19 66.79 a 17.29 l 8.18 i 2.11 64.59 f 19.22 d 8.68 e 2.21
13 66.69 f 16.88 i 8.72 ef 1.94 65.58 c 17.46 k 8.65 h 2.02 66.83 c 16.73 j 7.80 h 2.14
14 66.31 h 17.89 ef 8.64 f 2.07 63.28 f 19.36 f 9.13 f 2.12 67.40 bc 17.70 g 7.87 h 2.25
15 66.86 e 17.20 hi 8.31 g 2.07 66.59 a 18.03 j 7.75 j 2.33 67.15 bc 17.64 g 7.29 k 2.42
16 67.52 d 16.95 i 8.16 h 2.08 66.12 b 17.32 l 7.36 k 2.35 67.69 b 17.09 i 7.46 j 2.29
17 64.86 l 18.28 cd 9.06 c 2.02 60.99 i 20.70 b 9.90 bc 2.09 65.64 e 18.33 f 8.58 f 2.14
18 67.89 c 16.17 j 8.77 e 1.84 65.32 d 17.93 j 9.44 e 1.90 66.22 d 17.37 h 9.02 c 1.93
Mean 65.72 17.68 8.80 2.01 63.39 18.84 9.15 2.07 64.66 18.28 8.44 2.17

Table 5

Phytosterol and total polar phenols content of rapeseed oils from 18 double-low oilseed rape cultivars at three experimental sites"

品种Variety 四川Sichuan 湖北Hubei 浙江Zhejiang
植物甾醇 Phytosterol
(mg kg-1)
极性总酚
Total polar phenols (mg 100 g-1)
植物甾醇 Phytosterol
(mg kg-1)
极性总酚
Total polar phenols (mg 100 g-1)
植物甾醇 Phytosterol
(mg kg-1)
极性总酚
Total polar phenols (mg 100 g-1)
1 8036.96 efgh 42.82 bcd 7591.93 bcd 32.09 abc 6563.61 bc 16.50 d
2 9103.83 cde 29.74 ef 8020.92 b 25.47 cde 7016.90 ab 18.85 c
3 8748.94 cdef 55.18 a 7904.90 b 16.50 f 6639.73 bc 5.91 j
4 6478.34 i 38.56 d 7212.61 cde 26.21 cde 6407.22 c 7.38 i
5 9411.13 bcd 32.09 ef 7984.45 b 25.76 cde 5097.88 e 9.15 gh
6 8474.94 defg 47.53 b 6755.99 ef 26.35 cde 6389.88 c 16.35 d
7 9794.04 abc 15.03 g 9221.90 a 16.35 f 7481.95 a 4.44 kl
8 7221.04 hi 39.44 d 6593.48 f 25.91 cde 5621.17 d 25.03 a
9 8982.32 cdef 42.97 bcd 6053.09 g 26.65 cde 6993.42 ab 20.76 b
10 7924.66 fgh 39.44 d 6083.19 g 25.03 de 6553.62 bc 3.85 lm
11 8712.27 cdef 41.50 cd 7567.98 bcd 33.56 ab 6763.85 bc 14.15 e
12 7491.09 ghi 46.79 bc 7674.35 bc 38.26 a 6390.08 c 10.03 fg
13 6614.81 i 27.09 f 7387.84 cd 16.94 f 6422.21 c 5.18 jk
14 10,427.21 ab 52.97 a 7615.63 bcd 22.09 ef 6545.87 bc 18.71 c
15 9323.49 cd 54.88 a 6400.53 fg 25.76 cde 3823.43 f 5.03 jk
16 10,539.78 a 33.56 e 4940.33 h 30.32 bcd 3877.18 f 8.71 h
17 8851.40 cdef 28.12 ef 7997.02 b 16.06 f 6722.22 bc 3.12 m
18 7295.79 hi 30.03 ef 7145.49 de 29.74 bcd 6419.56 c 10.76 f
Mean 8524.00 38.76 7230.65 25.50 6207.21 11.33

Table 6

Tocopherol content of rapeseed oils from 18 double-low oilseed rape cultivars at three experimental sites"

品种
Variety
四川Sichuan 湖北Hubei 浙江Zhejiang
α-生育酚
α-tocopherol
(mg kg-1)
γ-生育酚
γ-tocopherol
(mg kg-1)
总生育酚
Total
tocopherol
(mg kg-1)
α-生育酚
α-tocopherol
(mg kg-1)
γ-生育酚
γ-tocopherol
(mg kg-1)
总生育酚
Total
tocopherol
(mg kg-1)
α-生育酚
α-tocopherol
(mg kg-1)
γ-生育酚
γ-tocopherol
(mg kg-1)
总生育酚
Total
tocopherol
(mg kg-1)
1 197.69 ij 377.36 de 575.05 ghi 164.02 m 354.71 g 518.73 k 206.79 fghi 361.08 h 567.87 g
2 184.96 j 375.18 de 560.14 hij 232.13 fg 401.23 d 633.36 fg 195.69 i 372.16 gh 567.85 g
3 218.27 ef 397.18 cd 615.45 ef 240.60 de 400.50 d 641.10 ef 219.00 def 430.42 de 649.42 cd
4 218.16 ef 422.10 b 640.27 de 221.67 hi 429.80 b 651.47 de 221.44 de 426.68 de 648.12 cd
5 231.89 de 415.11 bc 647.00 de 232.15 fg 425.47 b 657.61 d 274.81 b 447.20 c 722.01 b
6 227.20 def 414.86 bc 642.06 de 197.40 kl 477.07 a 674.47 c 228.93 d 486.47 b 715.39 b
7 285.93 a 396.66 cd 682.58 bc 250.36 bc 430.78 b 681.14 c 246.89 c 416.81 e 663.70 c
8 223.74 ef 413.52 bc 637.26 de 219.37 i 422.28 bc 641.66 ef 218.94 def 437.86 cd 656.80 cd
9 164.56 k 363.80 e 528.35 j 192.36 l 371.40 f 563.75 j 201.77 ghi 369.34 gh 571.11 g
10 216.04 fg 358.97 e 575.00 ghi 246.64 cd 412.42 c 659.06 d 254.12 c 381.53 fg 635.65 de
11 202.44 ghi 365.54 e 567.97 ghi 227.12 gh 386.69 e 613.81 h 209.55 efgh 391.70 f 601.25 f
12 214.39 fgh 378.89 de 593.27 fgh 278.64 a 474.53 a 753.17 a 288.62 a 484.82 b 773.44 a
13 239.57 cd 311.81 f 551.38 ij 204.56 j 348.62 g 553.18 j 251.15 c 317.43 i 568.58 g
14 264.68 b 426.24 b 690.92 b 226.63 gh 394.08 de 620.71 gh 196.64 hi 363.54 h 560.18 g
15 198.57 ij 361.45 e 560.02 hij 253.28 b 426.16 b 679.44 c 224.66 d 391.63 f 616.29 ef
16 246.81 c 492.88 a 739.69 a 236.81 ef 475.86 a 712.67 b 257.69 c 528.87 a 786.56 a
17 201.10 hi 397.19 cd 598.29 fg 202.35 jk 431.75 b 634.10 fg 206.36 fghi 451.64 c 658.00 cd
18 227.31 def 425.02 b 652.34 cd 203.85 jk 393.52 de 597.37 i 211.14 efg 432.72 d 643.86 cd
Mean 220.18 394.10 614.28 223.89 414.27 638.16 228.57 416.22 644.78

Fig. 3

Antioxidant capacity of rapeseed oils from 18 double-low oilseed rape cultivars at three experimental sites Least significant difference (LSD) method for multiple comparisons, different lowercase letters above the bars indicate significant difference among treatments at the 0.05 probability level."

Table 7

Quality difference of rapeseed oil in different varieties and locations"

品种/试点
Variety/location
CHL
(mg kg-1)
R Y OA
(%)
LA
(%)
LNA
(%)
TPP
(mg kg-1)
PS
(mg kg-1)
Toc
(mg kg-1)
DPPH
(μmol
100 g-1)
FRAP
(μmol
100 g-1)
1 0.52 b 2.33 ef 38.83 a 66.36 c 18.17 g 8.20 h 30.47 ab 7397.50 ef 553.88 h 39.23 c 98.02 b
2 0.10 k 2.15 fg 25.03 ef 65.52 d 18.44 ef 8.94 e 24.69 cd 8047.22 bc 587.12 g 23.10 j 84.33 de
3 0.20 j 2.25 efg 23.67 f 62.45 h 19.26 c 9.18 c 25.86 c 7764.52 cde 635.32 de 44.04 a 84.30 de
4 0.45 e 2.73 ab 24.05 f 61.10 j 19.52 b 9.31 b 24.05 cd 6699.39 ij 646.62 d 24.66 i 85.14 d
5 0.47 de 2.63 abcd 24.33 f 62.61 g 19.43 b 9.08 d 22.33 d 7497.82 def 675.54 c 24.96 i 91.97 c
6 0.37 fg 2.47 bcde 25.22 ef 59.75 k 18.51 e 9.93 a 30.08 ab 7206.94 fgh 677.31 c 34.34 d 102.35 a
7 0.64 a 2.22 efg 27.18 de 62.42 h 21.38 a 9.09 d 11.94 f 8832.63 a 675.81 c 17.65 l 67.86 g
8 0.25 i 2.02 g 24.00 f 65.23 e 18.34 f 9.19 c 30.13 ab 6478.56 j 645.24 d 31.14 f 90.68 c
9 0.50 bc 2.65 abcd 30.00 c 66.31 c 16.66 j 8.99 e 30.13 ab 7342.94 efg 554.4 h 33.66 d 100.06 ab
10 0.51 bc 2.17 fg 25.75 ef 62.14 i 17.49 h 9.10 d 22.77 d 6853.82 hij 623.24 ef 28.39 g 92.06 c
11 0.31 h 2.38 def 27.00 de 67.44 a 16.75 j 8.22 h 29.74 ab 7681.37 cde 594.35 g 32.53 e 101.66 a
12 0.32 h 2.67 abc 39.50 a 65.21 e 18.55 e 8.54 f 31.70 a 7185.17 fgh 706.63 b 42.64 b 102.65 a
13 0.49 cd 2.87 a 25.00 ef 66.35 c 17.02 i 8.39 g 16.40 e 6808.29 hij 557.72 h 20.00 k 73.88 f
14 0.35 g 2.38 def 29.50 cd 65.55 d 18.31 f 8.55 f 31.25 ab 8196.24 b 623.94 ef 27.72 g 84.88 d
15 0.39 f 2.43 cdef 27.00 de 66.89 b 17.62 h 7.78 i 28.56 b 6515.82 j 618.59 f 24.86 i 91.79 c
16 0.50 bc 2.77 a 34.17 b 67.01 b 17.12 i 7.66 j 24.20 cd 6452.43 j 746.31 a 24.33 i 93.43 c
17 0.49 cd 2.17 fg 30.00 c 63.83 f 19.10 d 9.18 c 15.76 e 7856.88 bcd 630.13 ef 13.50 m 69.55 g
18 0.25 i 2.25 efg 27.33 de 66.46 c 17.16 i 9.07 d 23.51 cd 6953.61 ghi 631.19 ef 26.53 h 81.48 e
四川Sichuan 0.32 c 2.55 a 32.09 a 65.72 a 17.68 c 8.80 b 38.76 a 8524.00 a 614.28 c 48.50 a 121.11 a
湖北Hubei 0.46 a 2.55 a 26.36 b 63.39 c 18.84 a 9.15 a 25.50 b 7230.65 b 638.16 b 16.65 c 98.53 b
浙江Zhejiang 0.41 b 2.16 b 26.14 b 64.66 b 18.28 b 8.45 c 11.33 c 6207.21 c 644.78 a 20.40 b 46.38 c

Fig. 4

Principal component analysis of oil content and oil extraction efficiency of rapeseed, and physicochemical characteristics, antioxidant capacity, and functional ingredients of rapeseed oilAbbreviations are the same as those given in Table 2."

Fig. 5

Correlation between the main climatic factors of three experimental sites, oil content and oil extraction efficiency of rapeseed, and antioxidant capacity and functional ingredients of rapeseed oil DMT: day mean temperature; RF: rainfall; SR: solar radiation, other abbreviations are the same as those given in Table 2. *: P < 0.05; **: P < 0.01."

[1] 张婧妤, 许本波, 郑家喜. 我国食用植物油消费变化分析及改革对策. 中国油脂, 2022, 47(3): 5-10.
Zhang J Y, Xu B B, Zheng J X. Analysis on consumption changes and reform countermeasures of edible vegetable oil in China. China Oils Fats, 2022, 47(3): 5-10 (in Chinese with English abstract).
[2] 刘成, 赵丽佳, 唐晶, 杨雪, 吴丽丽, 彭雄, 冯中朝. 中美贸易冲突背景下中国油菜产业发展问题探索. 中国油脂, 2019, 44(9): 1-6.
Liu C, Zhao L J, Tang J, Yang X, Wu L L, Peng X, Feng Z C. Development of China’s rapeseed industry under the background of Sino-US trade conflicts. China Oils Fats, 2019, 44(9): 1-6. (in Chinese with English abstract)
[3] 熊秋芳, 张效明, 文静, 李兴华, 傅廷栋, 沈金雄. 菜籽油与不同食用植物油营养品质的比较——兼论油菜品质的遗传改良. 中国粮油学报, 2014, 29(6): 122-128.
Xiong Q F, Zhang X M, Wen J, Li X H, Fu Y D, Shen J X. Comparation of nutritional values between rapeseed Oil and several other edible vegetable oils: discussion of rapeseed quality genetic improvement. J Chin Cereals Oil Ass, 2014, 29(6): 122-128. (in Chinese with English abstract)
[4] Li Y D, Zhang L, Xu Y J, Li J W, Cao P R, Liu Y F. Evaluation of the functional quality of rapeseed oil obtained by different extraction processes in a Sprague-Dawley rat model. Food Funct, 2019, 10: 6503-6516.
doi: 10.1039/c9fo01592b pmid: 31536073
[5] Chew S C. Cold-pressed rapeseed (Brassica napus) oil: chemistry and functionality. Food Res Int, 2020, 131: 108997.
doi: 10.1016/j.foodres.2020.108997
[6] Khattab R, Goldberg E, Lin L, Thiyam U. Quantitative analysis and free-radical-scavenging activity of chlorophyll, phytic acid, and condensed tannins in canola. Food Chem, 2010, 122: 1266-1272.
doi: 10.1016/j.foodchem.2010.03.081
[7] Hannoufa A, Pillai B V, Chellamma S. Genetic enhancement of Brassica napus seed quality. Transgenic Res, 2014, 23: 39-52.
doi: 10.1007/s11248-013-9742-3
[8] 汪雪芳. 油菜籽叶绿素测定方法研究及应用. 华中农业大学硕士学位论文,湖北武汉, 2008.
Wang X F. Study on Chlorophyll Content Determination and Application in Rapeseed. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2008. (in Chinese with English abstract)
[9] 段文学, 张海燕, 解备涛, 汪宝卿, 张立明. 甘薯苗期耐盐性鉴定及其指标筛选. 作物学报, 2018, 44: 1237-1247.
doi: 10.3724/SP.J.1006.2018.01237
Duan W X, Zhang H Y, Xie B T, Wang B Q, Zhang L M. Identification of salt tolerance and screening for its indicators in sweet potato varieties during seedling stage. Acta Agron Sin, 2018, 44: 1237-1247. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.01237
[10] 朱锐, 李祥慧, 易阳. 菜籽油品质多样性与红外光谱特征的研究. 中国油脂, 2022, 47(11): 126-135.
Zhu R, Li X H, Yi Y. Study on the quality diversity and fourier transform infrared spectroscopic features of rapeseed oils. China Oils Fats, 2022, 47(11): 126-135 (in Chinese with English abstract).
[11] Szydłowska-Czerniak A, Tułodziecka A. Antioxidant capacity of rapeseed extracts obtained by conventional and ultrasound- assisted extraction. J Am Oil Chem Soc, 2014, 91: 2011-2019.
pmid: 25431498
[12] Xu Y J, Jiang F, Song J G, Yang X Y, Shu N X, Yuan L Y, Tan C P, Liu Y F. Understanding of the role of pretreatment methods on rapeseed oil from the perspective of phenolic compounds. J Agric Food Chem, 2020, 68: 8847-8854.
doi: 10.1021/acs.jafc.0c03539
[13] Sikorska E, Wójcicki K, Kozak W, Gliszczyńska-Świgło A, Khmelinskii I, Górecki T, Caponio F, Paradiso V M, Summo C, Pasqualone A. Front-face fluorescence spectroscopy and chemometrics for quality control of cold-pressed rapeseed oil during storage. Foods, 2019, 8: 665-680.
doi: 10.3390/foods8120665
[14] 刘光宪, 冯健雄, 闵华, 王强, 熊慧薇, 祝水兰, 雷颂. 冷榨制油技术研究进展. 江西农业学报, 2009, 21(12): 134-136.
Liu G X, Feng J X, Min H, Wang Q, Xiong H W, Zhu S L, Lei S. Research advance in cold pressed extraction of oil. Acta Agric Jiangxi, 2009, 21(12): 134-136 (in Chinese with English abstract).
[15] 马珍珍, 李加纳, Wittkop B, Frauen M, 阎星颖, 刘列钊, 肖阳. 甘蓝型油菜籽粒含油量、蛋白质、纤维素及半纤维素含量QTL分析. 作物学报, 2013, 39: 1214-1222.
doi: 10.3724/SP.J.1006.2013.01214
Ma Z Z, Li J N, Wittkop B, Frauen M, Yan X Y, Liu L Z, Xiao Y. QTL mapping for oil, protein, cellulose and hemicellulose contents in seeds of Brassica napus L. Acta Agron Sin, 2013, 39: 1214-1222. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.01214
[16] 左青松, 黄海东, 曹石, 杨士芬, 廖庆喜, 冷锁虎, 吴江生, 周广生. 不同收获时期对油菜机械收获损失率及籽粒品质的影响. 作物学报, 2014, 40: 650-656.
doi: 10.3724/SP.J.1006.2014.00650
Zuo Q S, Huang H D, Cao S, Yang S F, Liao Q X, Leng S H, Wu J S, Zhou G S. Effects of harvesting date on yield loss percentage of mechanical harvesting and seed quality in rapeseed. Acta Agron Sin, 2014, 40: 650-656. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.00650
[17] 范媛, 王玉, 李振岚, 王世让, 于殿宇. 冷榨法制取南瓜籽油的研究. 粮油加工, 2010, (11): 27-29.
Fan Y, Wang Y, Li Z L, Wang S R, Yu D Y. Study on the production of pumpkin seed oil by cold pressing. Cereals Oils Proc, 2010, (11): 27-29. (in Chinese)
[18] Li X, Yang R N, Lyu C L, Chen L, Zhang L X, Ding X X, Zhang W, Zhang Q, Hu C D, Li P W. Effect of chlorophyll on lipid oxidation of rapeseed oil. Eur J Lipid Sci Technol, 2019, 121: 1800078.
doi: 10.1002/ejlt.v121.4
[19] 陈萌. 微波预处理油菜籽对压榨饼浸出油品质的影响. 华中农业大学硕士学位论文,湖北武汉, 2013.
Chen M. Effects of Microwave Pretreatment of Rapeseed on Quality of Oil Extracted by Solvent from Meal. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2013. (in Chinese with English abstract)
[20] 于坤, 禹晓, 程晨, 陈鹏, 郑畅. 制油工艺对亚麻籽油品质及脂质伴随物含量的影响. 食品科学, 2020, 41(16): 233-243.
Yu K, Yu X, Cheng C, Chen P, Zheng C. Effects of processing techniques on the quality properties and lipid concomitants of flaxseed oil. Food Sci, 2020, 41(16): 233-243. (in Chinese with English abstract)
[21] Yang M, Zheng C, Zhou Q, Huang F H, Liu C S, Wang H. Minor components and oxidative stability of cold-pressed oil from rapeseed cultivars in China. J Food Compos Anal, 2013, 29: 1-9.
doi: 10.1016/j.jfca.2012.08.009
[22] 黄颖, 郑畅, 葛正法, 刘昌盛. 制油工艺对芝麻油脂肪酸和抗氧化物的影响. 食品工业, 2020, 41(8): 43-46.
Huang Y, Zheng C, Ge Z F, Liu C S. Effect of processing technology on fatty acids and antioxidize in sesame oil. Food Ind, 2020, 41(8): 43-46. (in Chinese with English abstract)
[23] Determination of Tocopherols and Tocotrienols in Vegetable Oils and Fats by HPLC (AOCS Official Method Ce 8-89). In: Official Methods and Recommended Practices of the American Oil Chemists’ Society, AOCS Press: Champaign, IL, 1993.
[24] Chen Q, McGillivray D, Wen J, Zhong F, Quek S Y. Co-encapsulation of fish oil with phytosterol esters and limonene by milk proteins. J Food Eng, 2013, 117: 505-512.
doi: 10.1016/j.jfoodeng.2013.01.011
[25] 吴坤, 吴文雄, 杨敏敏, 刘红艳, 郝国存, 赵应忠. 白芝麻籽粒油脂、蛋白质及芝麻素含量QTL定位分析. 作物学报, 2017, 43: 1003-1011.
Wu K, Wu W X, Yang M M, Liu H Y, Hao G C, Zhao Y Z. QTL mapping for oil, protein and sesamin contents in seeds of white sesame. Acta Agron Sin, 2017, 43: 1003-1011. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.01003
[26] Fu Y, Zhang D, Gleeson M, Zhang Y, Lin B, Hua S, Yu H. Analysis of QTL for seed oil content in Brassica napus by association mapping and QTL mapping. Euphytica, 2017, 213: 17.
doi: 10.1007/s10681-016-1817-9
[27] McGlew K, Shaw V, Zhang M, Kim R, Yang W, Shorrosh B, Ohlrogge J. An annotated database of Arabidopsis mutants of acyl lipid metabolism. Plant Cell Rep, 2015, 34: 519-532.
[28] Mizera Č, Herak D, Hrabě P, Kabutey A. Extraction of oil from rapeseed using duo screw press. Agric Res, 2018. 16: 1118-1123.
[29] Bogaert L, Mathieu H, Mhemdi H, Vorobiev E. Characterization of oilseeds mechanical expression in an instrumented pilot screw press. Ind Crop Prod, 2018, 121: 106-113.
doi: 10.1016/j.indcrop.2018.04.039
[30] Borges T H, Pereira J A, Cabrera-Viqu C, Lara L, Oliveira A F, Seiquer I. Characterization of Arbequina virgin olive oils produced in different regions of Brazil and Spain: Physicochemical properties, oxidative stability and fatty acid profile. Food Chem, 2017, 215: 454-462.
doi: 10.1016/j.foodchem.2016.07.162 pmid: 27542498
[31] Moyano M J, Meléndez-Martínez A J, Alba J, Heredia F J. A comprehensive study on the colour of virgin olive oils and its relationship with their chlorophylls and carotenoids indexes (II): CIELUV and CIELAB uniform colour spaces. Food Res Int, 2008, 41: 513-521.
doi: 10.1016/j.foodres.2008.03.006
[32] 李培武, 杨湄, 张文, 陈洪, 谢立华, 李光明, 丁小霞, 汪雪芳. 我国油菜产品质量安全现状及对策. 中国油料作物学报, 2004, 26: 84-88.
Li P W, Yang M, Zhang W, Chen H, Xie L H, Li G M, Ding X X, Wang X F. Studies on quality of oilseed rape products and its improvement strategy in China. Chin J Oil Crop Sci, 2004, 26: 84-88. (in Chinese with English abstract)
[33] Patel A, Desai S S, Mane V K, Enman J, Rova U, Christakopoulos P, Matsakas L. Futuristic food fortification with a balanced ratio of dietary ω-3/ω-6 omega fatty acids for the prevention of lifestyle diseases. Trends Food Sci Technol, 2022, 120: 140-153.
doi: 10.1016/j.tifs.2022.01.006
[34] 周润松, 何荣, 鞠兴荣, 王博, 吴莹, 徐斐然, 章铖, 宋新阳. 脱臭工艺对菜籽油品质及抗氧化性的影响. 粮食科技与经济, 2017, 42(6): 63-67.
Zhou R S, He R, Ju X R, Wang B, Wu Y, Xu F R, Zhang C, Song X Y. Effect of deodorisation process on quality and antioxidant properties of rapeseed oil. Food Sci Technol Econ, 2017, 42(6): 63-67. (in Chinese)
[35] 张瑶, 吴邦富, 吕昕, 谢亚, 陈洪, 魏芳. 油料作物中特异性脂类伴随物及其分析方法研究进展. 中国油料作物学报, 2021, 43: 530-541.
Zhang Y, Wu B F, Lyu X, Xie Y, Chen H, Wei F. Research progress on specific lipid companions and analytical methods in oil crops. Chin J Oil Crop Sci, 2021, 43: 530-541. (in Chinese with English abstract)
doi: 10.19802/j.issn.1007-9084.2020134
[36] 马芝丽, 陈文超, 祝香芝, 黄凤洪, 邓乾春, 万霞. 油菜籽来源抗氧化物质研究进展. 中国油料作物学报, 2019, 41: 998-1006.
Ma Z L, Chen W C, Zhu X Z, Huang F H, Deng Q C, Wan X. Review on antioxidant components from rapeseed. Chin J Oil Crop Sci, 2019, 41: 998-1006. (in Chinese with English abstract)
doi: 10.19802/j.issn.1007-9084.2019073
[37] Figueiredo L D, Bonafe E G, Martins J G, Martins A F, Maruyama S A, Santos Junior O, Visentainer J V. Development of an ultrasound assisted method for determination of phytosterols in vegetable oil. Food Chem, 2018, 240: 441-447.
doi: S0308-8146(17)31294-3 pmid: 28946296
[38] Hamama A A, Bhardwaj H L, Starner D E. Genotype and growing location effects on phytosterols in canola oil. J Am Oil Chem Soc, 2003, 80: 1121-1126.
doi: 10.1007/s11746-003-0829-3
[39] Vlahakis C, Hazebroek J. Phytosterol accumulation in canola, sunflower, and soybean oils: effects of genetics, planting location, and temperature. J Am Oil Chem Soc, 2000, 77: 49-53.
doi: 10.1007/s11746-000-0008-6
[40] Marwede V, Schierholt A, Möllers C, Becker H C. Genotype× environment interactions and heritability of tocopherol contents in canola. Crop Sci, 2004, 44: 728-731.
doi: 10.2135/cropsci2004.7280
[1] DONG Zhi-Qiang, LYU Li-Hua, YAO Yan-Rong, ZHANG Jing-Ting, ZHANG Li-Hua, YAO Hai-Po, SHEN Hai-Ping, JIA Xiu-Ling. Yield and quality of strong gluten wheat Shiluan 02-1 under water and nitrogen interaction [J]. Acta Agronomica Sinica, 2023, 49(7): 1942-1953.
[2] LIU Qiu-Xia, DONG Er-Wei, HAUNG Xiao-Lei, WANG Jin-Song, WANG Yuan, JIAO Xiao-Yan. Response of sorghum grain yield and quality to nitrogen application in different ecozones [J]. Acta Agronomica Sinica, 2023, 49(10): 2766-2776.
[3] Chao MI,Yan-Ning ZHAO,Zi-Gang LIU,Qi-Xian CHEN,Wan-Cang SUN,Yan FANG,Xue-Cai LI,Jun-Yan WU. Cloning of RuBisCo Subunits Genes rbcL and rbcS from Winter Rapeseed (Brassica rapa) and Their Expression under Drought Stress [J]. Acta Agronomica Sinica, 2018, 44(12): 1882-1890.
[4] FANG Yan,SUN Wan-Cang,WU Jun-Yan,LIU Zi-Gang,DONG Yun,MI Chao,MA Li,CHEN Qi,HE Hui-Li. Response of Membrane Fatty Acid Composition and ATPase Activity in Brassica rapa L. to Temperature in North China [J]. Acta Agron Sin, 2018, 44(01): 95-104.
[5] CHAI Jian-Fang*,WANG Hai-Bo*,MA Xiu-Ying,ZHANG Cui-Mian,DONG Fu-Shuang. Effect of ω-Secalin Gene Silencing on Processing Quality of Wheat 1B/1R Translocation Line [J]. Acta Agron Sin, 2016, 42(05): 627-632.
[6] ZHANG Ping-Ping,MA Hong-Xiang*,YAO Jin-Bao,ZHOU Miao-Ping,ZHANG Peng. Effect of HMW-GS Deletion on Processing Quality of Soft Wheat Ningmai 9 [J]. Acta Agron Sin, 2016, 42(05): 633-640.
[7] SUN Wan-Cang1,**,LIU Hai-Qing1,**,LIU Zi-Gang1,*,WU Jun-Yan,LI Xue-Cai,FANG Yan,ZENG Xiu-Cun,XU Yao-Zhao,ZHANG Ya-Hong,DONG Yun. Critical Index Analysisof Safe Over-wintering Rate ofWinter Rapeseed (Brassica rapa) in Cold and Arid Region in North China [J]. Acta Agron Sin, 2016, 42(04): 609-618.
[8] ZUO Qing-Song,KUAI Jie,YANG Shi-Fen,CAO Shi,YANG Yang,WU Lian-Rong,SUN Ying-Ying,ZHOU Guang-Sheng,WU Jiang-Sheng. Effects of Nitrogen Fertilizer and Planting Density on Canopy Structure and Population Characteristic of Rapeseed with Direct Seeding Treatment [J]. Acta Agron Sin, 2015, 41(05): 758-765.
[9] LUO Jun,XU Li-Ping,QIU Jun,ZHANG Hua,YUAN Zhao-Nian,DENG Zu-Hu,CHEN Ru-Kai,QUE You-Xiong. Evaluation of Sugarcane Test Environments and Ecological Zone Division in China Based on HA-GGE Biplo [J]. Acta Agron Sin, 2015, 41(02): 214-227.
[10] ANG Li,HUANG Yu-Lian,CHANG Ping,YAN Jun,ZHANG Ye-Lun,XIA Xian-Chun,TIAN Yu-Bing,HE Zhong-Hu,ZHANG Yong. QTL Mapping for Arabinoxylans Content and Its Relationship with Processing Quality in Common Wheat [J]. Acta Agron Sin, 2014, 40(09): 1695-1701.
[11] LIU Zi-Gang,ZHANG Chang-Sheng,SUN Wan-Cang,YANG Ning-Ning,WANG Yue,HE Li,ZHAO Cai-Xia,WU Jun-Yan,FANG Yan,ZENG Xiu-Cun. Comparison of Winter Rapeseed Varieties (Lines) Different with Cold-Resistance Planted in the Northern-Extending Regions in China under Low Temperature before Winter [J]. Acta Agron Sin, 2014, 40(02): 346-354.
[12] DONG Jian,YANG Hua,ZHAO Wan-Chun,LI Xiao-Yan,CHEN Qi-Jiao,GAO Xiang. Agronomic Traits and Grain Quality of Chinese Spring–Dasypyrum villosum Translocation Lines T1DL*1VS and T1DS*1VL [J]. Acta Agron Sin, 2013, 39(08): 1386-1390.
[13] ZHANG Yong,SHEN Xiao-Yong,ZHANG Wen-Xiang,CHEN Xin-Min,YAN Jun,ZHANG Yan,WANG De-Sen,WANG Zhong-Wei,LIU Yue-Fang,TIAN Yu-Bing,XIA Xian-Chun,HE Zhong-Hu. Marker-Assisted Selection of HMW-Glutenin 1Dx5+1Dy10 Gene and 1B/1R Translocation for Improving Industry Quality in Common Wheat [J]. Acta Agron Sin, 2012, 38(10): 1743-1751.
[14] HE Zhong-Hu, JIA Xian-Chun, CHEN Xin-Min, ZHUANG Qiao-Sheng. Progress of Wheat Breeding in China and the Future Perspective [J]. Acta Agron Sin, 2011, 37(02): 202-215.
[15] REN Jiang-Ping, WANG Na, WANG Xin-Guo, LI Yong-Chun, NIU Hong-Bin, WANG Xiang, YIN Jun. Effects of Anti-Sense Thioredoxin s on Grain Yield and Quality Properties in Two Wheat Cultivars with Different Quality Types [J]. Acta Agron Sin, 2010, 36(11): 1877-1882.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .